地理信息系统概论第二章地理信息系统的数据结构.
地理信息系统的数据结构

地理信息系统的数据结构在当今数字化的时代,地理信息系统(GIS)已经成为了处理和分析地理空间数据的重要工具。
而地理信息系统能够高效运行和发挥作用,离不开其背后强大的数据结构支持。
首先,我们来了解一下什么是地理信息系统的数据结构。
简单来说,数据结构就是数据的组织方式,它决定了数据如何存储、管理和访问。
对于地理信息系统而言,由于其处理的数据具有空间特性,比如位置、形状、大小等,因此数据结构的设计就显得尤为关键。
在地理信息系统中,常见的数据结构有矢量数据结构和栅格数据结构。
矢量数据结构就像是在纸上用线条勾勒出地理对象的轮廓。
它通过点、线、面等几何元素来精确地表示地理实体的位置和形状。
比如,一条河流可以用一系列的点连接成线来表示,一个湖泊可以用一个封闭的多边形来表示。
这种数据结构的优点是精度高、数据量小,并且能够方便地进行几何操作和拓扑分析。
比如,我们可以很容易地计算两个多边形的交集、并集等。
栅格数据结构则像是把地理空间划分成一个个均匀的小格子,然后给每个格子赋予一个值来表示相应的地理信息。
比如,在表示土地利用类型时,每个格子可以表示为森林、农田、城市等。
栅格数据结构的优点是处理简单、易于与遥感影像等数据结合,但其精度相对较低,数据量较大。
除了这两种主要的数据结构,还有一种叫做拓扑数据结构。
拓扑关系是指地理对象之间的空间关系,比如相邻、包含、连接等。
通过建立拓扑数据结构,可以更有效地进行空间查询和分析,比如判断一个点是否在一个多边形内,查找相邻的多边形等。
在实际应用中,选择合适的数据结构取决于具体的需求和数据特点。
如果需要高精度的地理数据表示和复杂的几何分析,矢量数据结构可能更合适;如果需要快速处理大面积的地理数据,并且对精度要求不是特别高,栅格数据结构可能更有优势。
另外,还有一种叫做不规则三角网(TIN)的数据结构。
它是通过将一系列不规则分布的点连接成三角形来逼近地理表面。
TIN 数据结构能够很好地表示地形等连续变化的地理现象,并且在计算坡度、坡向等方面具有优势。
地理信息系统数据结构讲义

地理信息系统数据结构讲义地理信息系统(GIS)作为一种强大的工具,在众多领域都发挥着重要作用,如城市规划、资源管理、环境保护等。
而数据结构是地理信息系统的核心组成部分,它决定了数据的组织、存储和管理方式,直接影响着系统的性能和效率。
一、地理信息系统概述地理信息系统是一种用于采集、存储、管理、分析和展示地理空间数据的技术系统。
它将地理空间数据与属性数据相结合,通过计算机软件和硬件的支持,为用户提供各种地理信息服务。
地理信息系统中的数据具有空间特征和属性特征。
空间特征包括地理位置、形状、大小等,属性特征则包括土地利用类型、人口数量、植被覆盖度等。
这些数据的有效管理和利用依赖于合理的数据结构设计。
二、地理信息系统数据结构的类型1、矢量数据结构矢量数据结构通过点、线、面等几何对象来表示地理实体。
点由一对坐标(x, y)表示,线由一系列有序的点连接而成,面则是由闭合的线围成。
矢量数据结构具有精度高、数据量小、便于进行几何分析等优点,但在表示复杂的地理现象时可能会比较繁琐。
例如,在表示一条河流时,可以用一系列的线段来近似表示其形状。
对于一个城市的边界,可以用一个闭合的多边形来表示。
2、栅格数据结构栅格数据结构将地理空间划分为规则的网格单元,每个单元用一个数值来表示其属性。
栅格数据结构简单直观,便于进行空间分析和图像处理,但数据量较大,精度相对较低。
比如,在表示地形起伏时,可以用不同灰度值的栅格单元来表示不同的高程值。
在分析土地利用类型时,可以用不同的数值来代表不同的土地利用类型。
3、矢量栅格一体化数据结构为了结合矢量数据结构和栅格数据结构的优点,出现了矢量栅格一体化数据结构。
这种数据结构在同一系统中同时使用矢量和栅格两种数据表示方式,根据具体的应用需求灵活选择。
例如,在进行大范围的空间分析时,可以使用栅格数据结构;而在进行精确的几何计算时,则使用矢量数据结构。
三、地理信息系统数据结构的存储方式1、文件存储将地理数据以文件的形式存储在计算机的磁盘上。
地理信息系统题库及答案详解

地理信息系统题库及答案详解一、名词解释第一章导论1.数据:数据是通过数字化或记录下来可以被鉴别的符号,不仅数字是数据,而且文字、符号和图像也是数据,数据本身并没有意义。
2.信息:是用数字、文字、符号、语言等介质来表示事件、事物、现象等的内容、数量或特征,以便向人们(或系统)提供善于现实世界新的事实的知识,作为生产、建设、经营、管理、分析和决策的依据。
3.数据处理:是指对数据进行收集、筛选、排序、归并、转换、存储、检索、计算,以及分析、模拟和预测等等操作。
第二章地理信息系统的数据结构4.矢量数据:是面向地物的结构,即对于每一个具体的目标都直接赋有位置和属性信息以及目标之间的拓朴关系说明。
但在空间表达方面没有直接建立位置与地物的关系。
5.栅格数据:是面向位置的结构,平面上的任何一点都直接联系到某一个或某一类地物。
但对于某一具体的目标,没有直接聚集所有信息,只能通过遍历栅格矩阵逐一寻找,它也不能完整地建立地物之间的拓朴关系。
6.空间数据(或地理数据):是指地理实体或现象的空间特征数据和属性特征数据的总称。
7.TIN数据结构:表示和存储曲面要素的基本要求是必须便于连续现象在任一点的内插计算,经常采用不规则三角网(Triangulated Irregular Network)来拟合连续分布现象的覆盖表面,称为TIN数据结构。
第三章空间数据处理8.数据变换:是指数据从一种数学状态到另一种数学状态的变换,包括几何纠正和地图投影转换等等,以实现空间数据的几何配准。
9.数据重构:指数据从一种格式到另一种格式的转换,包括数据转换、格式转换、类型替换等等,以实现空间数据在结构、格式和类型上的统一,多源和异构数据的联接和融合。
10.数据提取:是指对数据进行某种条件的取舍,包括类型提取、窗口提取、空间内插等,以适应不同用户对数据的特定要求。
11.投影转换:投影转换是指当系统使用来自不同地图投影的图形数据时,需要将该投影的数据转换为所需要投影的坐标数据;12.空间数据的内插:通过已知点或多边形分区的数据,推求任意点或多边形分区的数据,推求任意点或多边形分区数据的方法就称为空间数据的内插。
地理信息系统概论课后习题答案黄杏元马劲松编著`

地理信息系统概论课后习题答案第一章导论1、什么是地理信息系统(GIS)?它与一般计算机应用系统有哪些异同点?答:地理信息系统:是由计算机硬件、软件和不同的方法组成的系统,该系统设计支持空间数据的采集、管理、处理、分析、建模和显示,以便解决复杂的规划和管理问题。
GIS脱胎于地图学,是计算机科学、地理学、测绘遥感学、环境科学、城市科学、空间科学、信息科学和管理科学等众多学科交叉融合而成的新兴学科。
但是,地理信息系统与这学科和系统之间既有联系又有区别:(1)GIS与机助制图系统机助制图是地理信息系统得主要技术基础,它涉及GIS中的空间数据采集、表示、处理、可视化甚至空间数据的管理。
地理信息系统和数字制图系统的主要区别在于空间分析方面。
一个功能完善的地理信息系统可以包含数字制图系统的所有功能,此外它还应具有丰富的空间分析功能。
(2)GIS与DBMS(数据库管理系统) GIS除需要功能强大的空间数据的管理功能之外,还需要具有图形数据的采集、空间数据的可视化和空间分析等功能。
因此,GIS在硬件和软件方面均比一般事务数据库更加复杂,在功能上也比后者要多地多。
(3)GIS与CAD系统二者虽然都有参考系统,都能描述图形,但CAD系统只处理规则的几何图形、属性库功能弱,更缺乏分析和判断能力。
(4)GIS与遥感图像处理的系统遥感图像处理的系统是专门用于对遥感图像数据处理进行分析处理的软件。
它主要强调对遥感栅格数据的几何处理、灰度处理和专题信息提取。
这种系统一般缺少实体的空间关系描述,难以进行某一实体的属性查询和空间关系查询以及网络分析等功能。
2、地理信息系统有哪几个主要部分组成?它的基本功能有哪些?试举目前广泛应用的两个基础地理信息系统软件为例,列出它们的功能分类表,并比较异同点?主要有五个组成部分:(1)系统硬件:包括各种硬件设备,是系统功能实现的物质基础;(2)系统软件:支持数据采集、存储、加工、回答用户问题的计算机程序系统;(3)空间数据:系统分析与处理的对象,构成系统的应用基础;(4)应用人员:GIS服务的对象,分为一般用户和从事建立、维护、管理和更新的高级用户;(5)应用模型:解决某一专门应用的应用模型,是GIS技术产生社会经济效益的关键所在。
第二章 地理信息系统的数据结构ppt课件

第一节 地理空间及其表达 介绍地理空间概念和空间实体的表达 第二节 地理空间数据及其特征 包括GIS的空间数据,空间数据的基本特征,空间数据的拓扑关系 第三节 空间数据结构的类型 矢量数据结构,栅格数据结构,矢量与栅格一体化数据结构,矢量与栅格数 据结构的比较 第四节 空间数据结构的建立 空间数据的建立过程及方法
任何地理实体都可以抽象为点、线、面、体等基本类型,以表示 它的位置、形状、大小、高低等特征。
19
第一节 地理空间及其表达
以地图为例,来了解空间实体的抽象及表达 点实体
❖有位置,无宽度和长度; ❖抽象的点
美国佛罗里达洲地震监测站2002年9月该洲可能
20
的500个地震位置
第一节 地理空间及其表达
线实体 ❖有长度,但无宽度和高度; ❖用来描述线状实体,通常在网络分析中使用较多
c2
11
国际主要椭球参数
椭球名称
德兰勃(Delambre) 埃弗瑞斯(Everest)
贝赛尔(Bessel) 克拉克(Clarke) 克拉克(Clarke)
海福特 (Hayford) 克拉索夫斯基 (Krasovski)
1967年大地坐标系
1975年大地坐标系
1980年大地坐标系
年代 1800 1830 1841 1866 1880 1910
3
地理空间(Geo-spatial)一般分为: 绝对空间: 是具有属性描述的空间位置的集合,它由一系列不同位 置的空间坐标组成; 相对空间: 是具有空间属性特征的实体集合,它是由不同实体之间 的空间关系构成。
4
第一节 地理空间及其表达
1、 地球空间模型 为了研究地理现象,有必要建立地球表面的几何模型。根
地理信息系统的数据结构

地理信息系统的数据结构在当今数字化的时代,地理信息系统(GIS)已经成为了我们理解和管理地球空间信息的重要工具。
无论是城市规划、环境保护、交通运输,还是农业发展、资源勘探等领域,GIS 都发挥着不可或缺的作用。
而要理解 GIS 的工作原理和应用,就必须深入了解其核心组成部分之一——数据结构。
那么,什么是地理信息系统的数据结构呢?简单来说,数据结构就是用于组织和存储地理数据的方式。
它决定了数据如何被录入、存储、管理、检索和分析,直接影响着 GIS 系统的性能和功能。
地理信息系统中的数据可以分为两大类:空间数据和属性数据。
空间数据描述了地理对象的位置、形状和空间关系,比如一个湖泊的轮廓、一座山脉的走向等。
属性数据则是关于这些地理对象的特征信息,例如湖泊的面积、水深,山脉的海拔、植被类型等。
为了有效地存储和管理这两类数据,GIS 采用了多种数据结构。
其中,矢量数据结构和栅格数据结构是最为常见的两种。
矢量数据结构将地理对象表示为点、线和面等几何图形。
点可以用来表示单个的地理位置,如一座山峰的顶点;线用于表示线状地物,如河流、道路;面则代表具有一定范围的区域,如行政区域、土地利用类型等。
矢量数据结构的优点是精度高、数据量小、便于进行几何变换和拓扑分析。
比如,在城市规划中,我们可以精确地计算出建筑物之间的距离、道路的长度等。
然而,矢量数据结构在处理大面积的连续数据时,如遥感图像,就显得不太方便。
与之相对的栅格数据结构则是将地理空间划分成规则的网格单元,每个单元被赋予一个特定的值。
栅格数据结构适用于表示连续变化的地理现象,如地形的起伏、气温的分布等。
它的优点是数据结构简单,易于与遥感数据结合,并且便于进行空间分析和图像处理。
但栅格数据结构的缺点也很明显,那就是数据量较大,精度相对较低,而且在进行几何变换时会产生一定的误差。
除了矢量和栅格数据结构,还有一种称为拓扑数据结构的重要类型。
拓扑数据结构关注的是地理对象之间的空间关系,而不仅仅是它们的位置和形状。
《地理信息系统概论》课程笔记
《地理信息系统概论》课程笔记第一章地理信息系统基本概念1.1 数据与信息数据是原始的、未经处理的素材,它是信息的表现形式。
信息是从数据中提取的有意义的内容,它能够帮助人们做出决策。
在地理信息系统中,数据主要指的是空间数据,而信息则是通过对空间数据进行分析和处理得到的结果。
例如,一个地区的土地利用数据是原始数据,而通过分析这些数据得出的土地利用分布情况就是信息。
1.2 地理信息与地理信息系统地理信息指的是与地球表面位置相关的信息,包括自然地理信息(如地形、气候等)和人文地理信息(如人口、交通等)。
地理信息系统(GIS)是一种专门用于获取、存储、管理、分析和展示地理信息的计算机系统。
GIS能够将空间数据与属性数据结合起来,为用户提供强大的空间分析和决策支持功能。
例如,GIS可以用来分析城市交通拥堵情况,帮助规划交通路线。
1.3 地理信息系统的基本构成GIS由硬件、软件、空间数据、应用人员和应用模型五个基本部分组成。
硬件包括计算机、输入输出设备(如扫描仪、打印机等);软件包括操作系统、数据库管理系统、GIS软件等;空间数据是GIS的核心,包括地图数据、遥感数据等;应用人员是使用GIS进行空间分析和决策的主体;应用模型则是根据实际问题构建的模型,用于解决具体问题。
例如,一个GIS系统可能包括一台计算机、GIS软件、地图数据和应用模型,用于分析土地利用变化。
1.4 地理信息系统的功能简介GIS的基本功能包括数据采集、数据管理、空间分析、可视化表达和输出等。
数据采集主要是获取空间数据和属性数据,可以通过遥感、野外调查等方式获取;数据管理主要是对数据进行存储、查询、更新和维护,确保数据的准确性和完整性;空间分析主要包括空间查询、空间叠合、空间邻近度分析等,用于解决实际问题;可视化表达主要是将空间数据以图形或图像的形式展示给用户,增强数据的可读性和可理解性;输出则是将分析结果以报表、地图等形式输出,为决策提供支持。
地理信息系统数据结构
数据融合
01
将不同来源、不同格式的地理数据进行融合,形成统一的数 据集。
02
数据融合可以提高数据的完整性和准确性,便于分析和应用。
03
数据融合的方法包括数据清洗、坐标转换、格式转换等。
05 地理信息系统数据质量
数据精度
空间精度
地理信息系统数据的空间精度是指数据所表示的地理要素的位置准确性,通常 用地图比例尺来表示。比例尺越大,表示的地理要素位置越详细,精度越高。
自然资源管理
GIS可用于自然资源管理,如森 林资源监测、水资源管理、野 生动物保护等。
灾害应急响应
GIS能够快速获取和处理灾害相 关信息,为灾害应急响应提供 决策支持。
商业与市场分析
GIS在商业和市场分析中也有广 泛应用,如市场区域划分、物 流路线规划等。
02 地理信息系统数据类型
矢量数据
定义
矢量数据是地理信息系统中的一种重要数据类型,它由一系列离散 的点、线、面组成,表示地理实体的空间位置和相互关系。
GIS通过地图、图表、表格等多种形式展示地理信息,帮助用户更好地理解空间 关系和动态变化。
地理信息系统的组成
数据输入与处理
数据存储与管理
地理信息系统需要将各种来源的数据进行 整合、清洗和转换,以便进行后续的分析 和可视化。
GIS需要一个高效的数据存储和管理系统, 以便存储大量的空间数据和属性数据,并 提供快速的数据检索和更新功能。
特点
矢量数据具有数据精度高、信息丰富、易于编辑和更新等优点,能 够精确地表示复杂的地理要素和空间关系。
应用场景
矢量数据广泛应用于地图制作、土地规划、资源管理、城市设计等领 域。
栅格数据
定义
栅格数据是一种以网格单元为基 本单位表示地理信息的数据类型,
地理信息系统概论讲义
《地理信息系统概论》教学大纲课程类别:专业基础课(必修)课程代码:总学时:72 学分:4适用专业:地理教育、地理信息系统、资源环境与城乡规划管理先修课程:地图学一、课程的地位、性质与任务地理信息系统(GIS)是集计算机科学、地理科学、测绘学、遥感学、环境科学、空间科学、信息科学、管理科学等学科为一体的新兴边缘学科。
它从20世纪60年代问世,至今已经跨越了40多个春秋,却始终发展迅猛。
地理信息系统不但与全球定位系统(GPS)和遥感(RS)相结合,构成三S集成系统,而且与CAD、多媒体、通信、因特网、办公自动化、虚拟现实等多种技术相结合,构成了综合的信息技术。
《地理信息系统概论》作为全国高等学校地理类专业公共核心课程,主要介绍了地理信息系统的基础理论、技术体系及其应用方法。
通过本课程的学习,可以让地理类专业的学生掌握地理信息系统的基础理论和知识。
本课程的教学,应当使学生掌握地理信息系统的基本概念、基础理论和方法。
同时,《地理信息系统概论》又是一门实践性较强的课程,通过实践教学,使学生更直观地掌握地理信息系统的构成、地理信息系统产品的制作;了解地理信息系统软件和常用的信息检索方法,使学生的实践能力和创新能力得到一定的培养。
二、课程教学的基本要求通过对本课程的学习,使学生牢固掌握地理信息系统得基本概念:如数据和信息、地理信息系统、地理信息系统空间数据库等。
使学生掌握地理信息系统的基础理论和方法,如数据结构、空间分析的原理与方法、常用的应用模型等。
使学生了解地理信息系统的相关知识,如空间数据的处理、产品的制作与显示。
总之,通过学习本课程,使学生掌握地理信息系统的基本概念、基础理论和应用方法,为今后其他专业课程和软件的学习打下坚实的基础。
三、理论教学内容与学时分配第1章导论(8学时)掌握数据与信息、地理信息与地理信息系统的概念。
掌握地理信息系统的基本构成和基本功能。
了解地理信息系统的应用功能。
了解地理信息系统的发展概况和基础理论。
地理信息系统的数据结构(精)
地理信息系统的空间数据结构
内部数据结构基本上可分为两大类:即矢量结构和栅格结构。两类结构 都可用来描述地理实体的点、线、面三种基本类型
矢量数据结构
栅格数据结构
• 实际应用中,每个网格通常会有不同的几种属性值,由于只能取一种,这就有不 同的取值方法。
(1)中心点法。即用处于栅格中心点的地物类或现象特性决定栅格的值。有时也称为网格交点归属法。 (2)面积占优法,就是以占栅格最大的地物类或现象特征决定栅格单元的值。 (3)长度最占优法。当覆盖的网格过中心部位时,横线占据该格中的大部分长度的属性值定为栅格单元的值。 (4)重要性法。根据栅格内不同地物的重要性,选取最重要的地物类型决定相应的栅格单元的值。如重要性
CELL树
• R树和R+在插入、删除和空间 搜索效率两方面难于兼顾
• 在空间划分时不再采用矩形作 为划分的基本单位,而是采用 凸多边形来作为划分的基本单 位,具体划分方法与BSP树有 类似之处,子空间不再相互覆 盖。CELL树的磁盘访问次数比 R树和R+树少,由于磁盘访问 次数是影响空间索引性能的关 键指标,故CELL树是比较优秀 的空间索引方法
地质图系列 土地利用图系列
植被图系列 土地能力图系列 自然资源图系列
常用的地图投影
比例尺
1 :2.5万 1 :5万 1 :12.5万 1 :25万 1 :50万 1 :100万
1 :5万 1 :25万 1 :50万 1 :100万
1 :5万 1 :12.5万 1 :25万 1 :50万
1 :12.5万 1 :25万 1 :50万
2. 中央子午线投影后长度不变。赤道投影后其长 度距中央子午线愈远变形愈大;
3. 中央子午线东西两侧的点﹑线的投影以中央子 午线为对称轴而对称。直线的投影也是距中央子 午线愈远而长度变形愈大;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄海海面
1952-1979年平 均海水面为0米
水准原点 1985国家高 程基准,
72.2604米
坐标参考系统——平面系统
直接建立在球体上的地理坐标,用
经度和纬度表达地理对象位置
投 影
建立在平面上的直角坐标系统,用
(x,y)表达地理对象位置
投影的概念:
将椭圆面上各点的大地坐标,按照一定 的数学法则,变换为平面上相应点的平面 直角坐标。
3、按数据特征分类
(1)空间定位数据:是表达空间实体在地 球上位置的坐标数据。
(2)非空间属性数据:是有关空间实体自 身的名称、种类、质量、数量等特征的数 据。
二、空间数据的基本特征
1. 空间数据的基本特征
属性特征:描述现象的特征,即是什么,如对象 的类别、等级、名称、数量等。 空间特征:描述现象的空间位置以及相互关系, 又称几何特征和拓扑特征,前者用经纬度、坐标
GIS中,地理数据的显示可根据用户的需要而指定投影 方式,但当所显示的地图与国家基本地图系列的比例尺 一致时,一般采用国家基本系列地图所用的投影。
第二节 地理空间数据及其特征
一、GIS空间数据的分类
1、在地图上,一般把地理空间的实体按地形维数 (几何特征)进行归类划分: 点:零维 线:一维 面:二维 体:三维 时间:通常以第四维表达,但目前GIS还很难处理 时间属性。
土地信息系统:
城市信息系统:
系统功能与数据间的关系
空间数据结构的建立
二、空间数据的分类和编码
1、空间数据的分类 是指根据系统功能及国
家规范和标准,将具有不同属性或特征的要素
区别开来的过程,以便从逻辑上将空间数据组
织为不同的信息层,为数据采集、存储、管理、
查询和共享提高依据。
信息层示意图
空间数据结构的建立 2、空间数据的分类和编码
三、栅格数据结构的存储类型
栅格矩阵结构 :AABBAABBABBBAAAA 游程(行程)编码结构 :A2B2A2B2AB3A4 四叉树结构P56
:常规四叉树
线性四叉树(莫顿码)
0 4 8 9 10 12 14 A B A B A B A
A10 A8
A11 B9
A14 B12
A15 B13
A2 A0
2.栅格数据结构的优缺点
很容易为计算机存储和操作,不但很直观,而且 易于维护和修改。
数据结构简单,定位存取性能好,因而在GIS中可 与影像数据和DEM数据进行联合分析。 但是,数据精度的增加将以存储空间为代价。 由于相邻网格单元属性值的相关性,造成栅格数 据的冗余度大。 栅格数据对于网络分析比较困难。
A3 A1
B6 B4
B7 B5
栅格矩阵结构 处理简便,但是没有压缩,数据量大。
游程(行程)编码结构
压缩效率较高,叠加、合并等运算简单,编码和解码运算 快。
四叉树结构(线性四叉树)
只存储三个值,比常规四叉树节省存储空间;由于记录节 点地址,既能直接找到其在四叉树中的走向路径,又可以 换算出它在整个栅格区域内的行列位置;压缩和解压缩方 便,各部分的分辨率可以不同,既可精确表示图形结构, 又可以减少存储量,易于进行大部分图形操作和运算。
3.栅格数据的获取方式
来自于遥感数据 来自于对图片的扫描
由矢量数据转化而来
由手工方法获取
栅格的点图
矢量的点图
·
栅格的线图
矢量的线图
地图的矢量和栅格表示
(x,y) 11 0 3 0 3 3 0 0 3 0 0 0 0 8 0 0 1 1 1 0 4 0 4 4 0 4 4 0 4 4 0 0 4 0 0 0
3
(x,y) 33
3
4
3
3
3
3
3
3
0
0
1
1
0
0
4
4
4
4
4
4
4
4
4
4
4
0
0
0
0
0 0 0 1
0
0 1 1 0
1
1 5 5 5
7
5 5 5 5
ቤተ መጻሕፍቲ ባይዱ
0
5 5 5 0
0
0 5 5 0
4
0 0 0 0
4
0 0 0 0
4
0 0 0 0
0
0 0 8 0
0
0 0 0 0
(x,y) 22
5
(x,y) 44
7 0 0
三种主要地理实体点、线、面中,点 由一系列(x、y)坐标定位的像元, 类似于像元,但不占有面积,其余两 种均由一系列内部相关联的坐标形成, 每个像元独立编码,并载有属性。 一定的面或线则与一定的属性连接。
思考:
比较矢量数据结构和栅格数据结构,两者各 自的优点有哪些?缺点有哪些?如何使优点两者 兼得呢?
点线面用栅格数据结构、矢量数据结构的 表达方法都已介绍,那么“体”常见的表 达方法有哪些?
第四节 空间数据结构的建立
空间数据结构的建立是指根据确定的数据结
构类型,形成与该数据结构相适应的GIS空间
国土基础信息数据分类与代码举例
数据,为空间数据库的建立提供物质基础。
根据用户需求,确定数据项目 根据数据项目,确定数据源 数据分类和编码 确定数据模型和数据结构类型
数据结构建立 的基本过程
数据输入与编辑工作
矢量数据输入与编辑 跟 踪 数 字 化 扫 描 矢 量 化 解 析 测 图 仪
数 椐 结 构 转 换
栅格数据输入与编辑 扫 描 数 字 化
代码的功能:
鉴别 分类 排序
编码的基本原则:
惟一性:一个代码只能惟一地表示一类对象。 合理性:代码结构要与分类体系相适应。 可扩性:必须留有足够的备用代码,以适应扩充 需要。 简单性:结构应尽量简单,长度应尽量短。 适用性:代码应尽可能反映对象的特点,以助记 忆。 规范性:代码的结构、类型、编写格式必须统一。
栅格数据结构:
点:表示为一个单元栅格
线:表示为一定方向上连接成串的相邻单元栅格 的集合。
面:表示为聚集在一起的相邻的单元栅格的集合。 区域内部的网格值相同,但与外部网格的值不同。
栅格可以是正方形,也可以是矩形、等 边三角形、正六边形等。
网格的边长决定了栅格数据的精度,但 是,无论网格边长多少,与原实体特征相比 较,信息都有丢失。
空间数据的编码: 是指将数据分类的结果,用一种 易于被计算机和人识别的符号系统表示出来的过程, 编码的结果是形成代码。代码由数字或字符组成, 或由它们共同组成。
Eg:身份证前六位
我国基础地理信息数据的分类代码由六位数字组成,其 代码结构如下所示: × × ×× × × 大类码 小类码 一级代码 二级代码 识别位 大类码、小类码、一级代码和二级代码分别用数字顺序 排列。识别位由用户自行定义,以便于扩充。
透 明 格 网 采 集 数 椐 结 构 转 换
矢量数据库
栅格数据库
空间数据结构的建立
一、系统功能与数据间的关系
现代地理信息系统数据模式的一个重要特 征是数据与功能之间具有密切的联系 (专题GIS,相 关视频 ) ,因此,在确定数据内容时,首先必须 明确系统的功能。
对开发的GIS系统的功能,是通过用户需求 调查来确定的,因此,在开发GIS系统之前,首 先要进行系统分析。
邻接、包含、关联等,一般通过拓扑关系表达。
三、空间数据的拓扑关系
——拓扑邻接、拓扑关联、拓扑包含
什么叫拓扑? Topology一词来自希腊文,它的原意是“形状的研究” 。拓扑学是几何学的一个分支,它研究在拓扑变换下能 保持不变的几何属性——拓扑属性。
拓扑邻接:存在于空间图形之间同类要素之间的拓扑关系(结点、多边形) 拓扑关联:指存在于空间图形中的不同类要素之间的拓扑关系(结点于弧 段、多边形与弧段) 拓扑包含:指存在于空间图形中同类但不同级的基本要素之间的拓扑关系
香港理工大学 校园建筑
2、按数据结构分类
(1)矢量数据:是利用欧几里得几何学中 的点、线、面及其组合体来表示地理实体 空间分布的一种数据组织方式。 (2)栅格数据:是指将空间分割成有规则 的网格,称为栅格单元,在各个栅格单元 上给出相应的属性值来表示地理实体的一 种数据组织形式。
栅格和矢量结构是计算机描述空间实体的两种最基本 的方式。
点实体
• 有位置,无宽度和长度; • 抽象的点
美国佛罗里达洲地震监测站2002年9月该洲 可能的500个地震位置
线实体
• 有长度,但无宽度和高度 • 用来描述线状实体,通常在网络分析中使用较多
• 度量实体距离
香港城市道路网分布
面实体
• 具有长和宽的目标
• 通常用来表示自然或人工的封闭多边形
• 一般分为连续面和不连续面
平面控制网:
1954北京坐标系:根据克拉索夫斯基椭球参数制定的坐标系。 1980国家大地坐标系:a=6378140m,f=1/298.257,大地原
点在西安市附近泾阳县内。
地心坐标系:经纬度和高程表示(B,L,H)。
高程控制网:
高程:指空间某点高于或低于基准面的垂直距离。 1956黄海高程系:以黄海平均海平面建立的高程控制系统 1985国家高程基准:比黄海平均海平面高29mm
中国土地利用分布图(不连续面)
空间对象:面(续)
不连续变化曲面,如土壤、 森林、草原、土地利用等, 属性变化发生在边界上,面 的内部是同质的。
连续变化曲面:如地形起 伏,整个曲面在空间上曲 率变化连续。
空间对象:体
• 有长、宽、高的目标 • 通常用来表示人工或自然的三维目标,如建筑、矿 体等三维目标
(三级逼近:数学公式)
地球模型