金属维氏硬度试验第1部分试验方法
烧结金属材料硬度规范

POSITEC烧结金属材料硬度规范由于烧结金属材料硬度的检测和其他金属件有所不同。
为了使图纸与工厂及生产厂商的实物检指能够保持一致,须统一标准与规范,经过统计多家供应商的烧结金属零件检指数据加以汇总分析,并参照一系列的国家标准,特编制烧结金属材料硬度的设计检测标准规范。
硬度硬度是烧结金属结构材料(零件)中最常使用的一个性能指标。
按烧结金属结构材料(零件)的材质不同,常用的硬度测试方法有布氏硬度HB;洛氏硬度HRA、HRB、HRC;维氏硬度HV及肖氏硬度HS。
它们的压头材料、压头大小、压头形状以及采用的压力各不相同。
根据试样上压头所留下的压痕尺寸大小,可算出其相应的硬度值。
烧结金属结构材料通常存在孔隙。
如果硬度计的压头正好压在它的孔隙处,就不能反映出其基体的真实硬度。
多孔性材料的硬度值的离散性比相应的锻轧材料大。
烧结金属零件的多孔性决定了其检测方法最好采用维氏硬度计,其值相对稳定而准确。
烧结金属件中,含油(滑动)轴承仍用布氏硬度来表示其表观硬度。
经分析生产厂商送检的各类烧结金属零件检指数据,并参照相关国家标准规定:GB/T9097.1-2002烧结金属材料(不包括硬质合金)表观硬度的测定第一部分:截面硬度基本均匀的材料GB/T4340.1-1999金属维氏硬度试验第1部分试验方法GB/T231.1-2002金属布氏硬度试验第1部分试验方法对于烧结金属零件(含油轴承除外),在图纸上技术要求中硬度统一使用维氏硬度来标志,同样测试也使用维氏硬度标准。
具体的测试统一按GB/T4340.1-1999中3.3推荐的维氏硬度试验力表3-2,小负荷维氏硬度试验的HV0来标注和检测。
密度烧结金属材料制取零件时,材料具有孔隙,零件的密度是可变的。
其不仅影响零件的力学性能和精度,同时影响压坯的成品率和生产效率,所以压坯密度设计是烧结金属的零件设计和制造的主要依据之一。
在烧结金属零件生产中,一般说来,材料的密度愈高,材料的物理—力学性能愈高。
维氏硬度检测作业指导书

德信诚培训网维氏硬度检测作业指导书本作业指导书依据显微硬度计使用说明书、GB/T 4340.1-2009《金属材料维氏硬度试验第1部分:试验方法》编制,是中心实验室管理体系文件之一。
1.样品的要求:1.1样品表面应光滑平坦,试验面上无氧化皮及外来污染、油脂等,除非在产品标准中另有规定。
试样表面的质量应保证压痕对角线长度测量的精度,试样表面应进行抛光处理。
1.2试样的制备应使受热或冷加工等因素对表面硬度的影响减至最小。
1.3试样或试验层厚度至少应为压痕对角线长度的1.5倍。
试验后试样背面不应出现可见变形压痕。
1.4对于在曲面试样试验的结果,应使用GB/T 4340.1-2009《金属材料维氏硬度试验第1部分:试验方法》附录B进行修正。
1.5对于小截面或外形不规则的试样,应将试样镶嵌或用专用试验台进行试验。
2.维氏硬度计的调试准备开始试验前,请确定:选择正确的载荷、时间、试验台等以满足被测试样的待测位置能够稳定的接触压头。
3.试验过程(GB/T 4340.1)3.1试验一般在10℃~35℃室温进行。
3.2根据不同的标准要求选择适合的试验力。
3.3试验台应清洁无其他污染物(氧化皮、油脂、灰尘等)。
试样应稳固的放置于实验台上以保证试验过程中试样不产生位移。
3.4使压头与试样表面接触,垂直于试验面施加试验力,加力过程中不应有冲击和震动,直至将试验力加至规定值。
从加力开始到全部试验力施加完毕时间应在2s~8s之间。
对于小力值维氏硬度试验和显微硬度试验,施加过程不能超过10s且压头下降速度不能大于0.2mm/s。
试验力保持时间为10s~15s。
3.5任一压痕中心至试样边缘距离,对于钢、铜、铜合金至少应为压痕对角线长度的2.5更多免费资料下载请进:好好学习社区。
HV硬度操作规程

横刃的最大允许长度 横刃的最大允许长度(mm) 0.002 0.001
4.5 压痕测量装置 4.5.1 压痕测量装置的估测能力应视其被测压痕的大小而定,测量装置的标尺分 度值和对压痕对角线的估测能力符合表 4 的规定。 4.5.2 测量装置应使用标准刻线尺对其每一工作范围至少五个间隔进行测量,其 最大允许误差应符合表 4 的规定。
水平仪 秒表
±0.0004mm,
分度值≤ 0.1µm ,
400×以上 分度值 0.2mm/m
分辨力 0.1S
6.2 检定项目和检定方法 检定项目见表 8
5
PDF created with pdfFactory trial version
JJG151-200X
表 8 检定项目表
将测力仪放在试台上,对准主轴轴线,预压三次,调好零点,然后开始检定。 只要可能,应在试验过程中主轴的整个移动范围内,以均等的间隔在其至少三个 位置上进行试验力的检定。
检定时,在主轴的每一位置上,对每级试验力应读取三个读数,每次读数的 瞬间,主轴的移动方向应与试验时的移动方向一致。试验力误差按式(2)计算, 其结果应符合 4.3 的要求。
6 8 9 10
5 6 7 8 8 9 10 10 11
4
6
8
9
10 11 11 12 12
4
5
6
7
8 9 10 10 11 11
3
5
5
6
67 7 8 8 9 11
3
4
4
4
55566 6
3
3
3
4
44445 5
3
3
3
3
34444 4
3
3
硬度操作规程6篇

硬度操作规程6篇第1篇维氏硬度计的操作规程一、试验前的准备工作1、试样(1)试样的试面必须为光滑面,不得有氧化物及外来污物,试验面得表面粗糙度必须保证压痕对角线精确的测量,一般ra不得大于0.2微米。
(2)在试样的制备过程中,因尽量受冷、热加工等对试样表面的影响。
(3)试样或试验层的厚度至少应为压痕对角线的1.5倍,试验后试样背后不应出现可见的变形痕迹,试样的厚度和预计硬度值按下式选择选择适当的试验力f。
h2_hv预f= (kgf)4.7式中:f-----待选用的试验力(kgf)h-----试样厚度(mm)hv----预计硬度值(kgf/mm(2)如果计算的试验力在二级试验力之间,那么应选用较小一级的试验力。
试验力选好后,转动变荷手柄,选择所需的试验力。
2、选择试台本硬度计带有多种试台,都可安装在坐标试台上,以适应各种形状试样的试验需要。
因此,当选选择好合适的试台后,先用汽油擦洗净表面油脂,然后用4支m5X10的圆柱头螺钉将其固定在试台上。
3、选择试验力保持时间试验力的保持时间对黑色金属一般为10-15秒,对有色金属为30±2秒。
4、物镜倍率选择当被测试验压痕为:≤0.2mm时,选用40X>0.2mm时,选用10X二、试验1、打开电源开关(30)照明灯。
2、依据试验前的准备所述,选择试验力、试台、物镜倍率,预制试验力保持时间。
3将试样放置于试台上,并应保证试面与主轴轴线垂直。
4将10倍物镜转至正前方,旋转升降手轮使物面离物镜下端面约8毫米,再满满的转动升降手轮并再目镜中观察,直至看清试样表面得加工痕迹。
如果从目镜中观察分划板上得刻线不清晰,可转动目镜,使之清晰为至。
操作者再使用过程中,可随时旋转亮度调节旋钮,选择舒适得视场照明亮度。
5将压头转至正前方,按下加载荷,硬度计随之完成施加-保持-卸除试验力得过程,压头自动回到初始位子。
6将已经选折好得物镜旋转到正前方,通过测微计进行压痕测量,由于压痕是被物镜放大后成像在分划板上,而分划板上相邻刻线间距为1毫米,百分同旋转一圈,视场中指标线移动1毫米,这样百分同一格为0.01毫米。
金属材料维氏硬度试验检测结果测量不确定度的评定

金属材料维氏硬度试验检测结果测量不确定度的评定1 概述1.1 测量方法依据G B/T 4340.1-2009《金属维氏硬度试验第1部分:试验方法》。
1.2 评定依据ISO/IEC 17025:2005《检测和校准实验室能力的通用要求》;《JJF 1059.1—2012 测量不确定度评定与表示》;GB/T 4340.2-2009《金属维氏硬度试验第 2 部分:硬度计的检验》;GB/T 3101-1993《有关量、单位和符号的一般原则》;GB/T 8170-2008《数值修约规则》。
1.3 环境条件根据GB/T 4340.1-2009 试验方法标准的规定,试验一般在室温10 ℃~35 ℃范围进行(除非另有规定)。
本例评定的试验温度为26 ℃±2 ℃,湿度为60%RH。
1.4 测量设备应采用经计量部门检定合格的维氏硬度计,其准确度必须满足G B/T 4340.2-2009 的规定。
本例使用经计量单位检定合格的F V-700 型(日本)硬度计。
1.5 被测对象采用满足国家标准G B/T 4340.1-2009 要求的金属材料维氏硬度试样。
1.6 测量过程根据G B/T 4340.1-2009,在规定环境条件下,对于满足标准要求的金属材料维氏硬度试样借助于计量合格的维氏硬度计,选用方法标准规定的合适的试验力和压头下降速度,采用标准规定的试验力保持时间及合适的压痕测量装置放大倍数测试压痕对角线平均值,通过查表或计算得到所测硬度值。
作为实例,本文选用98.07 N 试验力、力保持时间为15 秒,在自动加力的情况下,测定维氏硬度值(HV10)。
2 建立测量模型根据G B/T 4340.1-2009 标准,维氏硬度测试原理的测量模型为:(1)式中F ―试验力,Nd ―两压痕对角线长度d1 和d2 的算术平均值,mm3 测量不确定度来源的分析和d2 算术平均值d的测量误差引起的不确定度主要来源:两压痕对角线长度d1分量;试验力值误差所引起的不确定度分量;测量结果进行数值修约所导致的不确定度分量。
特殊材料检测项目及标准参考(1)

4
90°剥离强度
胶粘剂 90°剥离强度测定方法 (金属金属)
GJB 446-1988
5
高强度胶粘剂 剥离强度
高强度胶粘剂剥离强度的测定 浮辊 法
GB/T 7122-1996
1
胶粘剂
胶粘剂 180°剥离强度试验方法 (挠性 材料对刚性材料) GB/T 2790-1995 6 180°剥离强度
硫化橡胶与金属粘接 180°剥离试验 GB/T 15254-1994
增强材料 纱线试验方法第 3 部分: 玻 璃纤维断裂强力和断裂伸长的测定 GB/T 7690.3-2001
2
断裂强力和断 裂伸长 增强材料 机织物试验方法第 5 部分: 玻璃纤维拉伸断裂强力和断裂伸长的 测定
GB/T 7689.5-2001
碳素材料碳、氢、氮含量测定方法 3 碳、氢、氮 QJ 2781A-2004
11
粘度
胶黏剂黏度的测定单圆筒旋转黏度计 法 GB/T 2794-2013
1
胶粘剂
12
不挥发物含量
胶粘剂不挥发物含量的测定 GB/T 2793-1995
2
橡胶
1
拉伸应力应变 性能
硫化橡胶或热塑性橡胶拉伸应力应变 性能的测定 GB/T 528-2009
2
邵尔硬度
硫化橡胶或热塑性橡胶压入硬度试验 方法 第 1 部分:邵氏硬度计法(邵尔 硬度)GB/T 531.1-2008
热分析方法通则 1 热分析 JY/T 014-1996
2 9 固体材料
成分分析
微束分析 能谱法定量分析 GB/T 17359-2012
只测 B5~U92
固体材料高温热扩散率试验方法激光 脉冲法 3 高温热扩散率 GJB 1201.1-1991
新洛氏硬度说明

3
应用范围
金刚石压头
1)N标尺 15N、30N、45N 2)T标尺 15T、30T、45T 3)A、C、D标尺 4)B、F、G标尺 5)E、H、K标尺
1.5875mm球 金刚石压头 1.5875mm球 3.175mm 球
4 试验特点
1 测深原理 直接显示结果
操作简单迅速,试验效率高。压痕小,对试样表面损伤较轻。
一 主要技术内容变化
1 2 3 4 5 6
洛氏硬度压头(在范围1中规定) 引用文件增加了JJF1059 增加了洛氏硬度的表示方法(4.2条) 初始试验力的保持(7.3条) 总始试验力的保持(7.5条) 增加了附录G 洛氏硬度测量值不确定度 分析方法
二 洛氏硬度试验原理及特点
2 符号的表示
1 S—用S表示规定标尺的单位,对于洛氏硬度为 0.002mm;对表面洛氏硬度为0.001mm。 2 h—压痕残余深度,在试验中,首先施加初试验力, 然后施加主试验力,在总试验力下保持规定时间后, 卸除主试验力,在保持初试验力的条件下测量的压痕 深度即为压痕残余深度h。 3 h/S—新标准中用h/S取代了e。在GB/T230-91和 GB/T1818-94中,规定用e表示压痕残余深度增量,其 定义为:去除主试验力后,在初始试验力下的残余压 痕深度增量,分别用0.002mm和0.001mm为单位表示。 新标准中用残余压痕深度增量h与洛氏硬度单位S之比 表示,概念比较明确,即以洛氏硬度数表示压痕残余 深度。
3 压痕深度测量装置
对于洛氏硬度标尺,深度测量装置示值 误差应在±0.001mm之内;对于表面洛氏 硬度标尺示值误差在±0.0005mm之内, 即0.5标尺单位。 当不能对压痕深度测量装置直接检验时, 可通过用标准块和标准压头做硬度试验 的方法间接检验。
金属力学性能试验术语(gbt10623-1989).doc

力学性能测试能力确认的技术构成冶金领域力学性能测试专业可分为11种试验技术,每种技术包含4个方面的内容:测试基础、仪器设备与操作技术、标准方法与应用、数据处理。
分别汇总如下:一. YJL-力学性能测试技术与方法1.YJL001金属拉伸和压缩试验2.YJL002钢绞线和钢丝绳力学性能3.YJL003力学弯曲和扭转试验4.YJL004金属延性试验5.YJL005金属硬度试验6.YJL006金属韧性试验7.YJL007金属高温拉伸(低温拉伸)、蠕变、持久强度和应力松弛试验8.YJL008金属断裂试验9.YJL009金属疲劳试验10.YJL010焊接力学性能试验11.YJL011金属磨损试验二. 每种测试技术的构成1.YJL001金属拉伸和压缩试验1)YJL001-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属材料室温拉伸试验的基本原理金属材料压缩试验的基本原理2)YJL001-2仪器设备与操作技术万能拉压试验机的分类和基本构造a.液压式万能试验机b.机械式拉力试验机c.电液伺服万能试验机d.电子式万能试验机试验机的速度控制系统:a.应力速率控制b.应变速率控制试验机的测量操作系统a.手工控制测量系统b.采用微机控制的自动测量系统试验机的计量要求a.GB/T 16825.1-2002静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准b.JJG 139-1999 拉力、压力和万能试验机检定规程c.GB/T 12160-2002 单轴试验用引伸计的检定d.JJG 762-1992 引伸计检定规程e.JJF 1103-2003 万能试验机计算机数据采集系统评定f.标点机(打点、划线机的自校准)试验机的使用与维护保养试验机的期间核查上机操作3)YJL001-3标准方法与应用GB/T228-2002 金属材料室温拉伸试验方法GB/T8653-1988 金属杨氏模量,弦线模量,切线模量,泊松比试验(静态法) GB/T17600.1-1998 钢的伸长率换算第一部分:碳钢和低合金钢GB/T17600.2-1998 钢的伸长率换算第二部分:奥氏体钢GB/T7314-2005 金属材料压缩试验方法4)YJL001-4数据处理与标准相关的数据处理金属拉伸性能测量不确定度评定(抗拉强度、屈服强度、规定非比例延伸强度、断后伸长率、断面收缩率)金属拉伸杨氏模量测量不确定度评定2.YJL002钢绞线和钢丝绳力学性能1)YJL002-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属材料室温拉伸试验的基本原理钢绞线和钢丝绳力学性能试验基本原理2)YJL002-2仪器设备与操作技术万能试验机的分类和基本构造a.液压式万能试验机b.机械式拉力试验机c.电液伺服万能试验机d.电子式万能试验机试验机的速度控制系统:a.应力速率控制b.应变速率控制试验机的测量操作系统a.手工控制测量系统b.采用微机控制的自动测量系统试验机的计量要求a.GB/T 16825.1-2002静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准b.JJG 139-1999 拉力、压力和万能试验机检定规程c.GB/T 12160-2002 单轴试验用引伸计的检定d.JJG 762-1992 引伸计检定规程e.JJF 1103-2003 万能试验机计算机数据采集系统评定f.标点机(打点、划线机的自校准)g.钢绞线松弛试验机的检验与校准试验机的使用与维护保养试验机的期间核查上机操作3)YJL002-3标准方法与应用GB/T228-2002 金属材料室温拉伸试验方法GB/T8653-1988 金属杨氏模量,弦线模量,切线模量,泊松比试验(静态法) GB/T8358-1987 钢丝绳破断拉伸试验方法钢绞线的应力松弛性能 [GB/T 5224-2003 预应力混凝土用钢绞线]钢绞线的弹性模量 [GB/T 5224-2003 预应力混凝土用钢绞线]GB/T12347-1996 钢丝绳弯曲疲劳试验方法4)YJL002-4数据处理与标准相关的数据处理钢绞线弹性模量测量不确定度评定钢绞线抗拉强度测量不确定度评定3.YJL003力学弯曲和扭转试验1)YJL003-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求弯曲试验的基本原理扭转试验的基本原理2)YJL003-2仪器设备与操作技术万能试验机的分类和基本构造a.液压式万能试验机b.机械式拉力试验机c.电液伺服万能试验机d.电子式万能试验机试验机的速度控制系统a.应力速率控制b.应变速率控制试验机的测量操作系统a.手工控制测量系统b.采用微机控制的自动测量系统万能试验机及弯曲试验装置JB/T 9370-1999 扭转试验机技术条件扭转计的基本构造试验机的计量要求a.GB/T 16825.1-2002静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准b.JJG 139-1999 拉力、压力和万能试验机检定规程c.GB/T 12160-2002 单轴试验用引伸计的检定d.JJG 762-1992 引伸计检定规程e.JJG 269-1981 扭转试验机试行检定规程试验机的使用与维护保养试验机的期间核查上机操作3)YJL003-3标准方法与应用GB/T10128-1988 金属室温扭转试验方法GB/T14452-1993 金属弯曲力学性能试验方法4)YJL003-4数据处理与标准相关的数据处理4.YJL004金属延性试验1)YJL004-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备 GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属材料延性试验的基本原理2)YJL004-2仪器设备与操作技术万能试验机的分类和基本构造a.液压式万能试验机b.机械式拉力试验机c.电液伺服万能试验机d.电子式万能试验机试验机的速度控制系统a.应力速率控制b.应变速率控制试验机的测量操作系统a.手工控制测量系统b.采用微机控制的自动测量系统杯突等延性试验用试验机的基本构造和工作原理试验机的计量要求a.GB/T 16825.1-2002静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准b.JJG 139-1999 拉力、压力和万能试验机检定规程c.GB/T 12160-2002 单轴试验用引伸计的检定d.JJG 762-1992 引伸计检定规程e.JJG583-1988 杯突试验机检定规程试验机的使用与维护保养试验机的期间核查上机操作3)YJL004-3标准方法与应用GB/T 6400-1986 金属丝和铆钉高温剪切试验方法GB/T 232-1999 金属材料弯曲试验方法GB/T 235-1999 金属材料厚度等于或小于3mm薄板和薄带反复弯曲试验方法 YB/T 5126– 2003 钢筋混凝土用钢筋弯曲和反向弯曲试验方法GB/T244-1997 金属管弯曲试验方法GB/T10128-1988 金属材料线材扭转试验方法GB/T 2976– 2004 金属线材缠绕试验方法GB/T238-2002 金属材料线材反复弯曲试验方法GB/T233-2000 金属材料顶锻试验方法GB/T5027-1999 金属薄板和薄带塑性应变比(r值)试验方法GB/T5028-1999 金属薄板和薄带拉伸应变硬化指数(n值)试验方法GB/T246-1997 金属管压扁试验方法GB/T245-1997 金属管卷边试验方法GB/T242-1997 金属管扩口试验方法GB/T4156-1984 金属杯突试验方法(厚度0.2-2mm)4)YJL004-4数据处理与标准相关的数据处理金属薄板和薄带塑性应变比(r值)测量结果不确定度评定5.YJL005金属硬度试验1)YJL005-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属材料硬度测试的基本原理a.维氏硬度b.洛氏硬度c.布氏硬度d.里氏硬度e.努氏硬度f.肖氏硬度2)YJL005-2仪器设备与操作技术硬度计的分类和基本构造、工作原理:硬度计的计量要求a.GB/T4340.2-1999 金属维氏硬度试验第2部分:硬度计的检验b.GB/T4340.3-1999 金属维氏硬度试验第3部分:标准硬度块的标定c.JJG151~1991 金属维氏硬度计检定规程d.JJG148~1991 标准维氏硬度块检定规程e.GB/T18449.2-2001 金属努氏硬度试验第2部分:硬度计的检验f.GB/T18449.3-2001 金属努氏硬度试验第3部分:标准硬度块的标定g.GB/T230.2-2002 金属洛氏硬度试验第2部分:硬度计的检验与校准(A,B,C,D,E,F,G,H,K,N,T标尺)h.GB/T230.3-2002 金属洛氏硬度试验第3部分:标准硬度块的标定(A,B,C,D,E,F,G,H,K,N,T标尺)i.JJG 112-2003 金属洛氏硬度计检定规程j.GB/T231.2-02 金属布氏硬度试验第2部分:硬度计的检验与校准k.GB/T231.3-02 金属布氏硬度试验第3部分:标准硬度块的标定l.JJG 150-2005 金属布氏硬度计检定规程m.JJG 147-1991 标准布氏硬度检定规程n.GB/T2849-1981 洛氏硬度压头o.JJG 747-1999 里氏硬度计检定规程p.JJG 2006-1996 肖氏硬度(D标尺)计量器具检定系统框图q.JJG 347-1991 标准肖氏硬度块检定规程硬度计的使用与维护保养硬度计的期间核查上机操作3)YJL005-3标准方法与应用GB/T231.1-2002 金属布氏硬度试验第一部分:试验方法GB/T230.1-2004 金属洛氏硬度试验第一部分:试验方法(A、B、C、D、E、F、G、H、.K,N,T标尺)GB/T4340.1-1999 金属维氏硬度试验第一部分:试验方法GB/T18449-2001 金属努氏硬度试验方法GB/T4341-2001 金属肖氏硬度试验方法GB/T17394-1998 金属里氏硬度试验方法GB/T1172-1999 黑色金属硬度及强度换算值GB/T3771-1983 铜合金硬度与强度换算值4)YJL005-4数据处理与标准相关的数据处理金属洛氏硬度测量不确定度评定(HRC)金属布氏硬度测量不确定度评定金属维氏硬度测量不确定度评定金属里氏硬度测量不确定度评定金属肖氏硬度测量不确定度评定6.YJL006金属韧性试验1)YJL006-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属韧性试验的基本原理2)YJL006-2仪器设备与操作技术摆锤式冲击试验机的基本构造和工作原理摆锤式仪器化冲击试验机的基本构造和工作原理落锤试验机的基本构造和工作原理试验机的计量要求a.GB/T3808-2002 摆锤式冲击试验机的检验b.JJG145-1982 摆锤式冲击试验机检定规程c.GB/T18658-2002 摆锤式冲击试验机检验用夏比V型缺口标准试样试验机的使用与维护保养试验机的期间核查上机操作3)YJL006-3标准方法与应用GB/T4160-1904 钢的应变时效敏感性试验方法(夏比冲击法)GB/T12778-1991 金属夏比冲击断口测定方法GB/T229-1994 金属夏比缺口冲击试验方法GB/T 5482– 1993 金属材料动态撕裂试验方法GB/T6803-1986 铁素体钢无塑性转变温度落锤试验方法GB/T8363-1987 铁素体钢落锤撕裂试验方法GB/T 19748-2005 钢材夏比V型缺口摆锤冲击试验仪器化试验方法 GB/T4158-1984 金属艾氏冲击试验方法4)YJL006-4数据处理与标准相关的数据处理金属夏比冲击试验测量不确定度评定7.YJL007金属高温拉伸(低温拉伸)、蠕变、持久强度和应力松弛试验1)YJL007-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属高温拉伸(低温拉伸)试验工作原理金属蠕变及持久强度试验工作原理金属应力松弛试验工作原理2)YJL007-2仪器设备与操作技术万能试验机的分类和基本构造a.液压式万能试验机b.机械式拉力试验机c.电液伺服万能试验机d.电子式万能试验机试验机的速度控制系统a.应力速率控制b.应变速率控制试验机的测量操作系统a.手工控制测量系统b.采用微机控制的自动测量系统蠕变试验机的基本构造和工作原理钢材应力松弛试验机的基本构造和工作原理试验机的使用与维护保养试验机的期间核查上机操作试验机的计量要求a.GB/T 16825.1-2002静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准b.JJG 139-1999 拉力、压力和万能试验机检定规程c.GB/T 12160-2002 单轴试验用引伸计的检定d.JJG 762-1992 引伸计检定规程e.JJF 1103-2003 万能试验机计算机数据采集系统评定f.JJG276-1988 高温蠕变、持久强度试验机检定规程3)YJL007-3标准方法与应用a.GB/T2039-1997 金属拉伸蠕变及持久试验方法b.GB/T10120-1996 金属应力松弛试验方法c.GB/T4338-95 金属材料高温拉伸试验d.GB/T13239-91 金属低温拉伸试验方法4)YJL007-4数据处理与标准相关的数据处理持久外推方法8.YJL008金属断裂试验1)YJL008-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属断裂试验的基本原理2)YJL008-2仪器设备与操作技术万能拉压试验机的分类和基本构造e.液压式万能试验机f.机械式拉力试验机g.电液伺服万能试验机h.电子式万能试验机试验机的速度控制系统:a.应力速率控制b.应变速率控制试验机的测量操作系统a.手工控制测量系统b.采用微机控制的自动测量系统轴向疲劳试验机基本构造和工作原理试验机的计量要求a.GB/T 16825.1-2002静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准b.JJG 139-1999 拉力、压力和万能试验机检定规程c.GB/T 12160-2002 单轴试验用引伸计的检定d.JJG 762-1992 引伸计检定规程e.JJF 1103-2003 万能试验机计算机数据采集系统评定f.标点机(打点、划线机的自校准)试验机的使用与维护保养试验机的期间核查上机操作3)YJL008-3标准方法与应用疲劳裂纹预制GB/T 2038– 1991 金属材料延性断裂韧度C J1试验方法GB/T4161-1984 金属材料平面应变断裂韧度K1c试验方法GB/T 2358– 1994 金属材料裂纹尖端张开位移试验方法GB/T2358-1994 金属材料裂纹张开位移试验方法GB/T19744-2005 铁素体钢平面应变止裂韧度K1a试验方法GB/T228-2002 金属材料室温拉伸试验方法GB/T8653-1988 金属杨氏模量,弦线模量,切线模量,泊松比试验(静态法) GB/T17600.1-1998 钢的伸长率换算第一部分:碳钢和低合金钢GB/T17600.2-1998 钢的伸长率换算第二部分:奥氏体钢GB/T7314-2005 金属材料压缩试验方法4)YJL008-4数据处理与标准相关的数据处理9.YJL009金属疲劳试验1)YJL009-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属疲劳试验的基本原理2)YJL009-2仪器设备与操作技术轴向疲劳试验机基本构造和工作原理旋转疲劳试验机基本构造和工作原理试验机的计量要求a.动态力的校验b.JJG 652~1990 旋转纯弯曲疲劳试验机检定规程3)YJL009-3标准方法与应用GB/T3075-1982 金属轴向疲劳试验方法GB/T15248-94 金属材料轴向等幅低循环疲劳试验GB/T4337-1984 金属旋转弯曲疲劳试验方法GB/T2107-1980 金属高温旋转弯曲疲劳试验方法GB/T6398-2000 金属材料疲劳裂纹扩展速率试验方法疲劳裂纹预制4)YJL009-4数据处理与标准相关的数据处理10.YJL010焊接力学性能试验1)YJL010-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T2975-1998 钢及钢产品力学性能试验取样位置及试样制备 GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求焊接材料力学性能试验的基本原理2)YJL010-2仪器设备与操作技术万能拉压试验机的分类和基本构造a.液压式万能试验机b.机械式拉力试验机c.电液伺服万能试验机d.电子式万能试验机试验机的速度控制系统:a.应力速率控制b.应变速率控制试验机的测量操作系统a.手工控制测量系统b.采用微机控制的自动测量系统试验机的计量要求a.GB/T 16825.1-2002静力单轴试验机的检验第1部分:拉力和(或)压力试验机测力系统的检验与校准b.JJG 139-1999 拉力、压力和万能试验机检定规程c.GB/T 12160-2002 单轴试验用引伸计的检定d.JJG 762-1992 引伸计检定规程e.JJF 1103-2003 万能试验机计算机数据采集系统评定f.标点机(打点、划线机的自校准)g.JJG 269-1981 扭转试验机试行检定规程试验机的使用与维护保养试验机的期间核查上机操作3)YJL010-3标准方法与应用GB/T228-2002 金属材料室温拉伸试验方法GB/T8653-1988 金属杨氏模量,弦线模量,切线模量,泊松比试验(静态法) GB/T17600.1-1998 钢的伸长率换算第一部分:碳钢和低合金钢GB/T17600.2-1998 钢的伸长率换算第二部分:奥氏体钢GB/T7314-2005 金属材料压缩试验方法GB/T 2649– 1989 焊接接头机械性能试验取样方法GB/T 2650– 1989 焊接接头冲击试验方法GB/T 2651– 1989 焊接接头拉伸试验方法GB/T 2652– 1989 焊缝及熔敷金属拉伸试验方法GB/T 2653– 1989 焊接接头弯曲及压扁试验方法GB/T 2654– 1989 焊缝及堆焊金属硬度试验方法GB/T 2655– 1989 焊接接头应变时效敏感性试验方法GB/T 2656– 1989 焊缝金属和焊接接头的疲劳试验法GB/T 13816– 1992 焊接接头脉动拉伸疲劳试验方法GB/T 15111– 1994 点焊接头拉伸疲劳试验方法GB/T 16957– 1997 复合钢板焊接接头力学性能试验方法GB/T 13311– 1991 锅炉受压元件焊接接头机械性能试验方法GB/T 13450– 1992 对接焊接头宽板拉伸试验方法GB/T 13816– 1992 焊接接头脉动拉伸疲劳试验方法GB/T 15111– 1994 点焊接头剪切拉伸疲劳试验方法GB/T 15747– 1995 正面角焊缝接头拉伸试验方法GB/T 7032– 1986 T型角焊缝弯曲试验方法GB/T 11363– 1989 钎焊接头强度试验方法GB/T 8619– 1988 钎缝强度试验方法GB/T 11363– 1989 钎焊接头强度试验方法GB/T 9447– 1988 焊接接头疲劳裂纹扩展速率`试验方法JB/T 4744 – 2000 钢制压力容器产品焊接试板的力学性能检验JB/T 4291 – 1999 焊接接头裂纹张开位移(COD)试验方法JB/T 5104 – 1991 焊接接头脆性破坏的评定JB/T 7716 – 1995 焊接接头四点弯曲疲劳试验方法JB/T 7717 – 1995 焊接接头ECO试验方法JB/T 6044 – 1992 焊接接头疲劳裂纹扩展速率侧槽试验方法GB/T 4675.1– 1984 焊接性试验斜Y型坡口焊接裂纹试验方法GB/T 4675.2– 1984 焊接性试验搭接接头(CTS)焊接裂纹试验方法GB/T 4675.3– 1984 焊接性试验 T型接头焊接裂纹试验方法GB/T 4675.4– 1984 焊接性试验压板对接(FISCO)焊接裂纹试验方法GB/T 4675.5– 1984 焊接性试验焊接热影响区最高硬度试验方法GB/T 9446– 1988 焊接用插销冷裂纹试验方法GB/T 13817– 1992 对接焊接头刚性拘束焊接裂纹试验方法4)YJL010-4数据处理与标准相关的数据处理金属拉伸性能测量不确定度评定(抗拉强度、屈服强度、规定非比例延伸强度、断后伸长率、断面收缩率)金属洛氏硬度测量不确定度评定(HRC)金属夏比冲击试验测量不确定度评定11.YJL011金属磨损试验1)YJL011-1测试基础GB/T10623-1989 金属力学性能试验术语GB/T8170-1987 数值修约规则GB/T 2611-1992 试验机通用技术要求金属磨损试验的基本原理2)YJL011-2仪器设备与操作技术磨损试验机的基本构造和工作原理试验机的计量要求a.磨损试验机的自校准规程试验机的使用与维护保养试验机的期间核查上机操作3)YJL011-3标准方法与应用GB/T 12444-2006金属材料磨损试验方法试环-试块滑动磨损试验4)YJL011-4数据处理与标准相关的数据处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.7 压痕中心间距和压痕中心至边 缘距离
由于压头压入试样表面时压痕周围的金属 经历塑性变形,产生应变硬化.如两个压痕距 离太近,后一个压痕会受前个压痕周围硬化 区的影响,造成硬度测量不准确.由于压痕周 围的硬化区大小与压痕的对角线长短相关, 所以,安全的压痕中心的距离应以压痕对角 线的倍数规定,见标准中7.6条.
试验后试样背面不应出现可见痕迹. • 小截面试样或外形不规则的试样,可将
试样镶嵌或采用专用支撑台进行试验. • 试样表面应平坦,光滑,无氧化皮及外来
物.
7 试验
• 试验温度: 试验在室温10℃~35℃下进行,对 于温度要求严格的试验,室温应为23 ℃±5 ℃.
• 试验力:按照标准中表4的规定选用试验力. • 试样支承面应清洁无异物.试样支承应稳固,试
试验力F/N
允许误差/%
F≥1.961
±1.0
0.09807≤F<1.961
±1.5
9.2 压痕对角线测量误差
硬度计压痕测量误差和测量装置分辨力对 硬度的影响其形式相同:
HV 2 d 2
HV
d
规定压痕测量装置分辨力和最大允许误差 见表2 :
表2 压痕测量分辨力和允许误差
对角线长度 d/mm
9.4 试样表面粗糙度影响
试样表面机加工粗糙度对压痕测量影响主要是粗
糙度差的表面造成压痕对角线端点不清晰,使得测 量数据分散性大.为了能减小这种影响,建议试样 的表面粗糙度为:
表3 表面粗糙度
试样
粗糙度Ra/ m
显微维氏硬度试样
0.1
小负荷维氏硬度试样
0.2
维氏硬度试样
0.4
9.5 试样最小厚度
• 在曲面试样上测定的结果应按附录B进行修 正.
8 报告
• 本标准编号 • 试样编号与说明 • 试验结果 • 其他,包括试验温度不在规定的范围的温度.
9 维氏硬度计误差要求
9.1 试验力误差 根据维氏硬度公式,试验力对硬度影响表示为:
HV F 1
HV
F
硬度计试验力允许误差见表1:
表1 试验力允许误差
Байду номын сангаас
10 曲面修正
在原理上,维氏硬度是平面压痕硬度,不适合 于曲面试验. 由于在实际中又常常需要在带 曲率的试样上测定维氏硬度.标准中针对这 用途规定了曲面维氏硬度修正方法.
10.1 凸、凹球面的修正
当压入深度相同,在平面上压出的对角线比 在凸球面的长.所以凸球面维氏硬度修正系 数应为 “小于1”. 对于凹球面,正好相反, “大于1”.
对于钢、铜和铜合金≥2.5d; 轻金属、铅 、锡及其合金≥3d. • 两相邻压痕中心之间距离: 对于钢、铜和铜合金≥3d; 轻金属、铅 、锡及其合金≥6d.
• 测量两压痕对角线,取平均值,按附录C查出 维氏硬度值. 也可按公式计算.
• 两压痕对角线之差应不超过5%,如超过,应 在试验报告中注明.
• 一般情况下, 每个试样报出3试验点的硬度 值.
验时不发生移动. • 使压头与试验面接触,垂直于试验面施加试验
力,2s~10s内试验力施加完毕. 小负荷和显微 维氏硬度试验,压头下降速度不大于0.2mm/s.
• 试验力保持时间10s~15s,特殊材料可适当 延长,但误差在±2s以内.
• 试验期间硬度计应避免冲击和震动. • 任一压痕中心距试样边缘的距离:
试样厚度不足够时,试验测得的维氏硬度结 果会偏低.所以标准中规定试样或试验层厚 度应至少为压痕对角线的1.5倍,试验后试样 背面不出现变形痕迹.标准中附录A给出了 试样最小厚度-试验力-硬度的关系图.根据 该图确定试验条件下的最小试样厚度.
9.6 试验力保持时间影响
试验已经表明,维氏硬度测量结果受试验力 保持时间长短的影响.硬度低的试样,试验力 保持时间达30s后硬度下降才变得不明显, 但并未完全停止下降.所以,对试验力保持时 间应作规定,见标准中7.4条. 试验力保持时间对硬度测量结果的影响总 的趋向是,硬度随保持时间增长而降低.
d≤0.04 d>0.040
测量装置的估测能 力
0.0002 0.5%d
最大允许误差
±0.0004mm ±1.0%d
9.3 压头横刃影响
压头横刃对维氏硬度的影响:
HV HV
100c2 4
2d
2 2
d
c
从式(4)可以看到,横刃增加引起硬度大的增 加,尤其压痕对角线d在小范围时,影响尤其 明显,也就是说,小压痕范围影响较明显.
2 引用标准
• GB/T4340.2-1999 金属维氏硬度试验 第2 部分:硬度计的检验
3 原理
• 将顶部两相对面具有规定角度的金刚石正 四棱锥压头用试验力压入试样表面,保持规 定时间后,卸除试验力,测量压痕对角线长度. 计算维氏硬度值.把压痕的形状看成为与压 头相同的理想形状.
• 维氏硬度计算公式:
• 示例: 凸球面直径: D = 10 试验力: F = 98.07N 压痕对角线平均值: d = 0.0150mm 平均压痕与凸球径之比值: d/D = 0.015 维氏硬度值:
98.07
0.1891 0.1502 824HV 10
用表B1通过内插法求得修正系数: 0.983 球体硬度为: 824×0.983 = 810HV10
HV
0.102
2F
s
in
1360 2
d2
F 0.1891 d 2
4 维氏硬度符号
• 维氏硬度符号表示为 维氏硬度数加符号 “HV” 加试验力 加保持 试验力时间(10s~15s)不标注. 例如: 640HV30 640HV30/20. 上述前者表示在试验力为30x9.80665= 294.2N下保持10s~15s测得维氏硬度为640. 后者的保持试验力时间为20s.
5 硬度计
• 硬度计、压头、压痕测量装置均应符合国 标GB/4340.2-1999规定的要求.
6 试样
• 试样表面粗糙度 建议: 维氏硬度试样: Ra0.4 m 小负荷维氏硬度试样: Ra0.2m 显微维氏硬度试样:建议Ra0.1 m
• 试样最小厚度 试样最小厚度应为压痕对角线长度的 1.5d.
GB/T4340.1-1999 金属维氏硬度试验 第1部分:试验方法
前言
• 等效采用国际标准ISO 6507.1-1999 金属材 料 维氏硬度试验 第1部分:试验方法.
1 范围
适用于金属材料维氏硬度,包括维氏硬度, 小 维氏硬度和显微维氏硬度的测定. 适用于压痕对角线长度0.020~1.400mm范 围内.