基于MATLAB的金融工程方法与实践第七章 基于蒙特卡洛方法的期权定价
期权定价的蒙特卡罗模拟方法精选 课件

90.66702 2.667019
49
81.99887
0
25
77.86832
0
50
100.5379 12.53786
计算模拟所得的期权价值的平均值后, 再计算现值得期权价格的一个估计
C E[CT ]erT 7.000053 e0.11 6.27 用布莱克—舒尔斯模型计算期权的价格
从 S0开始模拟得 ST Sn
CT max{ST SX ,0} 或 PT max{ S X ST ,0}
(3)计算 E[CT ]或 E[PT ]及期权的价格.
4). 注意事项
A. 模拟次数和计算精度之间的考量。 理论上的要求,在模拟时,时段的长度 应小,模拟次数应尽可能的多,以便使 所得的资产价格估计尽可能涵盖资产价 格的真实分布,这会大大增加模拟的计 算工作量。
2). 基本过程
例:设有这样一个股票,其现行的市场 价格为80元,已知该股票对数收益的均 值为8%,对数收益的波动性为25%, 无风险资产的收益率为11%。现在有以 该股票为标的资产, 执行期限为1年的买 入期权,确定的股票执行价格为88元, 用模拟法确定该期权的价格。
设一年有250个工作日,将其分为250
0
18
66.88669
0
43
93.91685 5.916854
19
75.17505
0
44
ห้องสมุดไป่ตู้
81.63916
0
20
70.62426
0
45
81.54932
0
21
74.25586
0
46
74.15813
0
22
70.2892
欧式期权价格的Monte-Carlo模拟

欧式期权价格的Monte-Carlo模拟
周心莲
【期刊名称】《《科技创业月刊》》
【年(卷),期】2007(20)8
【摘要】采用Monte-Carlo模拟方法对欧式看涨期权价格进行了数值实验模拟,把对偶变量(AV)方差下降技术运用于模拟试验中,并用标准MC方法模拟出的结果与AV法模拟出的结果进行比较,发现AV方法是有效的,能显著地降低方差。
【总页数】2页(P33-34)
【作者】周心莲
【作者单位】武汉理工大学应用数学系湖北武汉 430070
【正文语种】中文
【中图分类】F830.9
【相关文献】
1.欧式期权定价的Monte-Carlo方法 [J], 张丽虹
2.基于异质理念的欧式股票期权价格模型 [J], 郭文英;谢飞
3.欧式看跌期权价格的计算方法:计算机模拟与比较 [J], 代维
4.G-布朗运动环境下欧式期权价格数值模拟 [J], 陈毛毛; 薛红; 王琪
5.G-布朗运动环境下欧式期权价格数值模拟 [J], 陈毛毛;薛红;王琪
因版权原因,仅展示原文概要,查看原文内容请购买。
期权的定价方法概述及利用matlab计算期权价格

期权的定价方法概述及利用matlab计算期权价格摘要期权是功能最多、最激动人心的融衍生工具之一。
期权定价问题一直是金融数学当中最复杂的问题之一,简要介绍几种基本的期权定价理论,并利用matlab金融工具箱计算出香港恒生指数期权的价格并与实际价格进行比较,指出可能导致偏差的一些原因。
关键词期权定价;MATLAB;B-S模型1 期权概述期权是一种独特的衍生金融产品,实质上是将权利和义务分开进行定价,使得权利的受让人在规定时间内对于是否进行交易,行使其权利具有选择权,而义务方必须履行其义务。
它使买方能够避免坏的结果,同时,又能从好的结果中获益。
2 期权的定价模型2.1 二项式期权定价模型设:S0=股票现行价格,u=股价上行乘数,d=股价下行乘数,r=无风险利率,C0=期权现行价格,Cu=股价上行时期权的到期日价值,Cd=股价下行时期权的到期日价值,X=期权的执行价格,H=套期保值比率,则二项式定价模型为:u=1+上升百分比=d=1+下降百分比=其中:e是自然对数;σ为标的资产连续复利收益率的标准差;t为以年表示的时段长度。
2.2 Black—Scholes期权定价模型1)假设条件B-S微分方程的推导是建立在以下假设的基础上的:①股价遵循预期收益率μ和标准差σ为常数的马尔科夫随机过程;②允许使用全部所得卖空衍生证券;③没有交易费用或税金,且所有证券高度可分;④在衍生证券的有效期内没有支付红利;⑤不存在无风险的套利机会;⑥证券交易是连续的,股票价格连续平滑变动;⑦无风险利率r为常数,能够用同一利率借入或贷出资金;⑧只能在交割日执行期权。
2)Black—Scholes期权定价公式C=SN(d1)-Xe-rTN(d2)P=C-X+Xe-rT=Xe-rT · N(-d2)-S · N(-d1),式中:C表示买入期权的价格;S表示标的资产的现行市场价格;r表示无风险利率(以连续复利率计算);σ表示标的资产的价格波动率;X表示看涨期权的执行价格;T表示距离期权到期日的时间(以年表示);t表示现在的时间;N(x)表示标准正态分布变量的累积概率分布函数。
基于MATLAB的美式期权定价的教学思考

基于MATLAB的美式期权定价的教学思考
宋丽平
【期刊名称】《廊坊师范学院学报(自然科学版)》
【年(卷),期】2014(014)004
【摘要】以二叉树方法和有限差分方法为例,探讨如何利用MATLAB进行美式期权定价的教学.首先对数值方法的原理进行简介,然后利用MATLAB进行编程计算,这样可以提高学生的学习兴趣.
【总页数】4页(P118-121)
【作者】宋丽平
【作者单位】莆田学院,福建莆田351100
【正文语种】中文
【中图分类】O241.8
【相关文献】
1.基于三叉树模型的美式期权定价及其Matlab算法 [J], 董丽沙;王湘玉
2.运用Matlab基于LSM方法对美式期权定价的新探究 [J], 刘海永;严红
3.Matlab与Visual C++混合编程在美式期权定价中的应用 [J], 廖小漩;王孔敬
4.Matlab与Visual C++混合编程在美式期权定价中的应用 [J], 廖小漩;王孔敬
5.基于MATLAB的美式期权定价的教学思考 [J], 宋丽平
因版权原因,仅展示原文概要,查看原文内容请购买。
期权定价matlab程序

1.三叉树法matlab程序%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Computes the Boyle (1986) Trinomial Tree for American Call/Put Option Values based% on the following inputs:% CallPut = Call = 1, Put = 0% AssetP = Underlying Asset Price% Strike = Strike Price of Option% RiskFree = Risk Free rate of interest% Div = Dividend Yield of Underlying% Time = Time to Maturity% Vol = Volatility of the Underlying% nSteps = Number of Time Steps for Trinomial Tree to take %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%CallPut=0; %Call = 1, Put = 0AssetP=50; %Underlying Asset PriceStrike=50; %Strike Price of OptionRiskFree=0.1; %Risk Free rate of interestDiv=0; %Dividend Yield of UnderlyingTime=5/12; %Time to MaturityVol=0.4; %Volatility of the UnderlyingnSteps=200; %Number of Time Steps for Trinomial Tree to take %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% dt = Time / nSteps; % Allocates the time stepscc = RiskFree - Div; % Specifies the cost of carry (r - D)if CallPutb = 1;endif ~CallPutb = -1;endRR = exp(RiskFree * dt);Up = exp(Vol * sqrt(2 * dt)); % The magnitude of an up movementDown = 1 / Up; % The magnitude of a down movement%%% Specifies the probability of up, down and mid moves for trinomial treeP_up = ((exp(cc * dt / 2) - exp(-Vol * sqrt(dt / 2))) / (exp(Vol * sqrt(dt / 2)) - exp(-Vol * sqrt(dt / 2)))) ^ 2;P_down = ((exp(Vol * sqrt(dt / 2)) - exp(cc * dt / 2)) / (exp(Vol * sqrt(dt / 2)) - exp(-Vol * sqrt(dt / 2)))) ^ 2;P_mid = 1 - P_up - P_down;Df = exp(-RiskFree * dt);% Sets up the asset movements on the trinomial treefor i = 0:(2 * nSteps)State = i + 1;Value(State) = max(0, b * (AssetP * Up ^ max(i - nSteps, 0) * Down ^ max(nSteps * 2 - nSteps - i, 0) - Strike));end% Works backwards recursively to determine the price of the optionfor TT = nSteps - 1:-1:0for i = 0:(TT * 2)State = i + 1;Value(State) = (P_up * Value(State + 2) + P_mid * Value(State + 1) + P_down *Value(State)) * Df;endendTrinomial = Value(1)2.隐式差分法matlab程序unction amoption(s0,E,rf,sigma,T,dt,ds,smax) %%%%%%%%%%%%%%%%%%%%%%%%%%%% 隐式法求解美式看跌期权%%%%%%%%%%%%%%%%%%%%%%%%%%% 输入参数说明:% s0 0时刻股价% E 执行价% rf 无风险利率% T 到期日(单位:年)% sigma 股票波动的标准差% smax 股票最大值% ds 股票价格离散步长% dt 时间离散步长%%%%%%%%%%%%%%%%%%%%%%%%%% 初始化% %%%%%%%%%%%%%%%%%%%%%%%%%M=round(smax/ds);N= round(T/dt);ds=smax/M; % 重新确定股票价格步长dt=T/N; % 确定时间的步长%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for j=1:Ma(j)=0.5*rf*j*dt-0.5*sigma^2*j^2*dt;b(j)=1+sigma^2*j^2*dt+rf*dt;c(j)=-0.5*rf*j*dt-0.5*sigma^2*j^2*dt;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%L=zeros(M-1,M-1);L(1,1)=b(1);L(1,2)=c(1); % 边界条件L(M-1,M-2)=a(M-1); L(M-1,M-1)=b(M-1); % 边界条件for j=2:M-2L(j,j-1)=a(j);L(j,j)=b(j);L(j,j+1)=c(j);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for j=1:M-1f(j,N+1)=max(E-j*ds,0);endfor i=N:-1:1F(1)=f(1,i+1)-a(1)*E;F(2:M-1)=f(2:M-1,i+1); % 终值条件f(1:M-1,i)=L^(-1)*F';for j=1:M-1 % 判断是否行权if f(j,i)<E-j*dsf(j,i)=E-j*ds;endendendjdown=floor(s0/ds);jup=ceil(s0/ds);if jdown==jupprice=f(jdown,1)+(s0-jdown*ds)*(f(jup+1,1)-f(jup+1,1))/ds end3. 显式有限差分法matlab %%%%%%%%%%%%%%%%%%%%%%%%%%%%显式差分法求解美式看跌期权%%%%%%%%%%%%%%%%%%%%%%%%%%%% 输入参数说明:% s0 0时刻股价% E 执行价% rf 无风险利率% T 到期日(单位:年)% sigma 股票波动的标准差% smax 股票最大值% ds 股票价格离散步长% dt 时间离散步长%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 初始化%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%s0=50;E=50;rf=0.1;sigma=0.4;T=5/12;dt=T/10;ds=5;smax=100;M=round(smax/ds);N= round(T/dt);ds=smax/M; % 重新确定股票价格步长dt=T/N; % 确定时间的步长%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% veti=1:N;vetj=1:M;a=1/(1+rf*dt)*(-1/2*rf*vetj*dt+0.5*sigma^2*vetj.^2*dt); b=1/(1+rf*dt)*(1-sigma^2*vetj.^2*dt);c=1/(1+rf*dt)*(1/2*rf*vetj*dt+0.5*sigma^2*vetj.^2*dt); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% L=zeros(M-1,M-1);L(1,1)=b(1);L(1,2)=c(1); % 边界条件L(M-1,M-2)=a(M-1); L(M-1,M-1)=b(M-1); % 边界条件for j=2:M-2L(j,j-1)=a(j);L(j,j)=b(j);L(j,j+1)=c(j);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% f1=zeros(M-1,N+1);f1(:,N+1)=max(E-vetj(1:M-1)*ds,0);f0=zeros(M-1,1);f0(1,1)=a(1)*E;for i=N:-1:1f1(:,i)=L*f1(:,i+1)+f0;for j=1:M-1 % 判断是否行权if f1(j,i)<=E-vetj(j)*ds;f1(j,i)=E-vetj(j)*ds;endendendf2(1,1:N+1)=50;f2(2:M,1:N+1)=f1;f2(M+1,1:N+1)=0;jdown=floor(s0/ds);jup=ceil(s0/ds);if jdown==jupprice=f2(jdown+1,1)+(s0-jdown*ds)*(f2(jup+1,1)-f2(jup+1,1))/ds end4. 用C-N有限差分法为美式看跌期权定价matlabfunction price = AmPutCK(S0,K,r,T,sigma,Smax,dS,dt,omega,tol)M = round(Smax/dS); dS = Smax/M; % 建立网格N = round(T/dt); dt = T/N;oldval = zeros(M-1,1); %Gauss-Seidel更新向量newval = zeros(M-1,1);vetS = linspace(0,Smax,M+1)';veti = 0:M; vetj = 0:N;% 建立边界条件payoff = max(K-vetS(2:M),0);pastval = payoff; % values for the last layerboundval = K*exp(-r*dt*(N-vetj)); % 边界值% 建立系数矩阵和式子右边矩阵alpha = 0.25*dt*( sigma^2*(veti.^2) - r*veti );beta = -dt*0.5*( sigma^2*(veti.^2) + r ); gamma = 0.25*dt*( sigma^2*(veti.^2) + r*veti );M2 = diag(alpha(3:M),-1) + diag(1+beta(2:M)) + diag(gamma(2:M-1),1); % 使用SOR方法求解线性方程组aux = zeros(M-1,1);for j=N:-1:1aux(1) = alpha(2) * (boundval(1,j) + boundval(1,j+1));% 建立右端矩阵并进行初始化rhs = M2*pastval(:) + aux;oldval = pastval;error = realmax;while tol < errornewval(1) = max ( payoff(1), ...oldval(1) + omega/(1-beta(2)) * (...rhs(1) - (1-beta(2))*oldval(1) + gamma(2)*oldval(2)));for k=2:M-2newval(k) = max ( payoff(k), ...oldval(k) + omega/(1-beta(k+1)) * (...rhs(k) + alpha(k+1)*newval(k-1) - ...(1-beta(k+1))*oldval(k) + gamma(k+1)*oldval(k+1)));endnewval(M-1) = max( payoff(M-1),...oldval(M-1) + omega/(1-beta(M)) * (...rhs(M-1) + alpha(M)*newval(M-2) - ...(1-beta(M))*oldval(M-1)));error = norm(newval - oldval);oldval = newval;endpastval = newval;endnewval = [boundval(1) ; newval ; 0]; % 加入缺少的值% 返回价格,这个价格可能因为初始资产价格在网格外而由线性插值生成。
运用Matlab基于LSM方法对美式期权定价的新探究

运用Matlab基于LSM方法对美式期权定价的新探究作者:刘海永严红来源:《金融发展研究》2013年第12期摘要:传统期权定价方法是通过主观假定初始价格、执行价格、期限、波动率、无风险利率等条件来对期权进行定价,很少联系实际的期权市场报价对期权进行定价。
本文根据股票期权市场报价,通过Matlab快速方便地求解出隐含的波动率和无风险利率,并在此基础上运用Matlab基于最小二乘蒙特卡洛模拟(LSM)方法对该股票的美式期权进行定价。
本文揭示了如何根据期权市场报价实现隐含波动率和无风险利率的求解,进而结合LSM方法对美式期权进行定价的一种新方法。
此外,本文对LSM方法的改进技术也进行了探讨。
关键词:LSM方法;美式期权定价;隐含波动率;无风险利率中图分类号:F830.91 文献标识码:A 文章编号:1674-2265(2013)12-0020-05一、引言1973年之前,理论上对于期权定价一直找不到令人满意的模型,主要是由于对标的资产价格的变动过程无法用适当的随机过程来描述。
1973年布莱克、斯科尔斯(Black、Scholes)两位学者将标的资产的价格假设为几何布朗运动,并由此获得了欧式看涨、看跌期权的定价模型,从此期权市场在全球范围内得到了快速的发展。
对于欧式期权的定价,可采用树形法,Black-Scholes模型(以下简称B-S模型)、有限差分法、蒙特卡洛模拟法;对于美式期权的定价,树形法、有限差分法也适用,蒙特卡洛模拟方法在欧式衍生产品的定价方面获得了有效应用,但其采用的是正向求解的方法,这就限制了将蒙特卡洛模拟方法运用于具有后向迭代搜索特征的美式期权定价问题。
1993年蒂利(Tilley)提出了美式期权具有提前执行的特征后,使用蒙特卡洛模拟方法为美式衍生产品进行定价的问题才得到初步解决。
巴里康和马蒂诺(Barraquand和Martineau,1995)将资产价格的状态空间加以分隔,得出每一条路径在不同区域间移动的概率,然后使用类似于二叉树模型的方式进行逆推求解。
(定价策略)期权定价中的蒙特卡洛模拟方法最全版

(定价策略)期权定价中的蒙特卡洛模拟方法期权定价中的蒙特卡洛模拟方法期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。
而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。
蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。
蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。
§1.预备知识◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。
大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。
在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov强大数定律:设为独立同分布的随机变量序列,若则有显然,若是由同一总体中得到的抽样,那么由此大数定律可知样本均值当n很大时以概率1收敛于总体均值。
中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。
设为独立同分布的随机变量序列,若则有其等价形式为。
◆Black-Scholes期权定价模型模型的假设条件:1、标的证券的价格遵循几何布朗运动其中,标的资产的价格是时间的函数,为标的资产的瞬时期望收益率,为标的资产的波动率,是维纳过程。
2、证券允许卖空、证券交易连续和证券高度可分。
3、不考虑交易费用或税收等交易成本。
4、在衍生证券的存续期内不支付红利。
5、市场上不存在无风险的套利机会。
6、无风险利率为一个固定的常数。
下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。
首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。
伊藤Ito公式:设,是二元可微函数,若随机过程满足如下的随机微分方程则有根据伊藤公式,当标的资产的运动规律服从假设条件中的几何布朗运动时,期权的价值的微分形式为现在构造无风险资产组合,即有,经整理后得到这个表达式就是表示期权价格变化的Black-Scholes 偏微分方程。
基于MATLAB的金融工程方法与实践第四章 简单期权的离散模型定价

举例:
股票当前价格为100,无风险利率为r=0.05 u=1.2 d=0.9 欧式看涨期权的执行价格K=100 资产组合 买入h股股票 卖出1份期权 期初价值 + h*100 -C 期末价值 股价S=120 + h*120 -20 股价S=90 + h*90 0
投资组合的净价值
h*100-C
关系式:
u 1 d
定价公式中u和d的确定
联立以上四式得:
ue
d e
t
t
e r t d p ud
无风险利率r是时间t的函数
利率的期限结构并不总是在一条水平线上,而是随着时 间的增加不断的上升或者下降,即是时间t的函数r(t) 不会影响股票的二叉树图形的结构
风险中性概率p会随着r(t)的变化而变化
连续复利:
C(i, j ) Max{Su j d i j K , er*it [ p * C(i 1, j 1) (1 p) * C(i1, j ) ]}
美式看跌期权的二叉树定价模型:
复利:
j i j P , ( i , j ) Max{K Su d
1 [p*P ( i 1, j 1) (1 p) * P ( i 1, j ) ]} i (1 r )
该股票对应的期权的二叉树图形
按固定数额支付红利
在支付红利之后二叉树的结构将发生变化 在之后的时期中二叉树不能重叠在一起,使得节点数大大 增加 支付固定红利股票的价格的三时期二叉树图形
按固定数额支付红利
在支付红利之后二叉树的结构将发生变化
按固定数额支付红利
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标的资产到期日价格的直方图
90 80 70 60 50 40 30 20 10 0 10
20
30
40
50
60
70
80
90
100
110
第三步,得到多个期权价格,画出直方图
40 35 30 25 20 15 10 5 0 4.4
4.6
4.8
5
5.2
5.4
5.6
5.8
6
• 得到200个期权价格 • 得到期权价格的直方图及定价区间
• 股票价格为50,亚式看涨期权执行价为50,存续 期为5个月,期权到期现金流是每月均价与执行价 之差,股票收益率的标准差为0.4,无风险利率为 0.1,下面用蒙特卡洛方法估计亚式期权的定价区 间?
蒙特卡洛的优缺点
MCMC方法的优点
• 分布假设更一般,描述市场因素可能变化的统计分 布既可以是正态、对数正态的,也可以是带跳的扩散 分布、t分布等。 • 随机生成风险因素的各种各样的未来假想情景,可在 模型中融合管理层对未来风险水平的理解与预测,考 察更多的假设情况。
1 n limn P{| X k E ( X ) | } 1, 0, n k 1 P{lim n 1 n X k E ( X )} 1, n k 1
辛钦大数定律的Matlab实现
0.6 0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
0
100
200
第七章 基于蒙特卡洛方法的期权定价
Outline
• 蒙特卡洛方法基本原理 • 估计欧式期权的定价区间 • 估计亚式期权的定价区间 • 蒙特卡洛方法的优缺点 • 提高模拟效率的方法
什么是蒙特卡罗模拟?
根据韦氏词典的解释:
Monte Carlo relates to or involves “the use of random sampling techniques and often the use of computer simulation to obtain approximate solutions to mathematical or physical problems especially in terms of a range of values each of which has a calculated probability of being the solution” ——Merriam-Webster, Inc.,1994,P754-755
50 10 40 30 5 0 30
dSt St dt St dW dW z dt z服从标准正态分布 St St t St z t
例
• 设有这样一个股票,其现行的市场价格为50元, 无风险利率为0.1,收益率的标准差为0.4。已知 有一种以该股票为标的资产,执行期限为 T=5/12的看涨期权,执行价格为52元,试用蒙 特卡洛模拟法确定该期权的定价区间?
蒙特卡洛方法的基本原理
•基本思想:抽样试验来计算参数的统计特征,最 后给出求解问题的近似值。
•理论依据:中心极限定理及大数定律为其主要理 论基础
•主要手段:随机抽样 •使用前提:已知随机变量服从的分布或可以化为 已知分布的变量的函数。
抽样分布的基础—辛钦大数定律
• 定理:设 X1 , X 2 ,....Xn .... 是独立同分布的 随机变量序列,有有限的数学期望E(X), 则有
估计亚式期权的定价区间
• 亚式期权是一种路径依赖型期权,它的收益函数依赖于期 权存续期内标的资产的平均价格 • 离散平均价格
1 n A S ti n i 1
• 亚式看涨期权的现金流
1 N max S ti K , 0 , N i 1 T N ; ti i , i 1, 2 N
• 练习
• 股票价格为50,亚式看涨期权执行价为50,存续 期为5个月,期权到期现金流是每月均价与执行价 之差,股票收益率的标准差为0.4,无风险利率为 0.1,下面用蒙特卡洛方法计算亚式期权的价格?
• 注:随机数采用自由度为6的t分布。
提高模拟效率的方法
对偶变量法
对于服从对称分布的随机变量来说,当随机产生一个随机数v 时,可以自动的得到另一个随机数-v,可以得到两个价格p1, p*1。 对价格的模拟可以使用平均P=( p1 + p*1)/2代替
* * var(p1 ) var(p1 ) cov(p1 , p1 ) var(p) 4 4 2
Corr(v,-v)=-1 ,P 1和p*1的相关系数显然小于0.
180 160 140 120 100 80 60 40 20 0
ห้องสมุดไป่ตู้
0
20
40
60
80
100
120
80 70 60
30 25 20 15
中心极限定理的Matlab实现
估计欧式期权的定价区间
基于蒙特卡洛方法的定价区间估计
• 找到刻画标的资产价格运动规律的随机过程,需要 对误差项的分布作出假设 • 得到N个标的资产到期日价格,得到一个期权价格
• 得到多个期权价格,给出定价区间
估计欧式看涨股票期权的定价区间
• 假设标的资产满足几何布朗运动的随机过程,估计 其欧式看涨期权的VaR?
第一步,得到此股票价格的一条路径
75 70
65
60
55
50
• 得到第i-1个节点的价格
0
20
40
60
80
100
120
• 根据价格服从的随机过程,进而得到第i个节点的价格
第二步,得到1个期权价格
120 100
80
60
40
20
0
0
20
40
60
80
100
120
• 得到标的资产的1000个路径 • 得到标的资产到期日1000个价格 • 得到max(P-K,0)的均值的现值——一个期权价格
300
400
500
600
700
800
900
1000
中心极限定理(central limit theorem)
• 定理:设 X1 , X 2 ,....Xn .... 是独立同分布的 随机变量序列,有有限的数学期望和方差
,
2
, 则有
1 n Xk n k 1 lim n P{ x} ( x), / n 1 n 2 X k ~ N ( , ) n k 1 n