小船过河问题abc
第13讲 小船渡河模型(解析版)

第13讲小船渡河模型1.(2021·辽宁)1935年5月,红军为突破“围剿”决定强渡大渡河。
首支共产党员突击队冒着枪林弹雨依托仅有的一条小木船坚决强突。
若河面宽300m,水流速度3m/s,木船相对静水速度1m/s,则突击队渡河所需的最短时间为()A.75s B.95s C.100s D.300s【解答】解:当静水速度与河岸垂直时,垂直于河岸方向上的分速度最大,则渡河时间最短,最短时间为:t=dv c=3001s=300s,故D正确,ABC错误;故选:D。
一.知识回顾1.模型构建(1)常规简单模型:实际运动是匀速直线运动在运动的合成与分解问题中,两个匀速直线运动的合运动仍是匀速直线运动。
若其中一个分运动的速度大小和方向都不变,另一个分运动的速度大小不变,方向在180°范围内(在速度不变的分运动所在直线的一侧)变化,我们对合运动或分运动的速度、时间、位移等问题进行研究。
这样的运动系统可看成“小船渡河模型”。
(2)较复杂模型:实际运动是曲线运动水速不变,但船在静水中速度变化;或者船在静水中速度不变,但水速大小变化。
2.模型特点(1)船的实际运动是随水流的运动和船相对静水的运动的合运动。
(2)三种速度:船在静水中的速度v船、水的流速v水、船的实际速度v合。
3.实际运动是匀速直线运动的两类问题、三种情景渡河时间最短当船头方向垂直河岸时,渡河时间最短,最短时间t min=dv船渡河位移最短如果v船>v水,当船头方向与上游河岸夹角θ满足v船cos θ=v水时,合速度垂直河岸,渡河位移最短,等于河宽d如果v 船<v 水,当船头方向(即v 船方向)与合速度方向垂直时,渡河位移最短,等于d v 水v 船5.解题方法:小船渡河问题有两类:一是求渡河时间,二是求渡河位移。
无论哪类都必须明确以下四点:(1)解决问题的关键:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动。
船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致。
高中物理小船过河问题含答案讲解

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
21.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间 ,显然,当时,即船头的指向与河岸垂直,渡河时间最θυυsin 1船ddt ==︒=90θ小为,合运动沿v 的方向进行。
vd2.位移最小若水船υυ>结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水υυθ=cos 若,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短水船v v <呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据船头与河岸的夹角应为水船v v =θcos,船沿河漂下的最短距离为:水船v v arccos=θθθsin )cos (min 船船水v d v v x ⋅-=此时渡河的最短位移:船水v dv ds ==θcos 【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间s s dt 2030602===υ(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v 方向越接近垂直河岸方向,航程越短。
(完整版)高中物理小船渡河模型典型例题(含答案)【经典】..

考点四:小船渡河模型1.(1.(小船渡河问题小船渡河问题小船渡河问题))小船在200 m 宽的河中横渡,水流速度是2 m/s 2 m/s,小船在静水中的航速是,小船在静水中的航速是4 m/s.4 m/s.求:求:求:(1)(1)要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?(2)(2)要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?答案 (1)船头正对河岸航行耗时最少,最短时间为50 s.(2)船头偏向上游,与河岸成60°角,最短航程为200 m.解析 (1)如图甲所示,船头始终正对河岸航行时耗时最少,即最短时间tmin =d v 船=2004s =50 s. (2)如图乙所示,航程最短为河宽d ,即最短航程为200 m ,应使v 合的方向垂直于河岸,故船头应偏向上游,与河岸成α角,有 cos α=v 水v 船=24=12,解得α=60°. 2、一小船渡河,河宽d =180 m 180 m,水流速度,水流速度v1v1==2.5 m/s.2.5 m/s.若船在静水中的速度为若船在静水中的速度为v2v2==5 m/s 5 m/s,求:,求:,求: (1)(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?答案 (1)船头垂直于河岸 36 s 90 5 m (2)船头向上游偏30° 24 3 s 180 m3、已知某船在静水中的速率为v1v1==4 m/s m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m 100 m,河水的流动速度为,河水的流动速度为v2v2==3 m/s 3 m/s,方向与河岸平行,方向与河岸平行,方向与河岸平行..试分析:试分析:(1)(1)欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移是多大?是多大?(2)(2)欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?解析 (1)根据运动的独立性和等时性,当船在垂直河岸方向上的分速度v⊥最大时,渡河所用时间最短.设船头指向上游且与上游河岸夹角为α,其合速度v 与分运动速度v1、v2的矢量关系如图所示.河水流速v2平行于河岸,不影响渡河快慢,船在垂直河岸方向上的分速度v⊥=v1sin α,则船渡河所用时间为t =d v1sin α. 显然,当sin α=1即α=90°时,v⊥最大,t 最小,此时船身垂直于河岸,船头始终垂直指向对岸,但船实际的航向斜向下游,如图所示.渡河的最短时间tmin =d v1=1004s =25 s 船的位移为l =v 21+v 22tmin =42+32×25 m=125 m 船渡过河时到达正对岸的下游A 处,其顺水漂流的位移为x =v2tmin =3×25 m=75 m.(2)由于v1>v2,故船的合速度与河岸垂直时,船的航行距离最短.设此时船速v1的方向(船头的指向)斜向上游,且与河岸成θ角,如图所示,则cos θ=v2v1=34,θ=arccos 34. 船的实际速度为v 合=v 21-v 22=42-32 m/s =7 m/s 故渡河时间:t′=d v 合=1007 s =10077 s. 答案 (1)t=25s ,x=75m ,l=125m (2)t=10077s 4、河宽60 m 60 m,水流速度,水流速度v1v1==6 m/s 6 m/s,小船在静水中的速度,小船在静水中的速度v2v2==3 m/s 3 m/s,则:,则:,则:(1)(1)它渡河的最短时间是多少?它渡河的最短时间是多少?它渡河的最短时间是多少?(2)(2)最短航程是多少?最短航程是多少?最短航程是多少?答案 (1)20 s (2)120 m5.(单选单选))一小船在静水中的速度为3 m/s 3 m/s,它在一条河宽为,它在一条河宽为150 m 150 m,水流速度为,水流速度为4 m/s 的河流中渡河,则该小船该小船( ( ). 答案答案 CA .能到达正对岸.能到达正对岸B B B.渡河的时间可能少于.渡河的时间可能少于50 s甲 乙 AC .以最短时间渡河时,它沿水流方向的位移大小为200 mD 200 m D.以最短位移渡河时,位移大小为.以最短位移渡河时,位移大小为150 m6. 6.一只小船在静水中的速度为一只小船在静水中的速度为5 m/s 5 m/s,它要渡过一条宽为,它要渡过一条宽为50 m 的河,河水流速为4 m/s 4 m/s,则,则,则( ( ) ) 答案答案 CA.A.这只船过河位移不可能为这只船过河位移不可能为50 mB.B.这只船过河时间不可能为这只船过河时间不可能为10 sC.C.若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变D.D.若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变7.(7.(运动的合成和分解运动的合成和分解运动的合成和分解))某河宽为600 m 600 m,河中某点的水流速度,河中某点的水流速度v 与该点到较近河岸的距离d 的关系如图所示.船在静水中的速度为4 m/s 4 m/s,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是( ( ) ) 答案答案 ADA.A.船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直B.B.船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线C.C.渡河的最短时间为渡河的最短时间为240 sD.D.船离开河岸船离开河岸400 m 时的速度大小为2 5 m/s8. ( (多选多选多选))小船横渡一条两岸平行的河流,船本身提供的速度小船横渡一条两岸平行的河流,船本身提供的速度((即静水速度即静水速度))大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( ( ) ) 答案答案 ACA .越接近河岸水流速度越小.越接近河岸水流速度越小B .越接近河岸水流速度越大.越接近河岸水流速度越大C .无论水流速度是否变化,这种渡河方式耗时最短.无论水流速度是否变化,这种渡河方式耗时最短D .该船渡河的时间会受水流速度变化的影响.该船渡河的时间会受水流速度变化的影响 9. ( (单选单选单选))有一条两岸平直、河水均匀流动、流速恒为v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为同,则小船在静水中的速度大小为( ( ) ) 答案答案 BA.kv k2k2--1B.v 1-k2C.kv 1-k2D.v k2k2--1解析 设大河宽度为d ,小船在静水中的速度为v0,则去程渡河所用时间t1=d v0,回程渡河所用时间t2=d v 20-v2.由题知t1t2=k ,联立以上各式得v0=v1-k2,选项B 正确,选项A 、C 、D 错误. 10. 10. (单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为(单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为H ,河水流速为u ,划船速度为v ,出发时两船相距H 332,甲、乙船头均与岸边成o 60角,且乙船恰好能直达对岸的A 点,则下列判断正确的是点,则下列判断正确的是(( D )A .甲、乙两船到达对岸的时间不同.甲、乙两船到达对岸的时间不同B .两船可能在未到达对岸前相遇.两船可能在未到达对岸前相遇C .甲船在A 点右侧靠岸点右侧靠岸D .甲船也在A 点靠岸点靠岸11.11.如图所示,一艘轮船正在以如图所示,一艘轮船正在以4 m/s 的速度沿垂直于河岸方向匀速渡河,河中各处水流速度都相同,其大小为v1v1==3 m/s 3 m/s,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:(1)(1)发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;(2)(2)发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.答案 (1)5 m/s (2)2.4 m/s解析 (1)发动机未熄火时,轮船运动速度v 与水流速度v1方向垂直,如图所示,故此时船相对于静水的速度v2的大小:v2=v2+v 21=42+32 m/s =5 m/s ,设v 与v2的夹角为θ,则cos θ=v v2=0.8.(2)熄火前,船的牵引力沿v2的方向,水的阻力与v2的方向相反,熄火后,牵引力消失,在阻力作用下,v2逐渐减小,但其方向不变,当v2与v1的矢量和与v2垂直时,轮船的合速度最小,则vmin =v1cos θ=3×0.8 m/s =2.4 m/s.12.12.如图所示,河宽如图所示,河宽d =120 m 120 m,设小船在静水中的速度为,设小船在静水中的速度为v1v1,河水的流速为,河水的流速为v2.v2.小船从小船从A 点出发,在渡河时,船身保持平行移动若出发时船头指向河对岸上游的B 点,经过10 min 10 min,小船恰好到达河正对岸的,小船恰好到达河正对岸的C 点;若出发时船头指向河正对岸的C 点,经过8 min 8 min,小船到达,小船到达C 点下游的D 点.求:求:(1)(1)小船在静水中的速度小船在静水中的速度v1的大小;的大小;(2)(2)河水的流速河水的流速v2的大小;的大小;(3)(3)在第二次渡河中小船被冲向下游的距离在第二次渡河中小船被冲向下游的距离sCD.答案 (1)0.25 m/s (2)0.15 m/s (3)72 m解析 (1)小船从A 点出发,若船头指向河正对岸的C 点,则此时v1方向的位移为d ,故有v1=d tmin =12060×8m/s =0.25 m/s. (2)设AB 与河岸上游成α角,由题意可知,此时恰好到达河正对岸的C 点,故v1沿河岸方向的分速度大小恰好等于河水的流速v2的大小,即v2=v1cos α,此时渡河时间为t =d v1sin α,所以sin α=d v1t=0.8,故v2=v1cos α=0.15 m/s. (3)在第二次渡河中小船被冲向下游的距离为sCD =v2tmin =72 m.。
高中物理小船过河问题含答案讲解

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。
1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。
2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。
0衡水中学物理最经典-物理建模系列(五) 小船渡河模型分析

物理建模系列(五)小船渡河模型分析1.模型构建在运动的合成与分解问题中,两个匀速直线运动的合运动仍是匀速直线运动,其中一个速度大小和方向都不变,另一个速度大小不变,方向在180°范围内(在速度不变的分运动所在直线的一侧)变化,我们对合运动或分运动的速度、时间、位移等问题进行研究.这样的运动系统可看作“小船渡河模型”.2.模型展示3.三种速度:v1(水的流速)、v2(船在静水中的速度)、v(船的实际速度).4.三种情景12求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向当船头垂直河岸时,如图甲所示,合速度为倾斜方向,垂直分速度为v 1=5 m/s. t =d v 1=1805s =36 s v =v 21+v 22=52 5 m/s x =v t =90 5 m.(2)欲使船渡河航程最短,合速度应垂直于河岸,船头应朝上游与垂直河岸方向成某一夹角α如图乙所示, 有v 1sin α=v 2, 得α=30°所以当船头向上游垂直河岸方向偏30°时航程最短. x ′=d =180 m. t ′=d v 1cos 30°=180523 s=24 3 s.【答案】 (1)垂直河岸方向 36 s 90 5 m (2)向上游垂直河岸方向偏30° 24 3 s 180 m1.解这类问题的关键是:正确区分分运动和合运动. 2.运动分解的基本方法:按实际运动效果分解. (1)确定合速度的方向(就是物体的实际运动方向); (2)根据合速度产生的的实际运动效果确定分速度的方向;(3)运用平行四边形定则进行分解.3.小船渡河问题的处理(1)小船渡河问题,无论v船>v水,还是v船<v水,渡河的最短时间均为t min=Lv船(L为河宽).(2)当v船>v水时,船能垂直于河岸渡河,河宽即是最小位移;当v船<v水时,船不能垂直于河岸渡河,但此时仍有最小位移渡河,可利用矢量三角形定则求极值的方法处理.[高考真题]1.(2016·课标卷Ⅰ,18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变【解析】因为质点原来做匀速直线运动,合外力为0,现在施加一恒力,质点的合力就是这个恒力,所以质点可能做匀变速直线运动,也有可能做匀变速曲线运动,这个过程中加速度不变且一定与该恒力的方向相同,但若做匀变速曲线运动,单位时间内速率的变化量是变化的,故C正确,D错误.若做匀变速曲线运动,则质点速度的方向不会总是与该恒力的方向相同,故A错误;不管做匀变速直线运动,还是做匀变速曲线运动,质点速度的方向不可能总是与该恒力的方向垂直,故B正确.【答案】BC2.(2015·广东卷,14)如图所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物()A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v【解析】以帆板为参照物,帆船具有朝正东方向的速度v和朝正北方向的速度v,两速度的合速度大小为2v,方向朝北偏东45°,故选项D正确.【答案】 D3.(2014·四川卷,4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1【解析】设河岸宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.【答案】 B[名校模拟]4.(2018·山东潍坊高三上学期期中)关于曲线运动,下列说法正确的是()A.曲线运动是变速运动B.变速运动一定是曲线运动C.物体保持速率不变沿曲线运动,其加速度为零D.任何做圆周运动物体的加速度都指向圆心【解析】曲线运动是变速运动,但变速运动不一定是曲线运动,例如匀变速直线运动,故A对,B错;匀速圆周运动速率不变,但加速度不为零,C错;只有做匀速圆周运动的物体加速度才指向圆心,D错.【答案】 A5.(2018·山东烟台高三上学期期中)一物体从位于一直角坐标系xOy平面上的O点开始运动,前2 s在y轴方向的v-t图象和x轴方向的s-t图象分别如图甲、乙所示,下列说法正确的是()甲乙A.物体做匀变速直线运动B .物体的初速度为8 m/sC .2 s 末物体的速度大小为4 m/sD .前2 s 内物体的位移大小为8 2 m【解析】 由图象可知,y 轴方向为匀加速运动,x 轴方向为匀速直线运动,故合运动为曲线运动,A 错;物体初速度为4 m/s ,B 错;2 s 末速度v =42+(4×2)2 m/s =4 5 m/s ,C 错;前2 s 内位移x =82+⎝⎛⎭⎫12×4×222 m =82m ,D 对. 【答案】 D6.(2018·山东师大附中高三质检)如图所示,水平面上固定一个与水平面夹角为θ的斜杆A ,另一竖直杆B 以速度v 水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为v tan θC .沿A 杆斜向上,大小为v cos θD .沿A 杆斜向上,大小为v cos θ【解析】 两杆的交点P 参与了两个分运动:与B 杆一起以速度v 水平向左的匀速直线运动和沿B 杆竖直向上的匀速运动,交点P 的实际运动方向沿A 杆斜向上,如图所示,则交点P 的速度大小为v P =vcos θ,故C 正确. 【答案】 C课时作业(十) [基础小题练]1.趣味投篮比赛中,运动员站在一个旋转较快的大平台边缘上,相对平台静止,向平台圆心处的球筐内投篮球.则下图各俯视图中篮球可能被投入球筐(图中箭头指向表示投篮方向)的是( )【解析】 当沿圆周切线方向的速度和出手速度的合速度沿球筐方向,球就会被投入球筐.故C 正确,A 、B 、D 错误.【答案】 C2.下列图中实线为河岸,河水的流动方向如图v 的箭头所示,虚线为小船从河岸M 驶向对岸N 的实际航线.则其中可能正确的是( )【解析】 船头垂直于河岸时,船的实际航向应斜向右上方,A 正确,C 错误;船头斜向上游时,船的实际航向可能垂直于河岸,B 正确;船头斜向下游时,船的实际航向一定斜向下游,D 错误.【答案】 AB3.(2018·衡阳联考)如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE 匀速运动.现从t =0时汽车由静止开始做甲、乙两种匀加速启动,甲种状态启动后t 1时刻,乘客看到雨滴从B 处离开车窗,乙种状态启动后t 2时刻,乘客看到雨滴从F 处离开车窗,F 为AB 的中点.则t 1∶t 2为( )A .2∶1B .1∶ 2C .1∶ 3D .1∶(2-1)【解析】 雨滴在竖直方向的分运动为匀速直线运动,其速度大小与水平方向的运动无关,故t 1∶t 2=AB v ∶AFv =2∶1,选项A 正确.【答案】 A4.有甲、乙两只船,它们在静水中航行速度分别为v 1和v 2,现在两船从同一渡口向河对岸开去,已知甲船想用最短时间渡河,乙船想以最短航程渡河,结果两船抵达对岸的地点恰好相同.则甲、乙两船渡河所用时间之比t 1t 2为( )A.v 22v 1B .v 1v 2C.v 22v 21 D .v 21v 22【解析】 当v 1与河岸垂直时,甲船渡河时间最短;乙船船头斜向上游开去,才有可能航程最短,由于甲、乙两只船到达对岸的地点相同(此地点并不在河正对岸),可见乙船在静水中速度v 2比水的流速v 0要小,要满足题意,则如图所示.由图可得t 1t 2=v 2v 1·sin θ①cos θ=v 2v 0②tan θ=v 0v 1③由②③式得v 2v 1=sin θ,将此式代入①式得t 1t 2=v 22v 21.【答案】 C5.自行车转弯时,可近似看成自行车绕某个定点O (图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A 、B 相距L ,虚线表示两轮转弯的轨迹,前轮所在平面与车身间的夹角θ=30°,此时轮轴B 的速度大小v 2=3 m/s ,则轮轴A 的速度v 1大小为( )A.332 m/sB .2 3 m/s C. 3 m/sD .3 3 m/s【解析】 将两车轴视为杆的两端,杆两端速度沿杆方向的投影大小相等,有v 1cos 30°=v 2,解得v 1=2 3 m/s ,B 正确.【答案】 B6.(2018·山东济南一中上学期期中)如图所示,汽车用跨过定滑轮的轻绳提升物块A .汽车匀速向右运动,在物块A 到达滑轮之前,关于物块A ,下列说法正确的是( )A.将竖直向上做匀速运动B.将处于超重状态C.将处于失重状态D.将竖直向上先加速后减速【解析】v A=v车·cos θ,v车不变,θ减小,v A增大,由T-m A g=ma知T>m A g,物块A处于超重状态,B对.【答案】 B[创新导向练]7.生活科技——曲线运动的条件在飞行中孔明灯的应用春节期间人们放飞孔明灯表达对新年的祝福,如图甲所示,孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动,孔明灯的运动轨迹可能为图乙中的()A.直线OA B.曲线OBC.曲线OC D.曲线OD【解析】孔明灯在竖直Oy方向做匀加速运动,则合外力沿Oy方向,在水平Ox方向做匀速运动,此方向上合力为零,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,故孔明灯做曲线运动,结合合力指向轨迹内侧可知轨迹可能为曲线OD,故D 正确.【答案】 D8.体育运动——足球运动中的力学问题在足球场上罚任意球时,运动员踢出的足球,在行进中绕过“人墙”转弯进入了球门,守门员“望球莫及”,轨迹如图所示.关于足球在这一飞行过程中的受力方向和速度方向,下列说法中正确的是()A .合外力的方向与速度方向在一条直线上B .合外力的方向沿轨迹切线方向,速度方向指向轨迹内侧C .合外力方向指向轨迹内侧,速度方向沿轨迹切线方向D .合外力方向指向轨迹外侧,速度方向沿轨迹切线方向【解析】 足球做曲线运动,则其速度方向为轨迹的切线方向,根据物体做曲线运动的条件可知,合外力的方向一定指向轨迹的内侧,故C 正确.【答案】 C9.生活科技——教具中的运动合成与分解的原理如图所示为竖直黑板,下边为黑板的水平槽,现有一三角板ABC ,∠C =30°.三角板上A 处固定一大小不计的滑轮.现让三角板竖直紧靠黑板,BC 边与黑板的水平槽重合,将一细线一端固定在黑板上与A 等高的Q 点,另一端系一粉笔头(可视为质点).粉笔头最初与C 重合,且细线绷紧.现用一水平向左的力推动三角板向左移动,保证粉笔头紧靠黑板的同时,紧靠三角板的AC 边,当三角板向左移动的过程中,粉笔头会在黑板上留下一条印迹.关于此印迹,以下说法正确的是( )A .若匀速推动三角板,印迹为一条直线B .若匀加速推动三角板,印迹为一条曲线C .若变加速推动三角板,印迹为一条曲线D .无论如何推动三角板,印迹均为直线,且印迹与AC 边成75°角 【解析】在三角板向左移动的过程中,粉笔头沿AC 边向上运动,且相对于黑板水平方向向左运动,由于两个分运动的速度始终相等,故粉笔头的印迹为一条直线,如图中CD 所示,A 正确,B 、C 错误;根据图中的几何关系可得,∠ACD =∠ADC =180°-30°2=75°,D 正确.【答案】 AD10.科技前沿——做曲线运动的波音737飞机如图所示,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s 2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s 2的匀减速直线运动,则飞机落地之前( )A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s【解析】 由于合初速度的方向与合加速度的方向相反,故飞机的运动轨迹为直线,A 错误;由匀减速运动规律可知,飞机在第20 s 末的水平分速度为20 m/s ,竖直方向的分速度为2 m/s ,B 错误;飞机在第20 s 内,水平位移x =⎝⎛⎭⎫v 0x t 20+12a x t 220-⎝⎛⎭⎫v 0x t 19+12a x t 219=21 m ,竖直位移y =⎝⎛⎭⎫v 0y t 20+12a y t 220-⎝⎛⎭⎫v 0y t 19+12a y t 219=2.1 m ,C 错误.飞机在第20 s 内,水平方向的平均速度为21 m/s ,D 正确.【答案】 D[综合提升练]11.如图甲所示,质量m =2.0 kg 的物体在水平外力的作用下在水平面上运动,已知物体沿x 方向和y 方向的x -t 图象和v y -t 图象如图乙、丙所示,t =0时刻,物体位于原点O .g 取10 m/s 2.根据以上条件,求:(1)t =10 s 时刻物体的位置坐标; (2)t =10 s 时刻物体的速度大小.【解析】 (1)由图可知坐标与时间的关系为: 在x 轴方向上:x =3.0t m ,在y 轴方向上:y =0.2t 2 m 代入时间t =10 s ,可得:x =3.0×10 m =30 m ,y =0.2×102 m =20 m 即t =10 s 时刻物体的位置坐标为(30 m,20 m).(2)在x轴方向上:v0=3.0 m/s当t=10 s时,v y=at=0.4×10 m/s=4.0 m/sv=v20+v2y= 3.02+4.02m/s=5.0 m/s【答案】(1)(30 m,20 m)(2)5.0 m/s12.如图所示,在竖直平面内的xOy坐标系中,Oy竖直向上,Ox水平向右.设平面内存在沿x轴正方向的恒定风力.一小球从坐标原点沿Oy方向竖直向上抛出,初速度为v0=4 m/s,不计空气阻力,到达最高点的位置如图中M点所示(坐标格为正方形,g=10 m/s2)求:(1)小球在M点的速度v1;(2)在图中定性画出小球的运动轨迹并标出小球落回x轴时的位置N;(3)小球到达N点的速度v2的大小.【解析】(1)设正方形的边长为x0.竖直方向做竖直上抛运动,有v0=gt1,2x0=v0 2t1水平方向做匀加速直线运动,有3x0=v1 2t1.解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x轴,水平方向做初速度为零的匀加速直线运动,所以回到x轴时落到x=12处,位置N的坐标为(12,0).(3)到N点时竖直分速度大小为v0=4 m/s水平分速度v x=a水平t N=2v1=12 m/s,故v2=v20+v2x=410 m/s.【答案】(1)6 m/s(2)见解析图(3)410 m/s。
2021年初中物理竞赛及自主招生专题讲义第一讲物体的运动第五节小船过河问题初探含解析

初中物理竞赛及自主招生专题讲义:第五节小船过河问题初探一、船速与船相对于水的速度小船过河问题,涉及三个速度:河水的流速_、船相对于水的速度_、船相对地面的速度_,现对三个速度理解如下:(1)船在静止的河水中,如果船关闭发动机或者人不划桨,则船没有动力,船将静止在水中,相对于水静止,对地也静止。
(2)船在流动的河水中,如果船关闭发动机或者人不划桨,则船没有动力,船将顺水漂流,相对于水静止,对地速度等于水速。
(3)船在流动的河水中,如果船开动发动机或者人划桨,则船将相对于水运动,船对地速度_与水速_、船相对于水的速度_的关系如图3.83所示。
其中,船相对于水的速度_也就是船在静水中的速度,只与船本身有关,_的方向总是沿着船头所指的方向。
例1 如图3.84所示,河两岸相互平行,水流速度恒定不变,船行驶时相对水的速度大小始终不变。
一开始船从岸边_点出发,船身始终垂直河岸,船恰好沿_航线到达对岸_点耗时为_,_与河岸的夹角为_。
调整船速方向,从_点出发沿直线_返航回到_点耗时_,则_为()。
A.1:1 B.1:2C.1:3 D.1:4分析与解由_点出发时,船身始终垂直河岸,即船相对水的速度_垂直于河岸,船相对地面的速度_沿着_方向,画出_,_,_所围成的三角形如图3.85所示,可知_,_,则_。
当船由_点返回时,其对地速度_沿着_方向,_,_,_围成的三角形如图3.85所示,因为_与_夹角为_,且_,可知这一个等腰三角形,即_,因此_,可得_,本题正确选项为B。
实际上,我们也可以将船在静水中的速度_沿平行于河岸和垂直于河岸方向正交分解。
如图3.86所示,设船与河岸夹角为_,_为水流速度,则_为船实际上沿水流方向的运动速度,_为船垂直于河岸方向的运动速度。
__二、小船过河的两个典型问题1.过河时间最短问题渡河时间只取决于在垂直河岸方向上的船速,即_,当_时,渡河时间最短,_,此时船头应正对着对岸前进,如图3.87所示。
微专题18 小船过河问题-2025版高中物理微专题

微专题18小船过河问题【核心要点提示】小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=d v 1(d 为河宽).②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1.③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=d cos α=v 2v 1d .【微专题训练】如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB 。
若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为()A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定解析:选C 设水速为v 0,人在静水中的速度为v ,OA =OB =x 。
对甲,O →A 阶段人对地的速度为(v +v 0),所用时间t 1=x v +v 0;A →O 阶段人对地的速度为(v -v 0),所用时间t 2=x v -v 0。
所以甲所用时间t 甲=t 1+t 2=x v +v 0+x v -v 0=2vx v 2-v 02。
对乙,O →B 阶段和B →O 阶段的实际速度v ′为v 和v 0的合成,如图所示。
由几何关系得,实际速度v ′=v 2-v 02,故乙所用时间t 乙=2x v ′=2x v 2-v 02。
t 甲t 乙=v v 2-v 02>1,即t 甲>t 乙,故C 正确。
坐船过河智力测试题(3篇)

第1篇导语:在古老的东方,有一位智者提出了一个关于智慧和策略的难题——坐船过河。
这个问题考验的是你的逻辑思维、策略规划和快速反应能力。
以下是25道关于坐船过河的智力测试题,让你在解答中体验智慧的乐趣。
一、基础篇1. 一条小河,河上有座小桥,桥上有一艘小船。
船上有5个人,分别是A、B、C、D、E。
河对岸有5个岛,每个岛上分别住着1个人,分别是F、G、H、I、J。
他们分别代表着不同的职业:医生、农民、工人、学生、教师。
他们之间没有任何亲戚关系。
请你根据以下条件,安排他们过河:(1)医生不能和农民坐同一艘船;(2)工人不能和教师坐同一艘船;(3)学生不能和工人坐同一艘船;(4)农民必须和医生或教师坐同一艘船;(5)每次只能有3个人过河。
2. 一艘小船在河上行驶,船上有5个人,分别是甲、乙、丙、丁、戊。
河对岸有5个岛,每个岛上分别住着1个人,分别是己、庚、辛、壬、癸。
他们分别代表着不同的年龄:青年、中年、老年、少年、幼儿。
请你根据以下条件,安排他们过河:(1)甲和丙年龄相同;(2)乙和戊年龄相同;(3)丁和己年龄相同;(4)庚和壬年龄相同;(5)每次只能有3个人过河。
二、进阶篇3. 一条小河,河上有座小桥,桥上有一艘小船。
船上有5个人,分别是A、B、C、D、E。
河对岸有5个岛,每个岛上分别住着1个人,分别是F、G、H、I、J。
他们分别代表着不同的性格:开朗、内向、活泼、稳重、沉默。
请你根据以下条件,安排他们过河:(1)A和C性格相反;(2)B和D性格相同;(3)E必须和F或G坐同一艘船;(4)H和I性格相反;(5)每次只能有3个人过河。
4. 一艘小船在河上行驶,船上有5个人,分别是甲、乙、丙、丁、戊。
河对岸有5个岛,每个岛上分别住着1个人,分别是己、庚、辛、壬、癸。
他们分别代表着不同的兴趣爱好:音乐、绘画、阅读、运动、旅游。
请你根据以下条件,安排他们过河:(1)甲和乙喜欢音乐;(2)丙和丁喜欢绘画;(3)戊和己喜欢阅读;(4)庚和辛喜欢运动;(5)壬和癸喜欢旅游;(6)每次只能有3个人过河。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小船过河问题
小船渡河是典型的运动的合成问题。
需要理解运动的独立性原理,掌握合速度与分速度之间的关系。
小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动v 水(水冲船的运动),和船相对水的运动v 船(即在静水中的船的运动),船的实际运动v 是合运动。
基本模型 1、v 水<v 船 时间最少
在河宽、船速一定时,在一般情况下,渡河时间
θ
υυsin 1
船d
d
t =
=
,显然,当︒=90θ时,即船头的指向与河岸垂
直,渡河时间最小为船
v d ,合运动沿v 的方向进行。
位移最小
结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船
水υυθ=cos
2、v 水>v 船 时间最少 同前 位移最小
不论船的航向如何,总是被水冲向下游,即无论向哪个
方向划船都不能使船头垂直于河,只能尽量使船头不那么斜。
那么怎样才能使漂下的距离最短呢?如图所示,
设船头v 船与河岸成θ角。
合速度v 与河岸成α角。
可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水
船v v =
θcos 船头与河岸的夹角应为
水
船v v arccos
=θ,船沿河漂下的最短距离为:
θ
θsin )cos (min 船船水v d v v x ⋅
-=
此时渡河的最短位移:船
水v dv d s ==θcos
典型例题
★某人以不变的速度垂直对岸游去,游到中间,水流速度加大,则此人渡河时间比预定时间 A .增加 B .减少 C .不变 D .无法确定
答案:C
★某人以一定速度始终垂直河岸向对岸游去,当河水匀速流
动时,他所游过的路程,过河所用的时间与水速的关系是( )
A .水速大时,路程长,时间长
B .水速大时,路程长,时间短
C .水速大时,路程长,时间不变
D .路程、时间与水速无关
答案: C
★如图所示,A 、B 为两游泳运动员隔着水流湍急的河流站在两岸边,A 在较下游的位置,且A 的游泳成
绩比B 好,现让两人同时下水游泳,要求两人尽快在河中相遇,试问应采用下列哪种方法才能实现?( )
A. A 、B 均向对方游(即沿虚线方向)而不考虑水流作用
B. B 沿虚线向A 游且A 沿虚线偏向上游方向游
C. A 沿虚线向B 游且B 沿虚线偏向上游方向游
D. 都应沿虚线偏向下游方向,且B 比A 更偏向下游 答案:A
★★一条自西向东的河流,南北两岸分别有两个码头A 、B ,如图所示.已知河宽为80 m ,河水流速为5 m/s ,两个码头A 、B 沿水流的方向相距100 m .现有一只船,它在静水中的行驶速度为4 m/s ,若使用这只船渡河,且沿直线运动,则( )
A .它可以正常来往于A 、
B 两个码头 B .它只能从A 驶向B ,无法返回
C .它只能从B 驶向A ,无法返回
D .无法判断 答案:B
★在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( )
A .21
2
22
υ
υυ-d B .0 C .
2
1
υυd
D .
1
2
υυd
答案:C
★某人横渡一河流,船划行速度和水流动速度一定,此人过
河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速1v 与水速2v 之比为( )
(A) 21
22
2T
T T - (B)
1
2T T (C)
22
21
1T
T T - (D)
2
1T T
答案:A
★小船在s=200 m 宽的河中横渡,水流速度是2 m/s,船在静水中的航行速度为4 m/s.求: (1)小船渡河的最短时间.
(2)要使小船航程最短,应该如何航行? 答案 (1)50 s 2)船速与上游河岸成60° ★★一条河宽100米,船在静水中的速度为4m/s ,水流速度是5m/s ,则( )
A .该船可能垂直河岸横渡到对岸
B .当船头垂直河岸横渡时,过河所用的时间最短
C .当船头垂直河岸横渡时,船的位移最小,是100米
D .当船横渡时到对岸时,船对岸的最小位移是100米 答案: B
★★河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:
(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?
(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?
答案:(1)20s (2)小船的船头与上游河岸成600角时,最短航程为120m
★★小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,d
v k kx v 04==,水,x 是各点到近岸的距离,
小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( )
A 、小船渡河的轨迹为曲线
B 、小船到达离河岸2
d 处,船渡河的速度为
02v
C 、小船渡河时的轨迹为直线
D 、小船到达离河岸4/3d 处,船的渡河速度为010v
答案:A
★如图所示,小船从A 码头出发,沿垂直河岸的方向划船,若已知河宽为d ,划船的速度v 船恒定. 河水的流速与到河岸的
最短距离x 成正比,即)其中k 为常量。
要使小船能够到达距A 码头正对岸为已知距离s 的B 码头,则下列说法正确的是 A .由于河中各处水速不同,因此不能求出渡河的时间 B .由于河中各处水速不同,因此不能求出划船的速度v
船
C .由于河中各处水速不同,因此小船不能到达B 码头
D .由于河中各处水速不同,因此小船渡河时应做曲线运动 答案 D
★★小船从A 码头出发,沿垂直于河岸的方向渡河,若河宽为d ,渡河速度v 船恒定,河水的流速与到河岸的距离成正比,即v 水
=kx (x ≤d/2,k 为常量),要使小船能够到达距A 正对岸为s 的B 码头,则
A .v 船应为kd 2/4s B.v 船应为kd 2/2s
C.渡河时间为4s/kd D.渡河时间为2s/kd 答案:AC。