控制工程基础第4章 根轨迹法
合集下载
根轨迹法(自动控制原理)ppt课件精选全文完整版

1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法
第四章控制系统的根轨迹分析法

控制系统的根轨迹分析法
根轨迹分析法是一种图解分析法,利用它求解 高阶系统中某一参数对系统性能的影响将非常方便。
§4.1
§4.2 §4.4 §4.3
根轨迹的基本概念及分析方法
绘制根轨迹的基本规则 系统性能的根轨迹分析 参量根轨迹——广义根轨迹
§4.1
根轨迹的基本概念及分析方法
系统开环中某一参数从0→∞时,闭环系统特征 根在 S 平面上的位置也随之变化移动,一个根形成 一条轨迹。 Y R K
6)根轨迹与虚轴的交点 [例]已知系统开环
GH ( s ) Kg s ( s 1)( s 2 )
也可以用劳斯表求交点
交点
s j
-p1
Im
j
Re
求与虚轴交点 [解]已知与虚轴交点处 s j 代入
j ( j 1)( j 2 ) K g 0
j 3
[例]求系统特征方程 的根随开环增益K的 变化在S平面上的位 置变化情况,并分析 K对系统的影响。
s(s 2)
(s)
Y (s) R (s)
K s 2s K
2
[解] 以K为参数求根迹 当K从0→∞ 系统的闭环传递函数 连续变化时, K C(s) 得到无数组 = 特征方程的 R(s) S2+2S+K 根,组成图形
8
jω
p2 600 p 0 1 -1
例 试确定系统分离点。 Kr G(s)H(s)= s(s+1)(s+2) 前例已求得根轨迹的渐近线 解: 和实轴上的根轨迹段 根轨迹的分离点: p3 A(s)B'(s)=A'(s)B(s) 2 -2 (3S +6S+2)=0 s2=-1.57 s1=-0.43 s2没有位于根轨迹上,舍去。
自动控制原理根轨迹法

21
二、根轨迹绘制的基本法则(4)
法则2
根轨迹的分支数和对称性 根轨迹的分支数与开环极点数n相等(n>m),或与开
环有限零点数m相等(n<m)。 根轨迹连续:根轨迹增益是连续变化导致特征根也连
续变化。 实轴对称:特征方程的系数为实数,特征根必为实数
或共轭复数。
22
二、根轨迹绘制的基本法则(5)
法则3
s(s 2.5)( s 0.5 j1.5)( s 0.5 j1.5)
试绘制该系统概略根轨迹。
解:将开环零、极点画在后面图中。按如下典型步骤
1)确定实轴上的根轨迹。本例实轴上区域
和
为轨迹。
0,-1.5
2)确定-根2.轨5,迹-的渐 近线。本例n=4,m=3,故只有
一条 的渐近线。 180
36
K均* 有关。
15
一、 根轨迹法的基本概念(13)
4 -1- 4 根轨迹方程
1、系统闭环特征方程
由闭环传函可得系统闭环特征方程为:
(s)
G(s)
1 G(s)H(s)
1 G(s)H (s) 0
2 、根轨迹方程
当系统有m个开环零点和n个开环极点时,下式称为
根轨迹方程
m
(s z j )
K * j1 n
i 1
j 1
n
n
n
(s si ) sn ( si )sn1 ... (si ) 0
i 1
i 1
i 1
式中,s i 为闭环特征根。
31
二、根轨迹绘制的基本法则(14)
当n m 2 时,特征方程第二项系数与K * 无关,无
论 K * 取何值,开环n个极点之和总是等于闭环特征方程n
第四章控制系统的根轨迹法

9
应掌握的内容
180度,0度根轨迹的绘制 参数根轨迹的绘制 增加开环零、极点对根轨迹和系统性能的影响 分析系统的稳定性 分析系统的瞬态和稳态性能 对于二阶系统(及具有闭环主导共轭复数极点的高阶 系统),根据性能指标的要求在复平面上划出满足这一 要求的闭环极点(或高阶系统主导极点)应在的区域。
10
[例4-1]系统的开环传递函数为:Gk (s)
由根轨迹图可知,当0 k 0.858时,闭环系统有一对
不等的负实数极点,其瞬态响应呈过阻尼状态。当 0.858 k 29.14 时,闭环系统有一对共轭复数极点,其瞬 态响应呈欠阻尼状态。当29.14 k 时,闭环系统又有一 对不等的负实数极点,瞬态响应又呈过阻尼状态。
14
[例4-3]控制系统的结构图如下图所示。试绘制以a为参变 量时的根轨迹。
解得 k 5, 5 由图可知当k 5 时直线OB与圆相切,系统的阻 尼比 1 ,特征根为 5 j5 。
2
13
对于分离点 2.93 ,由幅值条件可知
2.93 5 2.93 k1 10 2.93 0.858
对于会合点17.07 ,有
45
17.07 5 17.0 k2 10 17.07 29.14
论过,利用根轨迹可清楚地看到开环根轨迹增益或其他参 数变化时,闭环系统极点位置及其瞬态性能的改变情况。
利用根轨迹确定系统的有关参数 对于二阶系统(及具有闭环主导共轭复数极点的高阶系 统),通常可根据性能指标的要求在复平面上划出满足 这一要求的闭环极点(或高阶系统主导极点)应在的区 域。如下页图所示,具有实部 和阻尼角 划成的左区域 满足的性能指标为:
17
例4-4(续2)
其分离回合点计算如下:
N(s) s2 3s, N ' (s) 2s 3
应掌握的内容
180度,0度根轨迹的绘制 参数根轨迹的绘制 增加开环零、极点对根轨迹和系统性能的影响 分析系统的稳定性 分析系统的瞬态和稳态性能 对于二阶系统(及具有闭环主导共轭复数极点的高阶 系统),根据性能指标的要求在复平面上划出满足这一 要求的闭环极点(或高阶系统主导极点)应在的区域。
10
[例4-1]系统的开环传递函数为:Gk (s)
由根轨迹图可知,当0 k 0.858时,闭环系统有一对
不等的负实数极点,其瞬态响应呈过阻尼状态。当 0.858 k 29.14 时,闭环系统有一对共轭复数极点,其瞬 态响应呈欠阻尼状态。当29.14 k 时,闭环系统又有一 对不等的负实数极点,瞬态响应又呈过阻尼状态。
14
[例4-3]控制系统的结构图如下图所示。试绘制以a为参变 量时的根轨迹。
解得 k 5, 5 由图可知当k 5 时直线OB与圆相切,系统的阻 尼比 1 ,特征根为 5 j5 。
2
13
对于分离点 2.93 ,由幅值条件可知
2.93 5 2.93 k1 10 2.93 0.858
对于会合点17.07 ,有
45
17.07 5 17.0 k2 10 17.07 29.14
论过,利用根轨迹可清楚地看到开环根轨迹增益或其他参 数变化时,闭环系统极点位置及其瞬态性能的改变情况。
利用根轨迹确定系统的有关参数 对于二阶系统(及具有闭环主导共轭复数极点的高阶系 统),通常可根据性能指标的要求在复平面上划出满足 这一要求的闭环极点(或高阶系统主导极点)应在的区 域。如下页图所示,具有实部 和阻尼角 划成的左区域 满足的性能指标为:
17
例4-4(续2)
其分离回合点计算如下:
N(s) s2 3s, N ' (s) 2s 3
自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
(自动控制)第四章:根轨迹法

动态性能:从根轨迹图可以分析出系统的工作状态,
如过阻尼状态、欠阻尼状态……
根轨迹增益、闭环零极点与开环零极点的关系 l f
* G(s)= KG
∏( s-p ) i i=1
f i i 1 H q
q
∏( s-z ) i i=1
;
l
j=1 * H (s)= KH h
f l m
∏(s-zj )
C(s)
C ( s) 2k 2 R ( s ) S 2 S 2k
特征方程(闭环):
S2+2s+2k=0
k s(0.5s+1)
特征根:s1,2= -1±√1-2k k=0时, s1=0, s2=-2
K:0 ~ ∞
0<k<0.5 时,两个负实根 ;若s1=-0.25, s2=? k=0.5 时,s1=s2=-1 0.5<k<∞时,s1,2=-1±j√2k-1 j
注意:一组根对应同一个K;
K一变,一组根变; K一停,一组根停;
-2
-1
0
由以上分析,s1、s2两条根轨迹反映了系统特征根随参 数k变化的规律,组成了系统的根轨迹。 1.二阶系统有两个特征根,它的根轨迹有两条分支; 一个n阶系统的根轨迹则应有n条分支。 2.k=0时的闭环极点,s1=0、s2=-2正好是开环传递函 数的两个极点,因此说,系统开环极点就是它各条根轨 迹的起点。 3. k=∞时的闭环极点,是根轨迹的终点。 4.特征方程的重根点是根轨迹的分支离开负实轴进入复 数平面的分支点。
a.系统响应单调上升(ξ>1)系统具有两个不相等的负实根┈ 过阻尼响应。 b.系统响应衰减振荡(0<ξ<1)系统具有一对负实部的共 轭复根┈欠阻尼响应。
自动控制原理第四章根轨迹法(管理PPT)

根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。
第四章根轨迹分析法

j=1
i=1 ≠b
例 设系统开环传递函数零、极点的分布如图4-9所
示,试确定根轨迹离开复数共极点- p1 、- p2的出
射角。
解 按公式(4-28),由作图结果得
øb= +180°(2k+1) + - p1+ z1- - p1+ p2-
jw
- p1+ p3- - p1+ p4
S平面
= +180°(2k+1) +45° -90°-135°-26.6°
根轨迹与虚轴相交,意味着闭环特征方程出现 纯虚根。故可在闭环特征方程中令s=jw,然后令 其实部和虚部分别等于0,从中求得交点的坐标 值及其相应的Kg值。 例 设系统的开环传递函数为
Gk(s)=s(s+1K)g(s+2)
试求根轨迹和虚轴的交点,并计算临界根轨迹增 益Kgp。
解 闭环系统的特征方程为 s(s+1)(s+2)+Kg=0
确定根轨迹上某点对应的K*值
例:开环传函 G(s)H(s)= K ,求根轨迹
(s+1)(s+2)
解 1、确定极点、零点
开环 –p1= -1, –p2= -2
无零点
1、相角条件
∠(s+zi)- ∠(s+pj) = 0-[∠(s+1)+ ∠(s+2)] =±180o(2k+1)
试差法 s= -1.5
∠θ1+ ∠θ2=180 o
故 D’(s)=3s2+6s+2
N’(s)=0
解得 s1=-0.423 s2=-1.577
由于s2不在根轨迹上,因而分离点是s1 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 3, m 0, 故三条根轨迹趋向处。
渐进线与实轴交点的坐标为
[S]
a
0
1
3
2
0
1
渐进线与实轴正向的夹角为
a -2 -1 0
a
2k
1180
3
60 , 180
六、根轨迹的起始角与终止角
起始角:起始于开环极点的根轨迹在起点 处的切线与水平线正方向的夹角。
终止角:终止于开环零点的根轨迹在终点 处的切线与水平线正方向的夹角。
s4
2
1
s3 -2 s20 s1
s3 180 , s3 2 180 s4 1, s4 2 2
若s4位于根轨迹上,则必满足
幅角条件,即1 2 180,
N
s4一定在 2,0的中垂线MN上。
利用幅值条件可算出各根轨迹上的 K 值。
例
Gs
K
s0.5s 1
2K
ss 2
K
ss 2
终止于 zb 的根轨迹在终点处
的切线与水平正方向的夹角
j 1
i 1
ib
其它零点到 zb 的向量夹角
七、分离点的坐标
几条根轨迹在[S]平面上相遇后又分开的点, 称为根轨迹的分离点(或会合点)。
分离点坐标的求法:
1 d (G(s)H (s)) 0
ds
2 由根轨迹方程
令:dK 0 解出s ds
n
1 180 p1 z p1 p2
180 116.57 90
206.57
由于对称性
2 206.57
会合点 -3
206.57
p1
[S]
z116.57
2.12
-2 -1 0
p2
八、实轴上的分离点的分离角恒为 90 实轴上的会合点的会合角恒为 90
会合时,根轨迹 切线的倾角
辅助方程: 3s2 K 0 解得: s j1.414
例 单位反馈系统
Gs
ss
K s
3s2
2
2s
2
画根轨迹
解:
1化成标准传递函数,求零、极点
p1 0, p2 3, p3.4 1 j
[S]
z1 2
p3
p2 z1
p1
-3 -2 -1 0
p4
2实轴上的根轨迹
3渐进线条数 n m 3
m
n
zi pj 180 2k 1
i 1
j 1
m
n
s1 zi s1 p j 180 2k 1
i 1
j 1
s1 p1
m
p1
zi
1
n
p1 p j
180
2k
1
i 1
j2
m
n
1 180 2k 1 p1 zi p1 pj
i 1
j2
m
a
3
1
j
3
1
j
2
1
a 60 ,180
[S]
p3
p2 z1
p1
-3 -2 -1 0
4实轴上无分离会合点 p4
5求p3的出射角
3 180 p3 z1
p3 p1 p3 p2 p3 p4
180 1 1 2 3
180 45 135 26.6 90
s2 1.577
是根轨迹上的点,故为分离点 不是根轨迹上的点, 舍去
例2 已知系统开环传递函数
GsH s
K s 1
s2 3s 3.25
画出系统闭环根轨迹
解:1 求开环极点
s2 3s 3.25 0
p1 1.5 j
p2 1.5 j
-3
(2) 实轴上的根轨迹
p1
z
-2 -1
p2
特征方程的根,当K 由0 ~ 变化时,这些点所
构成的轨迹即根轨迹。
下面利用幅角、幅值条件画根轨迹
例
Gs
K
s0.5s 1
2K
ss 2
K
ss 2
幅角条件: s s 2 180 2k 1
试 探 法 确 定 满 足 上 式 的s点
M
s1 0 , s1 2 0
[S]
s2 180 , s2 2 0
3渐进线
n 3, m 0,故三条根轨迹趋向处。
a
0
1
3
2
0
1
a
2 k
1180
3
60 , 180
4根轨迹与虚轴的交点
Ds ss 1s 2 K 0
[S]
a 0.433
-2 -1 0
即:s3 3s2 2s K 0
s3 3s2 2s K 0
令:s j
[S]
j 3 3 j 2 2 j K 0
由此求得根轨迹的终点为:z1 , z2 , zm
但当n m时,只有m条根轨迹趋向于开环
零点,另外n m条根轨迹趋向于何处呢?
n m,且K
s z1 s s p1 s
z2 s zm p2 s pn
1 K
0
只有当s 时,上式可写为:
sm sn 0
即
1 snm
0
s
当 K 时,有n m条根轨迹趋于无穷远处。
3 2 K 0
3
2
0
-2
2 1.414
K 6
a 0.433 -1 0
解 得 : 2.3
1 0
1.414
K 0 K 6
K 3
3 1.414
K 6
或用劳斯判据
Ds s3 3s2 2s K 0
s3 1
2
s2 3
K
s1 6 K 3
s0 K
稳定范围:0 K 6 临界稳定: K 6
[S] 0
3 求分离点:
根轨迹方程:
s2
K
s 1
3s 3.25
1
K s2 3s 3.25 s1
dK 2s 3s 1 s2 3s 3.25
ds
s 12
0
有:s2 2s 0.25 0
解得:s1 2.12 是根轨迹的分离点会合点 s2 0.12 舍去
4 出射角:
[S]
n4 m2 nm 2 有2条根轨迹终止于处
证明:
s s
z1 p1
s s
z2 s zm p2 s pn
1 K
当K 0时,即有
s p1 s p2 s pn 0
由此求得根轨迹的起点为:p1 , p2 , pn
当K 时,即有
s z1 s z2 s zm 0
26.6
4 26.6
[S]
p3
3
p2 z1
p1
-3 -2 -1 0
p4
4
6求根轨迹与虚轴交点
ss 3 s2 2s 2 K s 2 0
Gs
ss
K s
3s2
2
2s
2
s4 5s3 8s2 6 K s 2K 0
令s j,代入特征方程
4 j5 3 8 2 6 K j 2K 0
Apj s pj
pj s pj
i 1,2,m j 1,2,n
因此有:幅角条件
m
n
zi pj 180 2k 1
i 1
j 1
k 0,1,2,
m
Azi
幅值条件
K
i 1 n
1
Apj
j 1
可见,幅角条件与K 无关;
而幅值条件与K 有关,且K 由0 ~ 。
因 此 , 复 平 面[ S ]上 所 有 满 足 幅 角 条 件 的点 都 是
性能分析:
0 K 7,系统稳定;
1.
K 7,系统临界稳定;
K 7,系统不稳定;
由于 GsH s 1 是复数向量。
两个向量相等的条件是幅角、幅值分别相等。 因此得到:
幅角条件: GsH s 180 2k 1 k 0,1,2 幅值条件: GsH s 1
其中
GsH s
K s z1 s z2 s zm s p1 s p2 s pn
式中 p1、p2 pn为系统的n个开环极点
如:s 1 j点
K
1
M
s s2
K 1s
[S]
K s s2
1 j 1 j 2
-2
0
1 j 1 j 2 2 2
K
N
K 1 2
4.2 绘制根轨迹的基本法则
一、根轨迹的分支数 根轨迹在[S]平面上的分支数=
闭环特征方程的阶数n
这是因为n阶特征方程对应n个特征
根,当开环增益K由0 ~ 变化时,这
进线决定。
渐进线与实轴交点的坐标为:
n
m
pj zi
a
j1
i 1
nm
渐进线与实轴正向的夹角为:
a
2k 1
nm
极点之和减去 零点之和。
k依 次 取0, 1, 2,一 直
到 获得n m个 倾角 为 止。
例1、某单位反馈系统的开环K
1s
2
开环有三个极点 p1 0, p2 1, p3 2 开环无零点
2
1
m
1
j1 d p j i1 d zi
解出d
例1、某单位反馈系统的开环传递函数为
ss
K
1s
2
Gs
1
ss
K
1s
2
[S]
K ss 1s 2
dK d ss 1s 2 0
ds ds
s 1s 2 ss 2 ss 1 0
a
-2 -1 s10
3s2 6s 2 0 解得:s1 0.423
-3
p1