二 元 一 次 不 定 方 程 的 求 解

二 元 一 次 不 定 方 程 的 求 解
二 元 一 次 不 定 方 程 的 求 解

二元一次不定方程的求解

有这么一道数论题:一个数的20倍减去1能被153整除,这样的自然数最小的是_______.

[分析]解答数论题的关键是把文字表达式转化为数字表达式,

x-,又假设我们可以设这样的数字为x,根据题意则有153(201) x a

-=(a为整数),即201531

201153

=+,显然在这个方程中,

x a

未知数的个数多于方程的个数,这样的方程我们成为二元一次不定方程,那这个题具体我们应该怎么去解答呢?通过观察,不难发现,20x的末尾数字一定是0,所以a最小为3,此时23

x=,从而符合条件的最小的自然数为23.

在这个题目讲解完后,我们可以拓展一道训练题:

一个数的20倍加7能被59整除,这样的自然数最小的是多少?

【归纳并拓展】同学们,大家可以看到,上面题目中涉及到的知识点一是数论中整除的知识,另一个更重要的知识点是二元一次不定方程的求解。下面我们一起来学习二元一次方程的求解方法。

一般说来,二元一次不定方程有如下几种分析方法:

①倍数分析法;

②尾数分析法;

③奇偶分析法;

④从大数入手;

首先我们看第①种分析方法:倍数分析法

Eg1: 求二元一次不定方程3215a b +=的正整数解。

【分析】我们先观察下,在所给的方程中3a 和15都是3的倍数,所以2b 必是3的倍数,故b 最小为3.

当b=3时,a=3;

当6b =时,a=1.

符合条件的解就只有:3,3;1, 6.a b a b ====

接着我们再来学习第②种分析方法:尾数分析法

还是以一道例题来说明:

Eg2:求二元一次不定方程3523a b +=的正整数解。

【分析】我们先来审题,5b 的尾数只有两种情况:0和5.

I.)当5b 的尾数为0时,3a 的尾数一定得为3,所以a 可以为1,11….. 但是又要满足b 是正整数的条件,所以a=1,此时b=4;

II) 当5b 的尾数为5时,3a 的尾数一定得为8,所以a 可以为6,16…. 要满足整数解的条件,a 只能为6,此时b=1.

尾数分析法关键是从方程的各项的尾数入手。

下面是第③种分析方法:奇偶分析法

我们还是一道例题为例:

Eg3:求二元一次不定方程2311m n +=的正整数解。

【分析】通过观察方程,不难发现:方程的左边是23m n +,右边

是11(奇数),根据奇偶性分析(偶数+奇数=奇数),我们就能确定n 为奇数,于是n 可以为1,3,5,7…….

当1

m m n =时,=4;n=3时,=1.只有这两组才是符合原方程的解。

奇偶分析法关键是奇偶性分析(奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数),可要记牢了哦。

最后一种分析方法是:从大数入手。

这里仍然一道例题为例:

Eg4:求二元一次不定方程3523x y +=的整数解。

【分析】我们通过观察发现,35x y 与和为23,其中523y 与比较接近,我们开始尝试,进而求出此不定方程的解。

y 最大为4,此时1x =,接着往下试,

y 为3,2时,x 的值不符合题目条件,

y 为1时, 6.x =

所以符合条件的只有两组解:1,4;6, 1.x y x y ==== 以上我们一起学习了二元一次不定方程的四种分析方法,很多时候一道二元一次不定方程不止一种解法来解,可以用多种方法来解决,这里由于篇幅原因,就不一一累述。

【课后巩固】:1.求二元一次不定方程3x+11y=45的正整数解.

2.小张带了5角钱去买橡皮和铅笔,橡皮每块3分,铅笔每支1角1分,问5角钱刚好买几块橡皮和几支铅笔?

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

解一元二次方程及一元二次不等式练习题-

一元二次方程练习题 1. 解下列方程:(1)2(1) 9x -=; (2)2(21)3x +=; (3)2(61)250x --=. (4)281(2)16x -=. 2. 用直接开平方法解下列方程: (1)25(21) 180y -=; (2)21(31)644x +=; (3)26(2) 1x +=; (4)2()(00)ax c b b a -=≠,≥ 3. 填空 (1)28x x ++( )=(x + )2.(2)223x x -+( )=(x - )2. (3)2b y y a -+( )=(y - )2. 4. 用适当的数(式)填空: 23x x -+ (x =- 2);2x px -+ =(x - 2) 23223(x x x +-=+ 2)+ . 5. 用配方法解方程. 23610x x --= 22540x x --= 6. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 7. 用适当的方法解方程(1)23(1) 12x +=; (2)2410y y ++=; (3)2884x x -=; (4)2310y y ++=. (5) ()9322=-x ; (6)162=-x x ; 一元二次不等式 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程2 0(0)ax bx c a ++=>之间判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 一、解下列一元二次不等式:

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2 (2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

(完整版)解一元二次方程配方法练习题

- 1 - 解一元二次方程练习题(配方法) 步骤:(1)移项; (2)化二次项系数为1; (3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解. 1.用适当的数填空: ①x 2+6x+ =(x+ )2;② x 2-5x+ =(x - )2; ③x 2 + x+ =(x+ )2 ;④ x 2 -9x+ =(x - )2 2.将二次三项式2x 2-3x-5进行配方,其结果为_________. 3.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______. 4.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 5.若 x 2+6x+m 2是一个完全平方式,则 m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 6.用配方法将二次三项式a 2-4a+5变形,结果是( ) A .(a-2)2+1 B .(a+2)2-1 C .(a+2)2+1 D .(a-2)2-1 7.把方程x+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 8.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D . 9.不论x 、y 为什么实数,代数式x 2+y 2+2x-4y+7的值( ) A .总不小于2 B .总不小于7 C .可为任何实数 D .可能为负数 10.用配方法解下列方程: (1)3x 2-5x=2. (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2-x-4=0 (5)6x 2-7x+1=0 (6)4x 2-3x=52 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ;(2)求-3x 2+5x+1的最大值。 12.将二次三项式4x 2-4x+1配方后得( ) A .(2x -2)2+3 B .(2x -2)2-3 C .(2x+2)2 D .(x+2)2-3 13.已知x 2-8x+15=0,左边化成含有x 的完全平方形式, 其中正确的是( ) A .x 2-8x+(-4)2=31 B .x 2-8x+(-4)2=1 C .x 2+8x+42=1 D .x 2-4x+4=-11 14.已知一元二次方程x 2-4x+1+m=5请你选取一个适当的m 的值,使方程能用直接开平方法求解,并解这个方程。 (1)你选的m 的值是 ;(2)解这个方程. 15.如果x 2-4x+y 2 ,求(xy )z 的值

配方法解一元二次方程的教案

配方法解一元二次方程的教案 教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。 一、教学目标 (一)知识目标 1、理解求解一元二次方程的实质。 2、掌握解一元二次方程的配方法。 (二)能力目标 1、体会数学的转化思想。 2、能根据配方法解一元二次方程的一般步骤解一元二次方程。 (三)情感态度及价值观 通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。 二、教学重点 配方法解一元二次方程的一般步骤 三、教学难点 具体用配方法的一般步骤解一元二次方程。 四、知识考点 运用配方法解一元二次方程。 五、教学过程 (一)复习引入 1、复习:

解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。 2、引入: 二次根式的意义:若x2=a (a为非负数),则x叫做a的平方根,即x=±√a 。实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。 (二)新课探究 通过实际问题的解答,引出我们所要学习的知识点。通过问题吸引学生的注意力,引发学生思考。 问题1: 一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗? 问题1重在引出用直接开平方法解一元二次方程。这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来, 具体解题步骤: 解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2 列出方程:60x2=1500 x2=25 x=±5 因为x为棱长不能为负值,所以x=5 即:正方体的棱长为5dm。 1、用直接开平方法解一元二次方程

《一元二次方程》单元测试及标准答案

《一元二次方程》单元测试及答案

————————————————————————————————作者:————————————————————————————————日期:

周周清3 一、选择题(每小题3分,共30分) 姓名 1、下列方程是一元二次方程的是( ) A 、 ax 2+bx+c=0 B 、 x 2-y+1=0 C 、 x 2=0 D 、21 2=+x x 2、 把方程)2(5)2(-=+x x x 化成一般形式,则a 、b 、c 的值分别是( ) A 、10,3,1- B 、 10,7,1- C 、 12,5,1- D 、 2,3,1 3、已知3是关于x 的方程0123 42=+-a x 的一个解,则2a 的值是( ) A 、11 B 、12 C 、13 D 、14 4、一元二次方程x 2-1=0的根是( ) A 、 x=1 B 、x=-1 C 、x 1=0, x 2=1 D 、x 1=1 ,x 2= -1 5、将方程2x 2-4x-3=0配方后所得的方程正确的是( ) A 、(2x-1)2=0 B 、(2x-1)2-4=0 C 、2(x-1)2-1=0 D 、2(x-1)2-5=0 6、已知直角三角形的三边恰好是三个连续整数,则这个直角三角形的斜边长是 A 、 ±5 B 、 5 C 、 4 D 、 不能确定 ( ) 7、方程3x 2+4x-2=0的根的情况是( ) A 、两个不相等的实数根 B 、两个相等的实数根 C 、没有实数根 D 、无法确定根的个数 8、设—元二次方程x 2-2x -4=0的两个实根为x 1和x 2,则下列结论正确的是( ) A 、x 1+x 2=2 B 、x 1+x 2=-4 C 、x 1·x 2=-2 D 、x 1·x 2=4 9、已知x 1 、x 2是方程x 2-2mx+3m=0的两根,且满足(x 1+2) (x 2+2)=22-m 2则m 等于( ) A 、2 B —9 C 、—9 或2 D 9 或2 10、某商品降价20%后欲恢复原价,则提价的百分数为( ) A 、18% B 、20% C 、25%、 D 、 30% 二、填空题 (每小题3分,共24分) 11、已知一元二次方程有一个根是2,那么这个方程可以是 (填上 你认为正确的一个方程即可) 12、填空 x 2-3x + = (x- )2 13、等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长是 14、在实数范围内定义一种运算“﹡”,其规则为a ﹡b=a 2-b 2,根据这个规则,方 程(x+2) ﹡5=0的解为 15、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为 16、在一元二次方程ax 2+bx+c=0(a ≠0)中,若a-b+c=0则方程必有一根为 17、已知α,β是方程0522=-+x x 的两个实数根,则α2+β2+2α+2β的值为_________。

解一元二次方程配方法练习题

! 解一元二次方程配方法练习题 1.用适当的数填空: ①、x2+6x+ =(x+ )2; ②、x2-5x+ =(x-)2; ③、x2+ x+ =(x+ )2; ④、x2-9x+ =(x-)2 2.将二次三项式2x2-3x-5进行配方,其结果为_________. 3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______. ! 4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,?所以方程的根为_________. 5.若x2+6x+m2是一个完全平方式,则m的值是() A.3 B.-3 C.±3 D.以上都不对 6.用配方法将二次三项式a2-4a+5变形,结果是() A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1 7.把方程x+3=4x配方,得() A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2 8.用配方法解方程x2+4x=10的根为() 【 A.2.-2.. 9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数 10.用配方法解下列方程: (1)3x2-5x=2.(2)x2+8x=9 #

(3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 11.用配方法求解下列问题 (1)求2x 2-7x+2的最小值 ; ? (2)求-3x2+5x+1的最大值。 12. 用配方法证明: (1)21a a -+的值恒为正; (2)2982x x -+-的值恒小于0. | 13. 某企业的年产值在两年内从1000万元增加到1210万元,求平均每年增长百分率. \

初中数学 配方法解一元二次方程

配方法解一元二次方程 教学目标 1、理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 2、通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤. 重点:讲清“直接降次有困难”,如x2+6x-16=0的一元二次方程的解题步骤.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧. 【课前预习】 导学过程 阅读教材部分,完成以下问题 解下列方程 (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 填空: (1)x2+6x+______=(x+______)2;(2)x2-x+_____=(x-_____)2 (3)4x2+4x+_____=(2x+______)2.(4)x2-x+_____=(x-_____)2 问题:要使一块长方形场地的长比宽多6cm,并且面积为16cm2,场地的长和宽应各是多少?

思考? 1、以上解法中,为什么在方程x 2+6x=16两边加9?加其他数行吗? 2、什么叫配方法? 3、配方法的目的是什么? 这也是配方法的基本 4、配方法的关键是什么? 用配方法解下列关于x 的方程 (1)2x 2-4x-8=0 (2)x 2-4x+2=0 (3)x 2-21x-1=0 (4)2x 2+2=5 总结:用配方法解一元二次方程的步骤: 【课堂活动】 活动1、预习反馈 活动2、例习题分析 例1用配方法解下列关于x 的方程: (1)x 2-8x+1=0 (2)2x 2+1=3x (3)3x 2-6x+4=0

一元二次方程测试题及答案.doc

一元二次方程测试 姓名学号 一、选择题(每题 3 分,共 30 分): 1.下列方程中不一定是一元二次方程的是 ( ) A.(a-3)x 2 =8 (a ≠3) B.ax 2+bx+c=0 C.(x+3)(x-2)=x+5 D. 3x2 3 x 2 0 57 2 下列方程中 , 常数项为零的是 ( ) A.x 2+x=1 B.2x 2 -x-12=12 ; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+2 3. 一元二次方程2x2 -3x+1=0 化为 (x+a) 2=b 的形式 , 正确的是( ) 2 2 1 ;C. 2 1 ; A. x 3 16; B. 2 x 3 x 3 2 4 16 4 16 D.以上都不对 4. 关于x的一元二次方程 a 1 x2 x a2 1 0 的一个根是 0,则 a 值为() A、 1 B 、 1 C 、1或 1 D 、1 2 5.已知三角形两边长分别为2 和 9, 第三边的长为二次方程 x2-14x+48=0 的一根 , 则这个三角形的周长为 ( ) A.11 B.17 C.17或19 D.19 6.已知一个直角三角形的两条直角边的长恰好是方程 2x2 8x 7 0 的两个根,则这个直角三角形的斜边长是() A、 3 B 、3 C 、6 D 、9 7. 使分式 x 2 5x 6 的值等于零的 x 是( ) x 1 A.6 B.-1 或 6 C.-1 D.-6 8.若关于 y 的一元二次方程 ky2-4y-3=3y+4 有实根 , 则 k 的取值 范围是 ( ) A.k>- 7 B.k ≥ - 7 且 k ≠ 0 C.k ≥ - 7 D.k> 7 4 4 4 且 k≠ 0 4 9. 已知方程x2 x 2 ,则下列说中,正确的是() (A)方程两根和是 1 (B)方程两根积是 2 (C)方程两根和是 1 (D)方程两根积比两根和大2 10.某超市一月份的营业额为200 万元, 已知第一季度的总营业 额共 1000 万元 , 如果平均每月增长率为 x, 则由题意列方程应 为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+ (1+x) 2]=1000 1

解一元二次方程(直接开方法配方法)练习题100道

解一元二次方程练习题(配方法) 1.用适当的数填空: ①、x 2+6x+ =(x+ )2; ②、x 2-5x+ =(x - )2; ③、x 2+ x+ =(x+ )2; ④、x 2-9x+ =(x - )2 2.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为_______,?所以方程的根为_________. 3.若x 2+6x+m 2是一个完全平方式,则m 的值是( ) A .3 B .-3 C .±3 D .以上都不对 4.把方程x 2+3=4x 配方,得( ) A .(x-2)2=7 B .(x+2)2=21 C .(x-2)2=1 D .(x+2)2=2 5.用配方法解方程x 2+4x=10的根为( ) A .2 B .-2 C . D .6.用配方法解下列方程: (2)x 2+8x=9 (3)x 2+12x-15=0 (4)4 1 x 2 -x-4=0 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662 =--y y 2、x x 4232 =- 3、9642=-x x 4、01322=-+x x 5、07232=-+x x 6、01842 =+--x x 7.用直接开平方法解下列一元二次方程。 1、0142 =-x 2、2)3(2=-x 3、()512 =-x 4、()162812 =-x 8.用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232 =- 3、9642=-x x 2 2 2

一元二次不等式练习题含答案

一元二次不等式练习 一、选择题 1.设集合S ={x |-50 B .a ≥13 C .a ≤13 D .02} C .{x |-1≤x ≤2} D .{x |-1≤x <2} 4.若不等式ax 2+bx -2>0的解集为???? ??x |-2a 的解集是{}x |x <-1或x >a ,则( ) A .a ≥1 B .a <-1 C .a >-1 D .a ∈R 6.已知函数f (x )=ax 2+bx +c ,不等式f (x )>0的解集为{}x |-3

二、填空题 8.若不等式2x2-3x+a<0的解集为(m,1),则实数m的值为________. 9.若关于x的不等式ax-b>0的解集是(1,+∞),则关于x的不等式ax+b x-2 >0的解集是 ________. 10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________. 三、解答题 11.解关于x的不等式:ax2-2≥2x-ax(a<0). . 12.设函数f(x)=mx2-mx-1. (1)若对于一切实数x,f(x)<0恒成立,求m的取值范围; (2)若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.

用配方法解一元二次方程教案新部编本

教师学科教案[ 20 – 20 学年度第__学期] 任教学科:_____________ 任教年级:_____________ 任教老师:_____________ xx市实验学校

2.1.2用配方法解一元二次方程 教学目标 【知识目标】 使学生会用配方法解一元二次方程。 【技能目标】 经历列方程解决实际问题的过程,熟练地运用配方法解一元二次方程,使学生理解转化变形思想,掌握一些转化的技能。 【情感目标】 通过配方法的探索活动,培养学生勇于探索的良好学习习惯,感受数学的严谨性。 教学重点难点 【重点】用配方法解一元二次方程 【难点】配方的过程 教法:引导、观察、归纳、探究 教具:多媒体、课件 教学过程: 一、复习回顾 上一节我们学习了配方法,首先我们回顾上一节学习的内容: 1、配方法的具体步骤是什么? 对二次三项式ax 2+bx+c 配方的一般步骤是: (1)把ax 2+bx+c 变形为a (x 2+a b x )+c (2)配方为:a[x 2 +a b x+(a b 2)2-224a b ]+c

(3)整理成a(x+a b 2)2+a b a c 442 的形式 议一议:配方的关键是什么? 点拨:配方的关键是把x 2+a b x 加上一次项系数一半的平方(a b 2)2。 2、将下列各式配成完全平方式。 (1)a 2+12a+ 62 =(a+ 6 )2; (2)x 2 - x +41=(x- 2 1 )2 二、讲授新课 这一节我们就来学习一下用配方法解一元二次方程 (一) 提出问题 归纳定义 1、 提出问题 如图 现有长方形的纸片一张,长20cm ,宽14cm ,在其四个角上各剪去一个边长相等的小正方形,然后把四边折起,如果恰好能将其做成底面积是72cm 2的无盖长方体纸盒,求剪去的小正方形边长是多少? 分析: 设剪去的小正方形的边长是xcm ,则盒子底面长方形的长是(20-2x )cm,宽是(14-2x )cm 。根据题意,列出方程

一元二次不等式的解法

一元二次不等式的解法(一) 学习目标: 1.会从实际情境中抽象出一元二次不等式模型; 2.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。 3.培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力 知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2 的不等式,称为一元二次不等式。比如: . 任意的一元二次不等式,总可以化为一般形式:)0(02>>++a c bx ax 或 )0(02><++a c bx ax . 知识点二:一般的一元二次不等式的解法 ( (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程)0(02 >=++a c bx ax ,计算判别式?; ①0>?时,求出两根21x x 、,且21x x <(注意灵活运用因式分解和配方法); ②0=?时,求根a b x x 221-==; ③0--x x ; (3)0652 >--x x (4)0442 >+-x x ; (5)0542 >-+-x x ; (6)23262x x x -++<- 举一反三: 【变式1】解下列不等式 (1)02322 >--x x ; (2)02232 >+--x x (3)01442 ≤+-x x ; (4)0322 >-+-x x . (5)()()() 221332x x x +->+ 【变式2】解不等式:(1)6662<--≤-x x (2)18342 <-≤x x 类型二:已知一元二次不等式的解集求待定系数 例2 不等式02 <-+n mx x 的解集为)5,4(∈x ,求关于x 的不等式012 >-+mx nx 的解集 举一反三: 【变式1】不等式0122 >++bx ax 的解集为{} 23<<-x x ,则a =_______, b =________ 【变式2】已知关于x 的不等式02<++b ax x 的解集为)2,1(,求关于x 的不等式0 12 >++ax bx 的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题 例3 已知关于x 的不等式03)1(4)54(2 2 >+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围。 举一反三: 【变式1】 若关于x 的不等式01)12(2≥-++-m x m mx 的解集为空集,求m 的取值范围. 【变式2】若关于x 的不等式01)12(2≥-++-m x m mx 的解为一切实数,求m 的取值范围. 【变式3】若关于x 的不等式01)12(2≥-++-m x m mx 的解集为非空集,求m 的取值范围.

解一元二次方程练习题(直接开平方法、配方法)

? 解一元二次方程(直接开平方法、配方法) 1. 用直接开平方法解下列方程: (1)2225x =; (2)2 1440y -=. 2. 解下列方程: (1)2 (1)9x -=; (2)2(21)3x +=; ( (3)2(61)250x --=. (4)281(2)16x -=. 3. 用直接开平方法解下列方程: (1)25(21)180y -=; (2) 21(31)644 x +=; 【 (3)26(2)1x +=; (4)2 ()(00)ax c b b a -=≠,≥ … 4. 填空 (1)28x x ++( )=(x + )2 . (2)223 x x - +( )=(x - )2. (3)2b y y a -+( )=(y - )2. 5. 用适当的数(式)填空: 23x x -+ (x =- 2);

2x px -+ =(x - 2) % 23223(x x x +-=+ 2)+ . 6. 用配方法解下列方程 1).210x x +-= 2).23610x x +-= 3).21(1)2(1)02 x x ---+= ' 7. 方程22103x x -+=左边配成一个完全平方式,所得的方程是 . 8. 用配方法解方程. 23610x x --= 22540x x --= ? 9. 关于x 的方程22291240x a ab b ---=的根1x = ,2x = . 10. 关于x 的方程22220x ax b a +-+=的解为 11. 用配方法解方程 (1)210x x --=; (2)23920x x -+=. ( 12. 用适当的方法解方程 (1)23(1)12x +=; (2)2 410y y ++=;

配方法解一元二次方程知识点及练习

配方法解一元二次方程 知识点一、配方法解一元二次方程 利用完全平方公式222 ()2a b a ab b ±=±+ 将一元二次方程一般式20ax bx c ++= 转换成2x p = 或2()x m n += 的形式。 知识点二、配方法解一元二次方程的一般步骤: ① 移项(常数项右移) ② 等式两边同除以二次项系数a (或等式两边同乘 1a ) ③ 等式两边同加2 ()2b ④ 合并成2x p = 或2()x m n += ⑤ 直接开平方法 例1:2210x x +-=(配方法) 解: 222222212210 21 1122 1111()()2424 19()416 1344 1,12x x x x x x x x x x x x +-=+=+ =++=++=+=±==-

配方法巩固练习 1. 配方 22_____(__)x x x ++=+ 228_____(__)x x x ++=+ 223-_____(-__)2x x x += 227_____(__)3 x x x ++=+ 2248_____(__)x x x ++=+ 229-18_____(__)x x x +=+ 2. 最值 已知代数式223x x ++ ,配方可得________________,代数式有_____值,最值为____ 3. 非负性 证明:2246130x y x y ++++≥ 课堂练习 一、选择题 1.用配方法解方程2 680x x --=时,配方结果正确的是( ) A.2(3)17x -= B. 2(3)14x -= C.2(6)44x -= D. 2(3)1x -= 2.已知方程22160x x m -+= 可配方成2 (8)0x -=的形式,则m 的值为( ) A.8 B.-8 C.±8 D.16 3.用配方法解2+410x x =的根是( ) A.222- D,2-4.把2-1x x =配方得( ) A.21 3()24x -= B. 2(1)2x -= C. 215()24x += D. 25(1)4 x -= 5. 已知方程240x x m -+= 可配方成2(2)0x -=的形式,则m 的值为( ) A.2 B.4 C.±2 D.±4

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

最新一元二次不等式基础练习题

精品文档 一元二次不等式强化 222222222一、十字相乘法练习: 1、x +5x+6= 2、x -5x+6= 3、x +7x+12= 4、x -7x+6= 5、x -x-12= 6、x +x-12= 7、x +7x+12= 8、x -8x+12= 9、x -4x-12= 2222222 10、3x +5x-12= 11、3x +16x-12= 12、3x -37x+12= 13、2x +15x+7= 14、2x -7x-15= 15、2x +11x+12= 16、2x +2x-12= 二、一元二次不等式 22解一元二次不等式时 化为一般格式:ax +bx+c>0(a>0)或ax +bx+c<0(a>0); 65045033200440(21)(5)(3)0x x x x m x x +-<-+<-+<+->-++->2222222练习: 1、解下列不等式: (1)3x -7x>10; (2)-2x ; (3)x ; (4)10x ; (5)-x ; (6)x x+m +m<0;(7) ; (8)(5-x)(3-x)<0; (9)(5+2x)(3-x)<0; (1x--40x+3 2(11)04x x >-<+0); ; 2x 230 x (1)0. ax a a x a --<+--<222、(1)解关于的不等式x (2)解关于的不等式x

精品文档 230ax bx c ++>22、(1)若不等式的解集是{x -30的解集为{x|-20恒成立,则的取值范围是___________

一元二次不等式解法

一元二次不等式解法一、知识梳理 1.“三个二次”的关系 2.常用结论 (x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法

口诀:大于取两边,小于取中间. 二、例题讲解 题型一 一元二次不等式的求解 命题点1 不含参的不等式 例1 求不等式-2x 2+x +3<0的解集. 解 化-2x 2+x +3<0为2x 2-x -3>0, 解方程2x 2-x -3=0得x 1=-1,x 2=3 2 , ∴不等式2x 2-x -3>0的解集为(-∞,-1)∪(3 2,+∞), 即原不等式的解集为(-∞,-1)∪(3 2,+∞). 命题点2 含参不等式 例2 解关于x 的不等式:x 2-(a +1)x +a <0. 解 由x 2-(a +1)x +a =0得(x -a )(x -1)=0, ∴x 1=a ,x 2=1, ①当a >1时,x 2-(a +1)x +a <0的解集为{x |11. 若a <0,原不等式等价于(x -1 a )(x -1)>0,

解得x <1 a 或x >1. 若a >0,原不等式等价于(x -1 a )(x -1)<0. ①当a =1时,1a =1,(x -1 a )(x -1)<0无解; ②当a >1时,1a <1,解(x -1a )(x -1)<0得1 a 1,解(x -1a )(x -1)<0得11}; 当a =0时,解集为{x |x >1};当01 时,解集为{x |1 a

相关文档
最新文档