多元线性回归分析案例

合集下载

多元线性回归分析范例

多元线性回归分析范例

多元线性回归分析范例多元线性回归是一种用于预测因变量和多个自变量之间关系的统计分析方法。

它假设因变量与自变量之间存在线性关系,并通过拟合一个多元线性模型来估计因变量的值。

在本文中,我们将使用一个实际的数据集来进行多元线性回归分析的范例。

数据集介绍:我们选取的数据集是一份汽车销售数据,包括了汽车的价格(因变量)和多个与汽车相关的特征(自变量),如车龄、行驶里程、汽车品牌等。

我们的目标是通过这些特征来预测汽车的价格。

数据集包括了100个样本。

数据集的构成如下:车龄(年),行驶里程(万公里),品牌,价格(万元)----------------------------------------5,10,A,153,5,B,207,12,C,10...,...,...,...建立多元线性回归模型:我们首先需要将数据集划分为自变量矩阵X和因变量向量y。

其中,自变量矩阵X包括了车龄、行驶里程和品牌等特征,因变量向量y包括了价格。

在Python中,我们可以使用NumPy和Pandas库来处理和分析数据。

我们可以使用Pandas的DataFrame来存储数据集,并使用NumPy的polyfit函数来拟合多元线性模型。

首先,我们导入所需的库并读取数据集:```pythonimport pandas as pdimport numpy as np#读取数据集data = pd.read_csv('car_sales.csv')```然后,我们将数据集划分为自变量矩阵X和因变量向量y:```python#划分自变量矩阵X和因变量向量yX = data[['车龄', '行驶里程', '品牌']]y = data['价格']```接下来,我们使用polyfit函数来拟合多元线性模型。

我们将自变量矩阵X和因变量向量y作为输入,并指定多项式的次数(线性模型的次数为1):```python#拟合多元线性模型coefficients = np.polyfit(X, y, deg=1)```最后,我们可以使用拟合得到的模型参数来预测新的样本。

第三章多元线性回归模型案例

第三章多元线性回归模型案例

第三章多元线性回归模型案例第三章多元线性回归模型案例⼀、邹式检验(突变点检验、稳定性检验) 1.突变点检验1985—2002年中国家⽤汽车拥有量(t y ,万辆)与城镇居民家庭⼈均可⽀配收⼊(t x ,元),数据见表3.1。

表3.1 中国家⽤汽车拥有量(t y )与城镇居民家庭⼈均可⽀配收⼊(t x )数据年份 t y (万辆)t x (元)年份 t y (万辆)t x (元)1985 28.49 739.1 1994 205.42 3496.2 1986 34.71 899.6 1995 249.96 4283 1987 42.29 1002.2 1996 289.67 4838.9 1988 60.42 1181.4 1997 358.36 5160.3 1989 73.12 1375.7 1998 423.65 5425.1 1990 81.62 1510.2 1999 533.88 5854 1991 96.04 1700.6 2000 625.33 6280 1992 118.2 2026.6 2001 770.78 6859.6 1993155.772577.42002968.987702.8下图是关于t y 和t x 的散点图:从上图可以看出,1996年是⼀个突变点,当城镇居民家庭⼈均可⽀配收⼊突破4838.9元之后,城镇居民家庭购买家⽤汽车的能⼒⼤⼤提⾼。

现在⽤邹突变点检验法检验1996年是不是⼀个突变点。

H 0:两个⼦样本(1985—1995年,1996—2002年)相对应的模型回归参数相等 H 1:备择假设是两个⼦样本对应的回归参数不等。

在1985—2002年样本范围内做回归。

在回归结果中作如下步骤:输⼊突变点:得到如下验证结果:由相伴概率可以知道,拒绝原假设,即两个样本(1985—1995年,1996—2002年)的回归参数不相等。

所以,1996年是突变点。

2.稳定性检验以表3.1为例,在⽤1985—1999年数据建⽴的模型基础上,检验当把2000—2002年数据加⼊样本后,模型的回归参数时候出现显著性变化。

多元线性回归分析的实例研究

多元线性回归分析的实例研究

多元线性回归分析的实例研究多元线性回归是一种经典的统计方法,用于研究多个自变量对一个因变量的影响关系。

在实际应用中,多元线性回归分析可以帮助我们理解多个因素对一些现象的综合影响,并通过构建模型来进行预测和决策。

本文将以一个假想的房价分析为例,详细介绍多元线性回归分析的步骤、数据解释以及结果分析。

假设我们想要研究一个城市的房价与面积、房龄和地理位置之间的关系。

我们收集了100个房源的数据,包括房价(因变量)、面积(自变量1)、房龄(自变量2)和地理位置(自变量3)。

下面是我们的数据:序号,房价(万元),面积(平方米),房龄(年),地理位置(距市中心距离,公里)----,------------,--------------,----------,--------------------------------1,150,120,5,22,200,150,8,63,100,80,2,104,180,130,10,55,220,160,12,3...,...,...,...,...100,250,180,15,1首先,我们需要对数据进行描述性统计分析。

通过计算平均值、标准差、最小值、最大值等统计量,可以初步了解数据的分布和变异程度。

然后,我们需要进行回归模型的拟合。

回归模型可以表示为:房价=β0+β1*面积+β2*房龄+β3*地理位置+ε其中,β0、β1、β2、β3是待估计的回归系数,ε是模型的误差项。

回归系数表示自变量对因变量的影响大小和方向。

为了估计回归系数,我们可以使用最小二乘法。

最小二乘法通过找到一组回归系数,使得实际观测值与模型预测值之间的平方误差最小化。

在本例中,我们可以使用统计软件进行回归模型的拟合和参数估计。

假设我们得到的回归模型如下:房价=100+1.5*面积-5*房龄+10*地理位置接着,我们需要对回归模型进行评价和解释。

首先,我们可以计算回归模型的决定系数(R^2),它表示因变量的变异中能够被模型解释的比例。

多元线性回归模型案例(DOC)

多元线性回归模型案例(DOC)

多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。

此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。

影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。

(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。

二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。

暂不考虑文化程度及人口分布的影响。

从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。

在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。

其中已有变量:“c ”—截距项 “resid ”—剩余项。

多元线性回归模型案例

多元线性回归模型案例

多元线性回归模型案例多元线性回归是统计学中常用的一种回归分析方法,它可以用来研究多个自变量与因变量之间的关系。

在实际应用中,多元线性回归模型可以帮助我们理解不同自变量对因变量的影响程度,从而进行预测和决策。

下面,我们将通过一个实际案例来介绍多元线性回归模型的应用。

案例背景:某电商公司希望了解其产品销售额与广告投入、季节因素和竞争对手销售额之间的关系,以便更好地制定营销策略和预测销售额。

数据收集:为了分析这一问题,我们收集了一段时间内的产品销售额、广告投入、季节因素和竞争对手销售额的数据。

这些数据将作为我们多元线性回归模型的输入变量。

模型建立:我们将建立一个多元线性回归模型,以产品销售额作为因变量,广告投入、季节因素和竞争对手销售额作为自变量。

通过对数据进行拟合和参数估计,我们可以得到一个多元线性回归方程,从而揭示不同自变量对产品销售额的影响。

模型分析:通过对模型的分析,我们可以得出以下结论:1. 广告投入对产品销售额有显著影响,广告投入越大,产品销售额越高。

2. 季节因素也对产品销售额有一定影响,不同季节的销售额存在差异。

3. 竞争对手销售额对产品销售额也有一定影响,竞争对手销售额越大,产品销售额越低。

模型预测:基于建立的多元线性回归模型,我们可以进行产品销售额的预测。

通过输入不同的广告投入、季节因素和竞争对手销售额,我们可以预测出相应的产品销售额,从而为公司的营销决策提供参考。

结论:通过以上分析,我们可以得出多元线性回归模型在分析产品销售额与广告投入、季节因素和竞争对手销售额之间关系时的应用。

这种模型不仅可以帮助我们理解不同因素对产品销售额的影响,还可以进行销售额的预测,为公司的决策提供支持。

总结:多元线性回归模型在实际应用中具有重要意义,它可以帮助我们理解复杂的变量关系,并进行有效的预测和决策。

在使用多元线性回归模型时,我们需要注意数据的选择和模型的建立,以确保模型的准确性和可靠性。

通过以上案例,我们对多元线性回归模型的应用有了更深入的理解,希望这对您有所帮助。

多元线性回归分析案例

多元线性回归分析案例

多元线性回归分析案例1. 引言多元线性回归分析是一种用于探究多个自变量与一个连续型因变量之间关系的统计分析方法。

本文将以一个虚构的案例来介绍多元线性回归分析的应用。

2. 背景假设我们是一家电子产品制造公司,我们想了解哪些因素会对产品销售额产生影响。

为了解决这个问题,我们收集了一些数据,包括产品的价格、广告费用、竞争对手的产品价格和销售额。

3. 数据收集我们采集了100个不同产品的数据,其中包括以下变量:- 产品价格(自变量1)- 广告费用(自变量2)- 竞争对手的产品价格(自变量3)- 销售额(因变量)4. 数据分析为了进行多元线性回归分析,我们首先需要对数据进行预处理。

我们检查了数据的缺失情况和异常值,并进行了相应的处理。

接下来,我们使用多元线性回归模型来分析数据。

模型的方程可以表示为:销售额= β0 + β1 × 产品价格+ β2 × 广告费用+ β3 × 竞争对手的产品价格+ ε其中,β0、β1、β2、β3是回归系数,ε是误差项。

5. 结果解释我们使用统计软件进行回归分析,并得到了以下结果:- 回归系数的估计值:β0 = 1000, β1 = 10, β2 = 20, β3 = -5- 拟合优度:R² = 0.8根据回归系数的估计值,我们可以解释模型的结果:- β0表示当产品价格、广告费用和竞争对手的产品价格都为0时,销售额的估计值为1000。

- β1表示产品价格每增加1单位,销售额平均增加10单位。

- β2表示广告费用每增加1单位,销售额平均增加20单位。

- β3表示竞争对手的产品价格每增加1单位,销售额平均减少5单位。

拟合优度R²的值为0.8,说明模型可以解释销售额的80%变异程度。

这意味着模型对数据的拟合程度较好。

6. 结论根据我们的多元线性回归分析结果,我们可以得出以下结论:- 产品价格、广告费用和竞争对手的产品价格对销售额有显著影响。

商务统计学课件-多元线性回归分析实例应用

商务统计学课件-多元线性回归分析实例应用

6.80
13.65
14.25
27
8.27
6.50
13.70
13.65
28
7.67
5.75
13.75
13.75
29
7.93
5.80
13.80
13.85
30
9.26
6.80
13.70
14.25
销售周期
1
销售价格/元
其他公司平均销售价格
/元
多元线性回归分析应用
多元线性回归分析应用

Y 表示牙膏销售量,X 1 表示广告费用,X 2表示销售价格, X 3
个自变量之间的线性相关程度很高,回归方程的拟合效果较好。
一元线性回归分析应用

广告费用的回归系数检验 t1 3.981 ,对应的 P 0.000491 0.05
销售价格的回归系数检验 t2 3.696 ,对应的 P 0.001028 0.05
其它公司平均销售价格的回归系数检验

14
1551.3
125.0
45.8
29.1
15
1601.2
137.8
51.7
24.6
16
2311.7
175.6
67.2
27.5
17
2126.7
155.2
65.0
26.5
18
2256.5
174.3
65.4
26.8
万元
表示其他公司平均销售价格。建立销售额的样本线性回归方程如
下:
Yˆi 15.044 0.501X 1i 2.358 X 2i 1.612 X 3i
一元线性回归分析应用

多元线性回归分析案例

多元线性回归分析案例

多元线性回归分析案例多元线性回归分析是统计学中常用的一种分析方法,它可以用来研究多个自变量对因变量的影响,并建立相应的数学模型。

在实际应用中,多元线性回归分析可以帮助我们理解变量之间的关系,预测未来的趋势,以及制定相应的决策。

本文将通过一个实际案例来介绍多元线性回归分析的基本原理和应用方法。

案例背景。

假设我们是一家电子产品制造公司的市场营销团队,我们想要了解产品销量与广告投入、产品定价和市场规模之间的关系。

我们收集了过去一年的数据,包括每个月的产品销量(千台)、广告投入(万元)、产品定价(元/台)和市场规模(亿人)。

数据分析。

首先,我们需要对数据进行描述性统计分析,以了解各变量的分布情况和相关性。

我们计算了产品销量、广告投入、产品定价和市场规模的均值、标准差、最大最小值等统计量,并绘制了相关性矩阵图。

通过分析发现,产品销量与广告投入、产品定价和市场规模之间存在一定的相关性,但具体的关系还需要通过多元线性回归分析来验证。

多元线性回归模型。

我们建立了如下的多元线性回归模型:\[Sales = \beta_0 + \beta_1 \times Advertising + \beta_2 \times Price + \beta_3 \times MarketSize + \varepsilon\]其中,Sales表示产品销量,Advertising表示广告投入,Price表示产品定价,MarketSize表示市场规模,\(\beta_0, \beta_1, \beta_2, \beta_3\)分别为回归系数,\(\varepsilon\)为误差项。

模型验证。

我们利用最小二乘法对模型进行参数估计,并进行了显著性检验和回归诊断。

结果表明,广告投入、产品定价和市场规模对产品销量的影响是显著的,模型的拟合效果较好。

同时,我们还对模型进行了预测能力的验证,结果表明模型对未来产品销量的预测具有一定的准确性。

决策建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS19.0实战之多元线性回归分析
(2011-12-09 12:19:11)
转载▼
分类:软件介绍
标签:
文化
线性回归数据(全国各地区能源消耗量与产量)来源,可点击协会博客数据挖掘栏:国泰安数据服务中心的经济研究数据库。

1.1 数据预处理
数据预处理包括的内容非常广泛,包括数据清理和描述性数据汇总,数据集成和变换,数据归约,数据离散化等。

本次实习主要涉及的数据预处理只包括数据清理和描述性数据汇总。

一般意义的数据预处理包括缺失值填写和噪声数据的处理。

于此我们只对数据做缺失值填充,但是依然将其统称数据清理。

1.1.1 数据导入与定义
单击“打开数据文档”,将xls格式的全国各地区能源消耗量与产量的数据导入SPSS中,如图1-1所示。

图1-1 导入数据
导入过程中,各个字段的值都被转化为字符串型(String),我们需要手动将相应的字段转回数值型。

单击菜单栏的“ ”-->“ ”将所选的变量改为数值型。

如图1-2所示:
图1-2 定义变量数据类型
1.1.2 数据清理
数据清理包括缺失值的填写和还需要使用SPSS分析工具来检查各个变量的数据完整性。

单击“ ”-->“ ”,将检查所输入的数据的缺失值个数以及百分比等。

如图1-3所示:
图1-3缺失值分析
表1-1 能源消耗量与产量数据缺失值分析
SPSS提供了填充缺失值的工具,点击菜单栏“ ”-->“ ”,即可以使用软件提供的几种填充缺失值工具,包括序列均值,临近点中值,临近点中位数等。

结合本次实习数据的具体情况,我们不使用SPSS软件提供的替换缺失值工具,主要是手动将缺失值用零值来代替。

1.1.3 描述性数据汇总
描述性数据汇总技术用来获得数据的典型性质,我们关心数据的中心趋势和离中趋势,根据这些统计值,可以初步得到数据的噪声和离群点。

中心趋势的量度值包括:均值(mean),中位数(median),众数(mode)等。

离中趋势量度包括四分位数(quartiles),方差(variance)等。

SPSS提供了详尽的数据描述工具,单击菜单栏的“ ”-->“ ”-->“ ”,将弹出如图2-4所示的对话框,我们将所有变量都选取到,然后在选项中勾选上所希望描述的数据特征,包括均值,标准差,方差,最大最小值等。

由于本次数据的单位不尽相同,我们需要将数据标准化,同时勾选上“将标准化得分另存为变量”。

图1-4 描述性数据汇总
得到如表1-2所示的描述性数据汇总。

表1-2 描述性数据汇总
标准化后得到的数据值,以下的回归分析将使用标准化数据。

如图1-5所示:
图1-5 数据标准化
我们还可以通过描述性分析中的“ ”来得到各个变量的众数,均值等,还可以根据这些量绘制直方图。

我们选取个别变量(能源消费总量)的直方图,可以看到我们因变量基本符合正态分布。

如图1-6所示:
图1-6能源消费总量
1.2 回归分析
我们本次实验主要考察地区能源消费总额(因变量)与煤炭消费量、焦炭消费量、原油消费量、原煤产量、焦炭产量、原油产量之间的关系。

以下的回归分析所涉及只包括以上几个变量,并使用标准化之后的数据。

1.2.1 参数设置
1. 单击菜单栏“ ”-->“ ”-->“ ”,将弹出如图1-7所示的对话框,将通过选择因变量和自变量来构建线性回归模型。

因变量:标准化能源消费总额;自变量:标准化煤炭消费量、标准化焦炭消费量、标准化原油消费量、标准化原煤产量、标准化焦炭产量、标准化原油产量。

自变量方法选择:进入,个案标签使用地名,不使用权重最小二乘法回归分析—即WLS权重为空。

图1-7选择线性回归变量还需要设置统计量的参数,我们选择回归系数中的“ ”和其他项中的“ ”。

选中估计可输出回归系数B及其标准误,t值和p值,还有标准化的回归系数beta。

选中模型拟合度复选框:模型拟合过程中进入、退出的变量的列表,以及一些有关拟合优度的检验:R,R2和调整的R2, 标准误及方差分析表。

如图1-8所示:
图1-8 设置回归分析统计量
3.在设置绘制选项的时候,我们选择绘制标准化残差图,其中的正态概率图是rankit图。

同时还需要画出残差图,Y轴选择:ZRESID,X轴选择: ZPRED。

如图1-9所示:
图1-9 设置绘制
左上框中各项的意义分别为:
·“DEPENDNT”因变量
·“ZPRED”标准化预测值
·“ZRESID”标准化残差
·“DRESID”删除残差
·“ADJPRED”调节预测值
·“SRESID”学生化残差
·“SDRESID”学生化删除残差
4. 许多时候我们需要将回归分析的结果存储起来,然后用得到的残差、预测值等做进一步的分析,“保存”按钮就是用来存储中间结果的。

可以存储的有:预测值系列、残差系列、距离(Distances)系列、预测值可信区间系列、波动统计量系列。

本次实验暂时不保存任何项。

5. 设置回归分析的一些选项,有:步进方法标准单选钮组:设置纳入和排除标准,可按P 值或F值来设置。

在等式中包含常量复选框:用于决定是否在模型中包括常数项,默认选中。

如图1-10所示:
图1-10 设置选项
1.2.2 结果输出与分析
在以上选项设置完毕之后点击确定,SPSS将输出一系列的回归分析结果。

我们来逐一贴出和分析,并根据它得到最后的回归方程以及验证回归模型。

enter(进入)
表1-3 输入的变量
表1-4所示是模型汇总,R称为多元相关系数,R方(R2)代表着模型的拟合度。

我们可以看到该模型是拟合优度良好。

模型汇总
表1-5 离散分析
4.表1-6所示的是回归方程的系数,根据这些系数我们能够得到完整的多元回归方程。

观测以下的回归值,都是具有统计学意义的。

因而,得到的多元线性回归方程:Y=0.008+1.061x1+0.087 x2+0.157 x3-0.365 x4-0.105 x5-0.017x6
(x1为煤炭消费量,x2为焦炭消费量,x3为原油消费量,x4为原煤产量,x5为原炭产量,x6为原油产量,Y是能源消费总量)
结论:能量消费总量由主要与煤炭消费总量所影响,成正相关;与原煤产量成一定的反比。

表1-6回归方程系数
5.模型的适合性检验,主要是残差分析。

残差图是散点图,如图1-11所示:
图1-11残差图
可以看出各散点随机分布在e=0为中心的横带中,证明了该模型是适合的。

同时我们也发现了两个异常点,就是广东省和四川省,这种离群点是值得进一步研究的。

还有一种残差正态概率图(rankit图)可以直观地判断残差是否符合正态分布。

如图1-12所示:
图1-12 rankit(P-P)图它的直方图如图1-13所示:
图1-13 rankit(直方)图。

相关文档
最新文档