组合图形的面积(1)
《组合图形的面积》教学设计(优秀10篇)

《组合图形的面积》教学设计(优秀10篇)《组合图形的面积》教学设计篇一一、教材分析:这是小学数学人教版第九册第五单元的内容。
学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。
本节课重点探索组合图形面积的方法。
教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的思考策略渗透其中。
通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。
二、学情分析:根据学生已有的生活经验,对组合图形的认识并不很难。
学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。
对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。
三、教学目标1、掌握组合图形面积计算的方法并正确计算。
2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,初步解决生活中组合图形的实际问题。
四、教学重点和难点1、掌握组合图形面积的计算方法。
2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。
3、学会运用“分割”与“添补“的方法计算组合图形的面积。
五、教学过程(一)、谜语激趣,以旧引新(课前)将一些教学用具的纸片发给学生1、谈话导入,课件出示谜语。
(①草地上来了一群羊。
打一水果名称②又来了一群狼。
打一水果名称)(1)思考:谜语的谜底是什么?(①草莓②杨(羊)莓(没))设计意图:抓住教学内容的特点,运用知识的正迁移。
给学生以启示,调动学生的学习兴趣。
(2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些。
)(3)学生回答后教师出示答案,从而导出新课,并板书课题。
设计意图:用猜谜语的形式让学生来明事理,从而导出新课。
2、课件出示各种学过的基本图形。
(如长方形、正方形、平行四边形、梯形、三角形)(1)同桌交流、讨论。
五年级数学 组合图形的面积(一)

第6讲组合图形的面积(一)月日姓名【知识要点】1、组合图形的意义:由几个简单的图形,通过不同的方式组合而成的图形。
2、求组合图形面积的方法:(1)分割法:根据图形和所给条件的关系,将图形进行合理分割,形成基本图形,基本图形的面积和就是组合图形的面积。
(2)添补法:将图形所缺部分进行添补,组成几个基本图形。
几个基本图形的面积减去添补图形的面积就是组合图形的面积。
(3)割补法3、分割规则:分得越少,计算越简单。
4、不规则图形面积的估计与计算的方法:(1)数格子:数格子时,不满一格的可采用凑整法将几个合拼成一格。
(2)根据图形确定近似基本图,量出基本图计算面积的条件算出面积。
5、常见基本图形的面积。
长方形的面积=()正方形的面积=()平行四边形的面积=()。
三角形的面积公式:()梯形的面积=()。
【典型题例】例1、如图,梯形的高为4米,下底长度为5米.空白部分大的三角形的高为3米.分别求出图中阴影部分的两个三角形的面积.4m 3m5m例2、1、小丽家装修需要30块木板,木板的形状如下图。
(1)1块木板的面积是多少?30cm72cm48cm(2)如果每块木板需要15元,那么小丽需要花多少钱?例3、一块平行四边形的草坪中有一条长8米、宽1米的小路,草坪的面积是多少。
如果铺每平方米草坪的价格是16元,那么铺好这些草坪需要多少钱?例5、如下图所示,长方形的长是10厘米,宽是5厘米,三角形的底边与长方形的长重合,高是3厘米,阴影部分的面积是多少?10cm5cm【课堂练习】一、估计下面图形的面积。
(每个小方格的面积表示1cm2)11面积约为()面积约为()面积约为()2、甲、乙两个工程队修一条长2100米的公路,他们从两端同时开工,甲队每天修80米,乙队每天修60米,多少天后能够修完这条公路?3、在公路中间有一块三角形草坪(见右图),1m2 草坪的价格是12元,种这块草坪需要多少钱?(8分)4、一张正方形红纸,边长66厘米,可用它做成底是33厘米,高是22厘米的三角形小红旗,最多可以做多少面?(8分)5、下图中正方形的周长是32cm。
1《组合图形的面积》(教案)五年级上册数学北师大版

1《组合图形的面积》(教案)五年级上册数学北师大版今天,我为大家带来的是五年级上册数学北师大版《组合图形的面积》的教案。
一、教学内容本节课的教学内容是北师大版五年级上册数学第107页至108页的“组合图形的面积”。
我们将学习如何通过分割和计算基本图形的面积来求解组合图形的面积。
二、教学目标通过本节课的学习,我希望学生们能够掌握组合图形面积的求解方法,提高空间想象能力和解决问题的能力。
三、教学难点与重点重点:理解组合图形面积的求解方法,能够运用分割和计算基本图形的面积来求解组合图形的面积。
难点:如何将组合图形分割成基本图形,以及如何计算组合图形的面积。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备学具:练习本、尺子、圆规、剪刀、彩笔五、教学过程1. 实践情景引入:我拿出一个由两个不同形状的图形组合而成的图形,让学生观察并思考如何求解这个组合图形的面积。
2. 讲解与演示:我在黑板上展示如何将组合图形分割成基本图形,并利用圆规和剪刀进行实际操作,让学生直观地理解组合图形面积的求解方法。
3. 例题讲解:我选取一道典型的例题,讲解如何将组合图形分割成基本图形,并演示计算过程,让学生跟随我的思路一起解决实际问题。
4. 随堂练习:我设计几道类似的练习题,让学生独立完成,检验他们是否掌握了组合图形面积的求解方法。
5. 作业布置:我布置几道课后作业,让学生巩固所学知识,提高解决问题的能力。
六、板书设计板书设计如下:组合图形的面积 = 基本图形的面积之和七、作业设计1. 计算下列组合图形的面积:(1)一个边长为4厘米的正方形,内部有一个半径为2厘米的圆形。
答案:25.12平方厘米(2)一个长为8厘米,宽为6厘米的长方形,内部有一个边长为4厘米的正方形。
答案:32平方厘米2. 自己设计一个组合图形,并计算其面积。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生直观地理解了组合图形面积的求解方法。
在讲解例题的过程中,我注重了与学生的互动,让他们跟随我的思路一起解决问题。
组合图形的面积公式

组合图形的面积公式许多天文学家和数学家经常发现,天文和数学形状的总体面积可以通过不同的图形组合而成。
经常的形状可以是三角形、正方形、圆形、多边形和椭圆形等。
为了计算组合图形的总体面积,我们需要知道每个组件面积的公式,以及它们如何组合在一起。
下面,我将介绍组合图形的常用面积公式。
1、三角形面积公式三角形的面积可以通过三角形的底边长与其高的乘积来确定。
如果三角形的底边长是a,其高为h,则可以通过以下公式确定三角形的面积:S = 1/2 a h2、正方形面积公式正方形的面积可以通过其边长乘积来确定。
如果正方形的边长是a,则可以通过以下公式确定正方形的面积:S = a a3、圆形面积公式圆形的面积可以通过圆形的半径乘以π来确定。
如果圆形的半径是r,则可以通过以下公式确定圆形的面积:S = r r4、多边形面积公式多边形的面积可以通过多边形的顶点与其中心的距离乘积来确定。
如果多边形的顶点是A,它的中心距离为d,则可以通过以下公式确定多边形的面积:S=1/2 A d5、椭圆形面积公式椭圆形的面积可以通过椭圆形的长轴与短轴的乘积来确定。
如果椭圆形的长轴是a,它的短轴是b,则可以通过以下公式确定椭圆形的面积:S = a b以上就是组合图形的常用面积公式。
当在计算更复杂的组合形状时,可以使用多边形分解法来计算总面积。
这种方法可以将复杂的多边形分解为若干较小的多边形,然后在每个小多边形上应用前面提到的面积公式,最后将每个小多边形的面积相加,从而获得总面积。
总之,组合图形的面积计算可以通过不同图形的面积公式进行计算,也可以通过多边形分解方法来计算总面积。
不同结构的图形可以有不同的面积计算方法,但基本思路都是将复杂的形状分成若干个简单的形状,以最简单的形状的面积公式为基础,求出复杂形状的面积值。
通过学习和研究以上计算面积的方法,可以帮助我们更好地解决天文学和数学中的组合图形的面积计算问题。
《组合图形的面积》教学设计优秀4篇

《组合图形的面积》教学设计优秀4篇《组合图形的面积》数学教案篇一教材分析:《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。
教学目标:知识目标1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中有关组合图形的实际问题。
过程和方法让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
情感、态度与价值观1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
2、渗透转化的数学思想和方法。
教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。
教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。
教学准备:多媒体课件和组合图形图片。
教学过程:一、激趣导入、复习铺垫、认识组合图形1、介绍笑笑和她家的新房子师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)2、引导学生观察,复习有关平面图形面积的计算公式师:从这座房子中可以找到哪些平面图形?会求它们的。
面积吗?3、欣赏图片(课件出示一组图片)师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)4、教师总结,揭示课题并板书师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)二、创设情境、探究新知笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。
六年级奥数举一反三-组合图形面积计算小学

六年级奥数举⼀反三-组合图形⾯积计算⼩学组合图形⾯积计算(⼀)⼀、知识要点在进⾏组合图形的⾯积计算时,要仔细观察,认真思考,看清组合图形是由⼏个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。
⼆、精讲精练【例题1】求图中阴影部分的⾯积(单位:厘⽶)。
圆的⾯积。
【思路导航】如图所⽰的特点,阴影部分的⾯积可以拼成14=28.26(平⽅厘⽶)62×3.14×14答:阴影部分的⾯积是28.26平⽅厘⽶。
练习1:1.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。
2.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。
3.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。
【例题2】求图中阴影部分的⾯积(单位:厘⽶)。
【思路导航】阴影部分通过翻折移动位置后,构成了⼀个新的图形(如图所⽰)。
从图中可以看出阴影部分的⾯积等于⼤扇形的⾯积减去⼤三⾓形⾯积的⼀半。
3.14×2144-4×4÷2÷2=8.56(平⽅厘⽶)答:阴影部分的⾯积是8.56平⽅厘⽶。
练习2:1.计算下⾯图形中阴影部分的⾯积(单位:厘⽶)。
2.计算下⾯图形中阴影部分的⾯积(单位:厘⽶,正⽅形边长4)。
3.计算下⾯图形中阴影部分的⾯积(单位:厘⽶,正⽅形边长4)。
【例题3】如图19-10所⽰,两圆半径都是1厘⽶,且图中两个阴影部分的⾯积相等。
求长⽅形ABO1O的⾯积。
【思路导航】因为两圆的半径相等,所以两个扇形中的空⽩部分相等。
⼜因为图中两个阴影部分的⾯积相等,所以扇形的⾯积等于长⽅形⾯积的⼀半(如图19-10右图所⽰)。
所以3.14×12×1/4×2=1.57(平⽅厘⽶)答:长⽅形长⽅形ABO1O的⾯积是1.57平⽅厘⽶。
练习3:1.如图所⽰,圆的周长为12.56厘⽶,AC两点把圆分成相等的两段弧,阴影部分(1)的⾯积与阴影部分(2)的⾯积相等,求平⾏四边形ABCD的⾯积。
小学五年级奥数 举一反三课件组合图形的面积(一)(附讲解步骤及答案)

解析:
A
B F
4×4=16(平方厘米)□ABCD的面积
16+6=22(平方厘米)△ACE的面积
22×2÷4=11(厘米)线段CE的长度
C D E 11-4=7(厘米)线段DE的长度
3
如图所示,大正方形和小正方形的边长分别是4cm、3cm,求阴影部分的面积。 解析:两个正方形的面积之和
减去空白部分的面积 正方形面积之和:
B
则:a+b=16÷2=8; a²+b²=68÷2=34。 ab=[(a+b)²-( a²+b² )]÷2
D
C
68÷2=34
16÷2=8
(8×8-34)÷2=15(平方厘米)
5
如图所示,在边长为12cm的正方形ABCD中,E、F是BC边上的三等分点, M、N是对角线BD上的三等分点,求三角形EMN的面积。
A
D
解析: 12÷3=4(厘米) 线段MF的长度 12÷3=4(厘米) △MNE的高
N M
4×4÷2=8(平方厘米) △MNE的面积 B E F C
6 A
梯形ABCF的下底BC是12cm,高AB是18cm,CE=2DE,求DF。 D F
18÷(1+2)×2=12(厘米) 线段CE的长度 12×18÷2=108(平方厘米) △BCF的面积
E
12×12÷2=72(平方厘米) △BCE的面积
108-72=36(平方厘米)
36×2÷12=6(厘米)
ቤተ መጻሕፍቲ ባይዱ△CEF的面积
线段DF的长度
B
C
□ABCD的面积为:4×8=32(平方厘米)
C
G
D
6
如图所示,长方形的长是8cm,宽是6cm,A、B是宽的中点, 求长方形内阴影部分的面积。
吴正宪组合图形的面积 [组合图形的面积教学设计]
![吴正宪组合图形的面积 [组合图形的面积教学设计]](https://img.taocdn.com/s3/m/e353261b58eef8c75fbfc77da26925c52cc59166.png)
吴正宪组合图形的面积 [组合图形的面积教学设计] 组合图形的面积教学设计(一)教学内容:义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。
教学目标:1、认识组合图形,会把组合图形分解成已学过的平面图形。
2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。
3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。
4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。
教学重点:探索并掌握组合图形的面积计算方法。
教学难点:理解并掌握组合图形的组合及分解方法。
教具准备:多媒体课件学具准备:各种有色卡纸、胶水、剪刀等。
教学过程:一、复习铺垫:同学们,老师想知道你们已经学会了计算哪些平面图形的面积?二、创设情境,激趣导入。
根据已知条件进行分解师:大家学会的知识可真多。
为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:(课件展示)我们学过这些图形吗?请同学们认真观察,这些图形有什么共同的特征?左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?三、自主学习,探究新知。
1、组合图形的分解:师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。
(1)电脑出示书第92页的四幅主题图。
师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。
比比看哪一个小组的分法最简单?(2)小组讨论。
(3)让学生举例说说生活中的组合图形。
同学们,开动脑筋想想:生活中哪些地方还有组合图形?2、自主解决例题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《组合图形的面积》
一、教学目标
1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提升学生的识图水平,分析综合水平和空间想象水平。
2、通过实践操作、练习,提升观察、分析水平和解题的灵活性;能准确地分析图形。
3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。
二、教材分析
组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,实行的一种由形象到抽象的学习。
解题的基本理念是将组合图形转化为基本图形实行计算,需要发散学生的思维,会分析图形的构成,能够准确分析图形的隐含数据条件,鼓励学生一题多解。
三、学生状况分析
组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。
在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。
使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。
四、教学准备
学习纸、小练习、白板课件。
五、教学设计
(一)动手操作,设计图案,引出新知(电子白板)
1、孩子们我们都知道那些图形的面积啊?
2、这些都是我们学过的基本图形,我们首先来玩个游戏,利用两个或多个基本图形,设计图案。
(1)介绍一下你的设计。
(2)观察这几幅图案,你发现了什么?
分小组用以上转化方法求出面积。
(总结发现)
(1)、转化成的基本图形要能找到计算面积的相关信息。
3、归纳提升
师:请同学们想一想,上述转化的方法中,如果分成两类,怎么分?
生:(根据分割法和添补法分类,根据转化成两个基本图形还是三个基本图形分类)
4、优化算法(总结发现)
(2)、转化后的基本图形越少越好。
(四)巩固训练,一题多解
师:计算课本练一练1题。
(学生在课本上画图分析,并计算。
)
(五)小结:这节课你有什么收获?
五、教学反思
在探索组合图形面积的过程中,我注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,在发展了学生空间观念的同时,找出隐含的条件,是学生能够利用已有的知识解决问题。
1、注重方法的指导与总结。
授人以鱼,不如授人以渔。
在本课的教学过程中,十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生体验成功的愉悦,学生在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中,自己悟出学习方法,学的主动积极、生动灵活。
通过一题多解的训练,培养发散思维,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法。
2、运用现代化的教学手段,向学生提供直观、多彩,、生动的形象,使学生多种感官同时受到刺激,激发了学生学习的积极性,同时把教学过程组织得更生动,形象,能启发学生进行总结归纳,抽象概括,主动参与知识的形成过程。
3、问题来源于学生,回归于学生。
学生在拼图的过程中,放手让他们拼图,测量各个要素,解决提出的问题。
让学生在活动中,亲自体验自己的成功,在初步形成对组合图形概念的基础上,对“组合”的意义有了更深一层的理解,获得更多的成功的愉悦。
4、出现未预想到的“移补”的方法解题。
在预先备课时,只考虑到“割”和“补”,没想到学生在解决第(四)部分的图形时,应用了“移补”的方法,如图所示
想法很奇特,是预料之外的。
虽然是因为数据的偶然性,但这种方法用起来比较简便,予以鼓励。
新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。
数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。
学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。
六、案例点评:
本节课采用了多媒体教学,充分调动了学生的积极性,学习气氛愉悦,学生的主体性得到充分的发挥,学生参与热情较高。
老师的教学安排层层递进,学生思路逐渐开阔,在提高学生的空间能力的同时,也提高了对图形的分析能力。
汪老师的教学十分注重培养学生对方法
的归类和总结,提高了学生的抽象概括能力,使学生对图形由直观印象上升到抽象的归纳理解。