陕西省渭南市2021届新高考数学模拟试题(2)含解析
2021年陕西省高考数学模拟试卷及答案解析

第 1 页 共 15 页 2021年陕西省高考数学模拟试卷 注意事项:
1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第I 卷 选择题(60分)
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合{}lg 0A x x =>,{}24B x x =≤,则A B =I ( )
A. ()1,2
B. (]1,2
C. (]0,2
D. ()1,+∞ 2.已知命题:,sin p x R x x ∀∈>,则p 命题的否定为( )
A .:,sin p x R x x ⌝∃∈<
B .:,sin p x R x x ⌝∀∈<
C .:,sin p x R x x ⌝∃∈≤
D .:,sin p x R x x ⌝∀∈≤ 3.若复数2i 2a z -=
在复平面内对应的点在直线0x y +=上,则z =( ) A .2 B .2 C .1 D .22 4.已知某几何体的三视图如图所示,则该几何体的体积为( )
A .8π3
B .16π3
C .8π
D .16π。
陕西省渭南市2021届新高考数学第二次调研试卷含解析

陕西省渭南市2021届新高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}2|0,|121x A x B x x x +⎧⎫=≤=-<<⎨⎬-⎩⎭,则A B I =( ) A .[2,2)-B .(]1,1-C .()11-,D .()12-, 【答案】C【解析】【分析】求出集合A ,然后与集合B 取交集即可.【详解】由题意,{}2|0|211x A x x x x +⎧⎫=≤=-≤<⎨⎬-⎩⎭,{|12}B x x =-<<,则{|11}A B x x =-<<I ,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题.2.函数()1ln 1x f x x-=+的大致图像为( ) A . B .C .D .【答案】D【解析】【分析】通过取特殊值逐项排除即可得到正确结果.【详解】函数()1ln 1x f x x -=+的定义域为{|1}x x ≠±,当12x =时,1()ln 302f =-<,排除B 和C ; 当2x =-时,(2)ln 30f -=>,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.3.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( )A .15B .120C .112D .340【答案】C【解析】【分析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:310120C =种,3个数中至少有2个阳数且能构成等差数列的情况有:()()()()()()()()()()1,2,3,3,4,5,5,6,7,7,8,9,1,4,7,3,6,9,1,3,5,3,5,7,5,7,9,1,5,9,共10种, 所以目标事件的概率10112012P ==. 故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.4.定义,,a a b a b b a b≥⎧⊗=⎨<⎩,已知函数21()2sin f x x =-,21()2cos g x x =-,则函数()()()F x f x g x =⊗的最小值为( )A .23B .1C .43D .2【答案】A【解析】【分析】根据分段函数的定义得()()F x f x ≥,()()F x g x ≥,则2()()()F x f x g x ≥+,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得()()F x f x ≥,()()F x g x ≥,则2()()()F x f x g x ≥+,22222211111()()()[(2sin )(2cos )]2sin 2cos 32sin 2cos f x g x x x x x x x+=+=+-+-----222212cos 2sin 14(2)(232sin 2cos 33x x x x --=++≥+=--(当且仅当222cos 2sin x x --222sin 2cos x x-=-,即221sin cos 2x x ==时“=”成立.此时,2()()3f x g x ==,42()3F x ∴≥,()F x ∴的最小值为23, 故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出2()()()F x f x g x ≥+,再由基本不等式求得最值,属于中档题. 5.已知向量a r ,b r 满足4a =r ,b r 在a r 上投影为2-,则3a b -r r 的最小值为( )A .12B .10CD .2【答案】B【解析】【分析】 根据b r 在a r 上投影为2-,以及[)cos ,1,0a b <>∈-r r ,可得min 2b =r ;再对所求模长进行平方运算,可将问题转化为模长和夹角运算,代入min br 即可求得min 3a b -r r .【详解】 b r 在a r 上投影为2-,即cos ,2b a b <>=-r r r 0b >r Q cos ,0a b ∴<><r r又[)cos ,1,0a b <>∈-r r min 2b ∴=r2222223696cos ,9964a b a a b b a a b a b b b -=-⋅+=-<>+=+r r r r r r r r r r r r rmin 3946410a b ∴-=⨯+=r r本题正确选项:B【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到b r 的最小值.6.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A .2B .3C .4D .5【答案】D【解析】试题分析:抛物线24x y =焦点在y 轴上,开口向上,所以焦点坐标为(0,1),准线方程为1y =-,因为点A 的纵坐标为4,所以点A 到抛物线准线的距离为415+=,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A 与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算. 7.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强【答案】D【解析】【分析】根据所给的雷达图逐个选项分析即可.【详解】对于A ,甲的数据分析素养为100分,乙的数据分析素养为80分,故甲的数据分析素养优于乙,故A 正确;对于B ,乙的数据分析素养为80分,数学建模素养为60分,故乙的数据分析素养优于数学建模素养,故B 正确;对于C ,甲的六大素养整体水平平均得分为10080100801008031063+++++=, 乙的六大素养整体水平均得分为806080606010025063+++++=,故C 正确; 对于D ,甲的六大素养中数学运算为80分,不是最强的,故D 错误;故选:D【点睛】本题考查了样本数据的特征、平均数的计算,考查了学生的数据处理能力,属于基础题.8.已知S n 为等比数列{a n }的前n 项和,a 5=16,a 3a 4=﹣32,则S 8=( )A .﹣21B .﹣24C .85D .﹣85【答案】D【解析】【分析】由等比数列的性质求得a 1q 4=16,a 12q 5=﹣32,通过解该方程求得它们的值,求首项和公比,根据等比数列的前n 项和公式解答即可.【详解】设等比数列{a n }的公比为q ,∵a 5=16,a 3a 4=﹣32,∴a 1q 4=16,a 12q 5=﹣32,∴q =﹣2,则11a =, 则881[1(2)]8512S ⨯--==-+, 故选:D.【点睛】本题主要考查等比数列的前n 项和,根据等比数列建立条件关系求出公比是解决本题的关键,属于基础题.9.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .2C .23D .163【答案】C【解析】【分析】 过P 作PE BD ⊥于E ,连接CE ,易知CE BD ⊥,PE CE =,从而可证BD ⊥平面PCE ,进而可知1833P BCD B PCE D PCE PCE PCE V V V S BD S ---=+=⋅=V V ,当PCE S V 最大时,P BCD V -取得最大值,取PC 的中点F ,可得EF PC ⊥,再由2112PCE S PC EF PE =⋅=-V PE 的最大值即可. 【详解】在BPD △和BCD V 中,PB BC PD CD BD BD =⎧⎪=⎨⎪=⎩,所以BPD BCD V V ≌,则PBD CBD ∠=∠,过P 作PE BD ⊥于E ,连接CE ,显然BPE BCE V V ≌,则CE BD ⊥,且PE CE =,又因为PE CE E =I ,所以BD ⊥平面PCE , 所以1833P BCD B PCE D PCE PCE PCE V V V S BD S ---=+=⋅=V V , 当PCE S V 最大时,P BCD V -取得最大值,取PC 的中点F ,则EF PC ⊥, 所以2112PCE S PC EF PE =⋅=-V 因为10,8PB PD BD +==,所以点P 在以,B D 为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以PE 的最大值为椭圆的短轴长的一半,故PE 22543-=,所以PCE S ∆最大值为2,故P BCD V -的最大值为8223⨯162=. 故选:C.【点睛】本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.10.已知集合{}2{|23,},|1=-<<∈=>A x x x N B x x A ,则集合A B =I ( )A .{2}B .{1,0,1}-C .{2,2}-D .{1,0,1,2}- 【答案】A【解析】【分析】化简集合A ,B ,按交集定义,即可求解.【详解】集合{|23,}{0,1,2}=-<<∈=A x x x N , {|11}=><-或B x x x ,则{2}A B =I .故选:A.【点睛】本题考查集合间的运算,属于基础题.11.已知x ,y R ∈,则“x y <”是“1x y <”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】D【解析】【分析】 x y <,不能得到1x y <, 1x y<成立也不能推出x y <,即可得到答案. 【详解】因为x ,y R ∈, 当x y <时,不妨取11,2x y =-=-,21x y=>,故x y <时,1x y<不成立, 当1x y<时,不妨取2,1x y ==-,则x y <不成立, 综上可知,“x y <”是“1x y <”的既不充分也不必要条件, 故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.12.某人2018年的家庭总收人为80000元,各种用途占比如图中的折线图,2019年家庭总收入的各种用途占比统计如图中的条形图,已知2019年的就医费用比2018年的就医费用增加了4750元,则该人2019年的储畜费用为( )A .21250元B .28000元C .29750元D .85000元【答案】A【解析】【分析】 根据 2018年的家庭总收人为80000元,且就医费用占10% 得到就医费用8000010%8000⨯=,再根据2019年的就医费用比2018年的就医费用增加了4750元,得到2019年的就医费用,然后由2019年的就医费用占总收人15%,得到2019年的家庭总收人再根据储畜费用占总收人25%求解.【详解】因为2018年的家庭总收人为80000元,且就医费用占10%所以就医费用8000010%8000⨯=因为2019年的就医费用比2018年的就医费用增加了4750元,所以2019年的就医费用12750元,而2019年的就医费用占总收人15%所以2019年的家庭总收人为127501585000÷%=而储畜费用占总收人25%所以储畜费用:850002521250⨯%=故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
陕西渭南市2021届高三数学(理)上学期高考一模试卷附答案解析

陕西渭南市2021届高三数学(理)上学期高考一模试卷考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟. 2.请将各题答案填写在答题卡上. 3.本试卷主要考试内容:高考全部范围.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A .B .C .D . 2.已知复数,则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.记为等差数列的前n 项和,已知,则数列的公差为( )A .2B .4C .1D . 4.已知函数是奇函数,则( )A .B .C .D .5.在新冠疫情的持续影响下,全国各地电影院等密闭式文娱场所停业近半年,电影行业面临巨大损失.2011~2020年上半年的票房走势如下图所示,则下列说法正确的是( )A .自2011年以来,每年上半年的票房收入逐年增加B .自2011年以来,每年上半年的票房收入增速为负的有5年C .2018年上半年的票房收入增速最大D .2020年上半年的票房收入增速最小6.已知点在椭圆上,则的最大值是( ) {4,2,1,0,1,2,4}A =---{}2|20B x x x =--A B ⋂={4,2,4}--{4,2,1,2,4}---{4,2,4}-{4,2,1,2,4}--532z i i=++n S {}n a 223n S n n =+{}n a 12()33x x f x a -=+⋅(2)f =829829-809809-(,)A m n 22142x y +=22m n +A .5B .4C .3D .27.已知的展开式中常数项系数为4,则( )A .B .1C .D . 8.在长方体中,底面是正方形,,E 为的中点,点F 在棱上,且,则异面直线与所成角的余弦值是( )A .B .C .D . 9.我国古代数学家赵爽利用弦图巧妙地证明了勾股定理,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果内部小正方形的内切圆面积为,外部大正方形的外接圆半径为,直角三角形中较大的锐角为,那么( )A .B .C .D . 10.已知等比数列的前n 项和为,若,则数列的公比( ) A .2 B . C .D . 11.已知函数若函数有四个不同的零点,则的取值范围是( )A .B .C .D .12.设为双曲线的右焦点,直线(其中c 为双曲线C 的半焦距)与双曲线C 的左、右两支分别交于M ,N 两点,若,则双曲线C 的离心率是( )421(1)x ax x ⎛⎫-+ ⎪⎝⎭a=4-121-1111ABCD A B C D -ABCD 13AA AB =1CC 1DD 12D F DF =AECF 34-3417344π2αtan2α=13233412{}n a n S 233334,3257m m mSa m S a m +-==+{}n a q =2-1212-22log ,0,()44,0.x x f x x x x >⎧=⎨--+<⎩()()g x f x m =-1234,,,x x x x 1234x x x x (0,4)(4,8)(0,8)(0,)+∞2F 2222:1(0,0)x y C a b a b-=>>:20l x y c -+=()220MN F M F N ⋅+=A .B . CD .第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知向量满足,且,则向量的夹角是_______.14.函数的图象在处的切线方程是______.15.2020年10月11日,全国第七次人口普查拉开帷幕,某统计部门安排六名工作人员到四个不同的区市县开展工作.每个地方至少需安排一名工作人员,其中A ,B 安排到同一区市县工作,D ,E 不能安排在同一区市县工作,则不同的分配方法总数为_______种.16.在三棱锥中,,底面是等边三角形,三棱锥的体积为,则三棱锥的外接球表面积的最小值是________.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)在锐角中,角A ,B ,C 的对边分别为a ,b ,c ,边上的高为,,.(1)求a 和角A ; (2)求的周长.18.(12分)第31届世界大学生夏季运动会定于2021年8月18日—29日在成都举行,成都某机构随机走访调查80天中的天气状况和当天到体育馆打兵乓球人次,整理数据如下表(单位:天): 列和数学期望.(2)假设阴天和晴天称为“天气好”,雨天和雪天称为“天气不好”完成下面的列联表,判断是否5343,a b ||2||4a b ==43a b ⋅=-,a b 3()ln 1f x x x x x =--+1x =,,,,,A B C D E F S ABC -90SBA SCA ︒∠=∠=ABC S ABC -S ABC -ABC BC 2a ABC sin cos sin cos cosb A Cc A B A +=ABC 22⨯有99%的把握认为一天中到体育馆打兵乓球的人次与该市当天的天气有关?人次参考公式:,其中.参考数据:19.(12分)如图,平面,四边形为直角梯形,,,.(1)证明:.(2)若,点E在线段上,且,求二面角的余弦值.20.(12分)已知动点M到点的距离比它到直线的距离小2.(1)求动点M的轨迹E的方程.(2)过点F作斜率为的直线与轨迹E交于点A,B,线段的垂直平分线交x轴于点N,证明:为定值.2002()()()()()n ad bcKa b c d a c b d-=++++n a b c d=+++)2kPA⊥ABCD ABCD226AD BC AB===//AD BC AB BC⊥PC CD⊥PC AD=CD2CE ED=A PE C--(3,0)F:50l x+=(0)k k≠l'AB||||ABFN21.(12分)已知函数. (1)讨论的单调性;(2)当时,若无最小值,求实数a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分) 在直角坐标系中,直线l 的参数方程为(t 为参数),以坐标原点为极点,以x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为,已知直线l 与曲线C交于不同的两点M ,N .(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设,求的值.23.[选修4—5:不等式选讲](10分) 设函数. (1)求不等式的解集;(2)若的最小值是m ,且,求的最小值.121()(1)(0)2x f x x a e x ax x -=---+>()f x 2a ()f x xOy 1,2x t y t=-⎧⎨=+⎩22cos 6sin 80ρρθρθ--+=(1,2)P 11||||PM PN +()|23||1|f x x x =+--()0f x >()f x 232||a b c m ++=222a b c ++数学参考答案(理科)1.B 2.A 3.B 4.D 5.D 6.B 7.D 8.B 9.D 10.C 11.A 12.C 13.14.(或) 15.216 16.17.解:(1)题意可得.2分 因为,所以. 3分因为,所以,所以, 4分所以,则.6分(2)由余弦定理可得.①7分因为的面积为,所以.② 9分 联立①②,解得. 11分故的周长为. 12分56π320x y +-=32y x =-+12π212=2a =sin cos sin cos cos b A C c A B A +=sin sin cos sin sin cos cos B A C C A B A A +=sin 0A ≠sin cos sin cos B C C B A +=sin A A =tan A =3A π=222222cos 4a b c bc A b c bc =+-=+-=ABC 1sin 24bc A bc ==4bc =2b c ==ABC 6a b c ++=18.解:(1)由题意可知随机变量X 的可能取值为0,1,2,3,4. 2分设一天为阴天的概率为P ,则,故. 4分 则X 的分布列为故. 7分 (2) 人次则. 11分 因为,所以有99%的把握认为一天中到体育馆打兵乓球的人次与该市当天的天气有关. 12分19.(1)证明:由题意易知 1分作,垂足为H ,则,故 2分因为,所以. 3分因为平面平面,所以. 4分因为平面平面,且,所以平面. 5分 因为平面,所以. 6分46101804P ++==1~4,4X B ⎛⎫ ⎪⎝⎭1414EX =⨯=2002280(2553020)8.3355254535K ⨯⨯-⨯=≈⨯⨯⨯8.335 6.635>AC ==CH AD ⊥3CH DH ==CD ==222AD AC CD =+AC CD ⊥PA ⊥,ABCD CD ⊂ABCD AP CD ⊥AC ⊂,APC AP ⊂APC AC AP A ⋂=CD ⊥APC PC ⊂APC CD PC ⊥(2)解:因为,且,所以.以A 为原点,分别以的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系. 则,从而. 8分设平面的法向量为. 9分则令,得. 9分 设平面的法向量为,则令,得. 10分 设二面角为,由图可知为锐角, 则. 12分 20.(1)解:由题意知,动点M 到点的距离与到直线距离相等, 1分 由抛物线的定义知,轨迹E 是以为焦点,以直线为准线的抛物线. 3分 所以点M 的轨迹E 的方程为. 5分(2)证明(方法一):设直线,联立得. 6分 设,G 为线段的中点,则,所以, 7分所以线段的垂直平分线的方程为,则. 8分从而, 10分,所以为定值. 12分 6,32PC AD AC ===PAAC ⊥AP==,,AB AD AP A xyz -(0,0,0),(1,5,0),(3,3,0),A E C P (1,5,0),(0,0,32),(2,2,0),(3,AEAP CE CP ===-=--APE ()111,,n x y z =111320,50,n AP n AE x y ⎧⋅==⎪⎨⋅=+=⎪⎩15x =(5,1,0)n =-PCE ()222,,m x y z =22222330,220,m CP x y m CE x y ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩21x =m =A PE C --θθ|||5cos ||||26n m n m θ⋅-===(3,0)F 1:30l x +=(3,0)F 1:30l x +=212yx =:3(0)l x ty t '=+≠23,12,x ty y x =+⎧⎨=⎩212360y ty --=()()1122,,,Ax y B x y AB ()212121212,6126y y t x x t y y t +=+=++=+()263,6G t t +AB ()2663y t t x t -=---()269,0N t +22||69366FNt t =+-=+212||61212AB x x t =++=+||2||AB FN =(方法二)设直线的方程为,G 为线段的中点.联立整理得, .则,从而. 7分 因为G 为线段的中点,所以, 8分 则线段的垂直平分线的方程为.令,得,则. 9分 从而,, 11分 故. 12分 21.解:(1)因为,所以. 令,得或. 1分当时,由,得;由,得.则在上单调递减,在上单调递增. 当时,由,得或;由,得.则在上单调递减,在和上单调递增. 当时,恒成立,则在上单调递增.当时,由,得或;由,得.则在上单调递减,在上单调递增. 3分综上,当时,在上单调递减,在上单调递增;当时,在上单调递减,在和上单调递增;当时,在上单调递增;当时,l '()()11223,,,,y kx k A x y B x y =-AB 23,12,y kx k y x =-⎧⎨=⎩()222261290k x k x k -++=()22222612491441440k k k k ∆=+-⨯=+>212122612,9k x x x x k++==()1212126y y k x x k k +=+-=AB 22366,k G kk ⎛⎫+ ⎪⎝⎭AB 226136k y x k k k ⎛⎫+-=-- ⎪⎝⎭0y =2296k x k +=2296,0k N k ⎛⎫+ ⎪⎝⎭22229666||3k k NF k k ++=-=21221212||6k AB x x k +=++=22221212||266||k AB k k FN k +==+121()(1)(0)2x f x x a e x ax x -=---+>()1()()1(0)x f x x a e x '-=-->()0f x '=x a =1x =0a ()0f x '>1x >()0f x '<01x <<()f x (0,1)(1,)+∞01a <<()0f x '>0x a <<1x >()0f x '<1a x <<()f x (,1)a (0,)a (1,)+∞1a =()0f x '()f x (0,)+∞1a >()0f x '>01x <<x a >()0f x '<1x a <<()f x (1,)a (0,1),(,)a +∞0a ()f x (0,1)(1,)+∞01a <<()f x (,1)a (0,)a (1,)+∞1a =()f x (0,)+∞1a >()f x在上单调递减,在上单调递增. 4分(2)当时,由(1)可知在上单调递减,在上单调递增, 则有最小值,故不符合题意; 5分 当时,由(1)可知在上单调递减,在和上单调递增, 因为无最小值,所以,即,解得; 6分 当时,由(1)可知在上单调递增, 所以无最小值,所以符合题意; 7分当时,由(1)可知在上单调递减,在上单调递增. 因为无最小值,所以,即,即. 设,则. 8分 设,则在上恒成立.故在上单调递增,即在上单调递增. 9分因为,所以存在唯一的,使得. 故在上单调递减,在上单调递增. 10分因为,所以在上恒成立, 即在恒成立,即符合题意. 11分 综上,实数a 的取值范围为. 12分 22.解:(1)由题意可得直线l 的普通方程为. 2分 曲线C 的直角坐标方程为,即. 4分(2)直线l 的参数方程可化为(为参数). 5分 (1,)a (0,1),(,)a +∞0a ()f x (0,1)(1,)+∞()f x 1(1)2f =-0a 01a <<()f x (,1)a (0,)a (1,)+∞()f x (0)(1)f f <112a e +-<-112ea -<<1a =()f x (0,)+∞()f x 1a =12a <()f x (1,)a (0,1),(,)a +∞()f x (0)()f f a <21112a a a e e -+-<-121102a a e a e-+--<1211()(12)2x x g x ex x e -+=--<11()(12)x g x e x x e'-=--<11()()(12)x h x g x e x x e'-==--<1()10x h x e '-=->(1,2]()h x (1,2]()gx '(1,2]11(1)0,(2)20g g e e e''=-<=-->0(1,2]x ∈()00g x '=()g x ()01,x (]0,2x 1243(1)0,(2)2022e g g e e e e-=-=<=--<()0g x <(1,2]121102a a ea e-+--<(1,2]12a <1,22e ⎛⎤-⎥⎝⎦30x y +-=222680xy x y +--+=22(1)(3)2x y -+-=1222,x t y ''⎧=-⎪⎪⎨⎪=+⎪⎩t '11 将直线l 的参数方程代入曲线C 的直角坐标方程,整理得, 7分 则, 8分故.10分23.解:(1)当时,,解得; 1分当时,,解得; 2分当时,,解得. 3分 综上,不等式的解集为或. 4分(2)由(1)可知当时,,即,则.6分 因为, 7分 所以,即(当且仅当时等号成立).9分 故的最小值为. 10分210t ''-=12121t t t t ''''+==-121211||||t t PM PN t t ''''-+===32x -2310x x --+->4x <-312x -<<2310x x ++->213x -<<1x 2310x x +-+>1x ()0f x >{4x x <-|2}3x >-32x =-min 5()2f x =-52m =-235a b c ++=()()2222222(23)123a b c a b c ++++++()2222514a b c ++2222514a b c ++≥123a b c ==222a b c ++2514。
陕西省渭南市高三数学第二次模拟试题 理(含解析)

数学(理)试题注意事项:1.本试题满分150分,考试时间120分钟;2.答卷前务必将自己的姓名、学校、班级、准考证号填写在答题卡和答题纸上; 3.将选择题答案填涂在答题卡上,非选择题按照题号在答题纸上的答题区域内做答案。
第Ⅰ卷(选择题 共50分)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.集合A={x }2221≤≤∈x Z ,B=},cos {A x x y y ∈=,则B A =A .{1}B .{0}C .{0,1}D .{-1,0,1}【答案】A 【解析】集合A={x{}{}122}|111,0,12x Zx Z x ∈≤≤=∈-≤≤=-,B={}{cos ,}cos1,1y y x x A =∈=,所以B A ={1}。
2.在数列{a n }中a 1=2i (i 为虚数单位),(1+i )a n+1=(1-i )a n (n *N ∈)则a 2013的值为A .-2B .-2iC .2iD .2【答案】C【解析】因为(1+i )a n+1=(1-i )a n ,,所以111n n n ia a i a i+-=⋅=-⋅+,所以234562,2,2,2,2a a i a a i a ==-=-==,……,所以数列{a n }的周期为4,所以201312a a i ==。
3.已知双曲线1522=-y m x 的右焦点与抛物线x y 122=的焦点相同,则此双曲线的离心率为A .6B .23C .223 D .43 【答案】B【解析】因为抛物线x y 122=的焦点为(3,0),所以253m +=,所以m=4,所以双曲线的离心率为32e ==。
4.已知x 与y 之产间的几组数据如下表:x 0 1 3 4 y1469则y 与x 的线性回归方程y =bx+a 必过A .(1,3)B .(1,5,4)C .(2,5)D .(3,7)【答案】C 【解析】因为013414692,544x y ++++++====,所以线性回归方程y =bx+a 必过(2,5)。
陕西省渭南市2021届新高考适应性测试卷数学试题(2)含解析

陕西省渭南市2021届新高考适应性测试卷数学试题(2)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .3-B .1C 1D 1【答案】B 【解析】23x yxy +2(2)2111x x y y x y xy y x ++==++≥+=+,选B 2.已知(cos ,sin )a αα=r ,()cos(),sin()b αα=--r ,那么0a b =r r g 是()4k k Z παπ=+∈的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】由0a b =r rg ,可得cos20α=,解出即可判断出结论.【详解】解:因为(cos ,sin )a αα=r ,()cos(),sin()b αα=--r 且0a b =r r g22cos cos()sin sin()cos sin cos20ααααααα∴-+-=-==g g . 222k παπ∴=±,解得()4k k Z παπ=±∈.∴0a b =r r g 是()4k k Z παπ=+∈的必要不充分条件. 故选:B . 【点睛】本题考查了向量数量积运算性质、三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.3.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题. 4.设(1)1i z i +⋅=-,则复数z 的模等于( ) AB .2C .1D【答案】C 【解析】 【分析】利用复数的除法运算法则进行化简,再由复数模的定义求解即可. 【详解】因为(1)1i z i +⋅=-,所以()()()211111i i z i i i i --===-++⋅-, 由复数模的定义知,1z ==.故选:C 【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题. 5.由曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为( ) A .1 B .13C .23D .43【答案】B 【解析】 【分析】首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可. 【详解】联立方程:22y x y x⎧=⎨=⎩可得:1100x y =⎧⎨=⎩,2211x y =⎧⎨=⎩,结合定积分的几何意义可知曲线y =x 2与曲线y 2=x 所围成的平面图形的面积为:)3123120211|333S x dx x x ⎛⎫==-= ⎪⎝⎭⎰. 本题选择B 选项. 【点睛】本题主要考查定积分的概念与计算,属于中等题.6.已知函数()2xf x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 【答案】A 【解析】 【分析】根据实数0x 满足的等量关系,代入后将方程变形0000242ln 5x x a a x x -⋅+⋅=+-,构造函数()ln 5h x x x =+-,并由导函数求得()h x 的最大值;由基本不等式可求得00242x x a a -⋅+⋅的最小值,结合存在性问题的求法,即可求得正数a 的取值范围. 【详解】函数()2xf x x a =+⋅,()ln 42x gx x a -=-⋅,由题意得()()0000002ln 425x x f x g x x a x a --=+⋅-+⋅=,即0000242ln 5x x a a x x -⋅+⋅=+-,令()ln 5hx x x =+-,∴()111xh x x x-'=-=, ∴()h x 在()01,上单调递增,在()1+∞,上单调递减,∴()()14max hx h ==,而0024224xx a a a -⋅+⋅≥=,当且仅当00242x x -=⋅,即当01x =时,等号成立, ∴44a ≤, ∴01a <≤. 故选:A. 【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.7.函数()22xf x a x=--的一个零点在区间()1,2内,则实数a 的取值范围是( ) A .()1,3 B .()1,2C .()0,3D .()0,2【答案】C 【解析】 【分析】显然函数()22xf x a x=--在区间()1,2内连续,由()f x 的一个零点在区间()1,2内,则()()120f f <,即可求解. 【详解】由题,显然函数()22xf x a x=--在区间()1,2内连续,因为()f x 的一个零点在区间()1,2内,所以()()120f f <,即()()22410a a ----<,解得0<<3a ,故选:C 【点睛】本题考查零点存在性定理的应用,属于基础题.8.已知全集{},1,2,3,4,U Z A ==()(){}130,B x x x x Z =+->∈,则集合()U A C B ⋂的子集个数为( ) A .2 B .4C .8D .16【答案】C 【解析】 【分析】先求B.再求U C B ,求得()U A C B ⋂则子集个数可求 【详解】由题()(){}{}130,1x 3,U C B x x x x Z x x Z =+-≤∈=-≤≤∈={}1,0,1,2,3=-, 则集合(){}1,2,3U A C B ⋂=,故其子集个数为328=故选C 【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题 9.已知复数z 满足:((1)11)i z i +-=-,则z 的共轭复数为( ) A .12i - B .1i +C .1i -+D .12i +【答案】B【解析】 【分析】转化()(1)11i z i +-=-,为111iz i--=+,利用复数的除法化简,即得解 【详解】复数z 满足:()(1)11i z i +-=-所以()211112i i z i i ---===-+1z i ⇒=-1z i ∴=+故选:B 【点睛】本题考查了复数的除法和复数的基本概念,考查了学生概念理解,数学运算的能力,属于基础题. 10.若复数z 满足(2)(1)z i i =+-(i 是虚数单位),则||z =( )A .2B .C D 【答案】B 【解析】 【分析】利用复数乘法运算化简z ,由此求得z . 【详解】依题意2223z i i i i =+--=-,所以z ==故选:B 【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.11.已知随机变量X 服从正态分布()4,9N ,且()()2P X P X a ≤=≥,则a =( ) A .3 B .5C .6D .7【答案】C 【解析】 【分析】根据在关于4X =对称的区间上概率相等的性质求解. 【详解】4μ=Q ,3σ=,(2)(42)(42)(6)()P X P X P X P X P X a ∴≤=≤-=≥+=≥=≥,6a ∴=.故选:C . 【点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量X 服从正态分布()2,N μσ,则()()P X m P X m μμ≤-=≥+.12.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .1112B .6C .112D .223【答案】D 【解析】 【分析】用列举法,通过循环过程直接得出S 与n 的值,得到8n =时退出循环,即可求得. 【详解】执行程序框图,可得0S =,2n =,满足条件,12S =,4n =,满足条件,113244S =+=,6n =,满足条件,1111124612S =++=,8n =,由题意,此时应该不满足条件,退出循环,输出S 的值为11228123⨯=. 故选D . 【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的S 与n 的值是解题的关键,难度较易.二、填空题:本题共4小题,每小题5分,共20分。
2020-2021学年陕西省高考数学二模试卷(理科)及答案解析

陕西省高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|﹣1<x<3},B={x|y=},则A∩(∁R B)=()A.{x|1<x<3} B.{x|1≤x<3} C.{x|﹣1<x≤1} D.{x|﹣1<x<1}2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣C.D.﹣3.一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积为2,则此四棱锥最长的侧棱长为()A.2B.C.D.4.已知双曲线﹣=1(a>0)的离心率为,则该双曲线的渐近线方程为()A.y=±2x B.y=±x C.y=±x D.y=±x5.甲、乙、丙、丁四人站一排照相,其中甲、乙不相邻的站法共有n种,则(﹣)n展开式的常数项为()A.﹣B.C.﹣55 D.556.某校对高二年级进行了一次学业水平模块测试,从该年级学生中随机抽取部分学生,将他们的数学测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图.已知高二年级共有学生600名,若成绩不少于80分的为优秀,据此估计,高二年级在这次测试中数学成绩优秀的学生人数为()A.80 B.90 C.120 D.1507.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.328.算法程序框图如图所示,若,,,则输出的结果是()A.B.aC.b D.c9.已知实数a,b,c成等比数列,函数y=(x﹣2)e x的极小值为b,则ac等于()A.﹣1 B.﹣e C.e2D.210.给出下列五个结论:①回归直线y=bx+a一定过样本中心点(,);②命题“∀x∈R,均有x2﹣3x﹣2>0”的否定是:“∃x0∈R,使得x02﹣3x0﹣2≤0”;③将函数y=sinx+cosx的图象向右平移后,所得到的图象关于y轴对称;④∃m∈R,使f(x)=(m﹣1)•x是幂函数,且在(0,+∞)上递增;⑤函数f(x)=恰好有三个零点;其中正确的结论为()A.①②④B.①②⑤C.④⑤D.②③⑤11.如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线经过点B,现将一质点随机投入长方形OABC中,则质点落在图中阴影区域的概率是()A.B.C.D.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)二、填空题(共4小题,每小题5分,共20分,请把答案写在答题卷上)13.已知函数f(x)=,则f已知两点A(0,2)、B(3,﹣1),设向量,=(1,m),若⊥,那么实数m=______.15.已知实数x,y满足约束条件,若z=ax+by(a>0,b>0)的最大值为1,则的最小值为______.16.如图,正方形ABCD中,坐标原点O为AD的中点,正方形DEFG的边长为b,若D为抛物线y2=2ax(0<a<b)的焦点,且此抛物线经过C,F两点,则=______.三、解答题(本大题共6题,共70分,解答应写出文字说明、证明过程或者演算步骤)17.若向量=(sinωx,sinωx),=(cosωx,sinωx)其中ω>0,记函数f(x)=﹣,且函数f(x)的图象相邻两条对称轴之间的距离是.(Ⅰ)求f(x)的表达式及f(x)的单调递增区间;(Ⅱ)设△ABC三内角A、B、C的对应边分别为a、b、c,若a+b=3,c=,f(C)=1,求△ABC 的面积.18.某市对该市高三年级的教学质量进行了一次检测,某校共有720名学生参加了本次考试,考试结束后,统计了学生在数学考试中,选择选做题A,B,C三题(三道题中必须且只能选一题作答)的答卷份数如表:题号 A B C答卷份数160 240 320该校高三数学备课组为了解参加测试的学生对这三题的答题情况,现用分层抽样的方法从720份答卷中抽出9份进行分析.(Ⅰ)若从选出的9份答卷中抽出3份,求这3份中至少有1份选择A题作答的概率;(Ⅱ)若从选出的9份答卷中抽出3份,记其中选择C题作答的份数为X,求X的分布列及其数学期望E(X).19.已知四棱锥A﹣BCDE,其中AC=BC=2,AC⊥BC,CD∥BE且CD=2BE,CD⊥平面ABC,F为AD的中点.(Ⅰ)求证:EF∥平面ABC;(Ⅱ)设M是AB的中点,若DM与平面ABC所成角的正切值为,求平面ACD与平面ADE夹角的余弦值.20.已知椭圆C:+=1(a>b>0)的离心率为,若圆x2+y2=a2被直线x﹣y﹣=0截得的弦长为2(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得•为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.21.已知函数f(x)=,g(x)=﹣﹣1.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数m的取值范围;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx<﹣成立.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时写清题号,并用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.(Ⅰ)求证:AD∥OC;(Ⅱ)若AD•OC=8,求圆O的面积.[选修4-4:坐标系与参数方程]23.已知在直角坐标系xOy中,圆C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(Ⅰ)求圆C的普通方程和直线l的直角坐标方程;(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.[选修4-5:不等式选讲]24.设函数.(Ⅰ)证明:f(x)≥2;(Ⅱ)若当m=2时,关于实数x的不等式f(x)≥t2﹣t恒成立,求实数t的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|﹣1<x<3},B={x|y=},则A∩(∁R B)=()A.{x|1<x<3} B.{x|1≤x<3} C.{x|﹣1<x≤1} D.{x|﹣1<x<1}【考点】交、并、补集的混合运算.【分析】根据集合A、B,求出∁R B,再求A∩(∁R B)即可.【解答】解:∵集合A={x|﹣1<x<3},B={x|y=}={x|1﹣x≥0}={x|x≤1},∴∁R B={x|x>1},∴A∩(∁R B)={x|1<x<3}.故选:A.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得sinθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积为2,则此四棱锥最长的侧棱长为()A.2B.C.D.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥,底面是边长为的正方形,高为h.利用体积计算公式、勾股定理即可得出.【解答】解:由三视图可知:该几何体为四棱锥,底面是边长为的正方形,高为h.则×h=2,解得h=3.∴此四棱锥最长的侧棱长PC==.故选:C.4.已知双曲线﹣=1(a>0)的离心率为,则该双曲线的渐近线方程为()A.y=±2x B.y=±x C.y=±x D.y=±x【考点】双曲线的简单性质.【分析】运用双曲线的离心率公式和a,b,c的关系,可得b=a,由双曲线的渐近线方程即可得到所求方程.【解答】解:双曲线﹣=1(a>0)的离心率为,可得e==,即有c=a,由c2=a2+b2,可得b=a,即有渐近线方程为y=±x,即为y=±x.故选:B.5.甲、乙、丙、丁四人站一排照相,其中甲、乙不相邻的站法共有n种,则(﹣)n展开式的常数项为()A.﹣B.C.﹣55 D.55【考点】计数原理的应用;二项式定理的应用.【分析】先根据排列组合求出n的值,再根据通项公式求出k的值,问题得以解决.【解答】解:根据题意,先安排除甲乙之外的2人,有A22=2种不同的顺序,排好后,形成3个空位,在3个空位中,选2个安排甲乙,有A32=6种选法,则甲乙不相邻的排法有2×6=12种,即n=12;(﹣)n=(﹣)12的通项公式C12k(﹣)k x﹣k=(﹣)k C12k,当4﹣=0时,即k=3时,(﹣)3C123=﹣,故选:A.6.某校对高二年级进行了一次学业水平模块测试,从该年级学生中随机抽取部分学生,将他们的数学测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图.已知高二年级共有学生600名,若成绩不少于80分的为优秀,据此估计,高二年级在这次测试中数学成绩优秀的学生人数为()A.80 B.90 C.120 D.150【考点】频率分布直方图.【分析】根据频率分布直方图计算成绩不低于80分的频率,然后根据频数=频率×总数可得所求.【解答】解:根据频率分布直方图,得;成绩不少于80分的频率为(0.015+0.010)×10=0.025,所以估计成绩优秀的学生人数为600×0.25=150.故选:D.7.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.32【考点】二次函数的性质.【分析】先根据数列的函数特征以及二次函数的最值,化简整理得到{a n}是以为2首项,以为公差的等差数列,再根据前n项公式求出即可.【解答】解∵点(a n﹣1,2a n)在直线y=2x+1上,∴2a n=2a n﹣1+1,∴a n﹣a n﹣1=,∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴a1=2,∴{a n}是以为2首项,以为公差的等差数列,∴a n=2+(n﹣1)=n+当n=1时,a1=n+=2成立,∴a n=n+∴S9=9a1+=9×2+=36故选:C8.算法程序框图如图所示,若,,,则输出的结果是()A.B.aC.b D.c【考点】程序框图.【分析】模拟执行程序,可得程序算法的功能是求a,b,c三个数中的最大数,比较a、b、c三数的大小,可得答案.【解答】解:由程序框图知:算法的功能是求a,b,c三个数中的最大数,∵a3=>3=b3>0,∴a>b;又c=()ln3=e=e=>=a.∴输出的结果为c.故选:D.9.已知实数a,b,c成等比数列,函数y=(x﹣2)e x的极小值为b,则ac等于()A.﹣1 B.﹣e C.e2D.2【考点】利用导数研究函数的极值;等比数列的通项公式.【分析】求出函数的导数,得到函数的单调区间,求出函数的极小值,从而求出b的值,结合等比数列的性质求出ac的值即可.【解答】解:∵实数a,b,c成等比数列,∴b2=ac,∵函数y=(x﹣2)e x,∴y′=(x﹣1)e x,令y′>0,解得:x>1,令y′<0,解得:x<1,∴函数y=(x﹣2)e x在(﹣∞,1)递减,在(1,+∞)递增,∴y极小值=y|x=1=﹣e,∴b=﹣e,b2=e2,则ac=e2,故选:C.10.给出下列五个结论:①回归直线y=bx+a一定过样本中心点(,);②命题“∀x∈R,均有x2﹣3x﹣2>0”的否定是:“∃x0∈R,使得x02﹣3x0﹣2≤0”;③将函数y=sinx+cosx的图象向右平移后,所得到的图象关于y轴对称;④∃m∈R,使f(x)=(m﹣1)•x是幂函数,且在(0,+∞)上递增;⑤函数f(x)=恰好有三个零点;其中正确的结论为()A.①②④B.①②⑤C.④⑤D.②③⑤【考点】命题的真假判断与应用.【分析】①根据回归直线的性质进行判断.②根据含有量词的命题的否定进行判断.③根据三角函数的图象和性质进行判断.④根据幂函数的性质进行判断.⑤根据函数的零点的定义进行判断.【解答】解:①回归直线y=bx+a一定过样本中心点(,);故①正确,②命题“∀x∈R,均有x2﹣3x﹣2>0”的否定是:“∃x0∈R,使得x02﹣3x0﹣2≤0”;故②正确,③函数y=sinx+cosx=2cos(x﹣),将函数的图象向右平移后,得到y=2cos(x﹣﹣)=2cos(x﹣),此时所得到的图象关于y轴不对称;故③错误,④由m﹣1=1得m=2,此时f(x)=x0是幂函数,在(0,+∞)上函数不递增;故④错误,⑤若x≤0则由(x)=0得x+1=0,得x=﹣1,若x>0,则由(x)=0得2x|log2x|﹣1=0,即|log2x|=()x,作出y=|log2x|和y=()x的图象,由图象知此时有两个交点,综上函数f(x)=恰好有三个零点;故⑤正确,故选:B11.如图,长方形的四个顶点为O(0,0),A(4,0),B(4,2),C(0,2),曲线经过点B,现将一质点随机投入长方形OABC中,则质点落在图中阴影区域的概率是()A.B.C.D.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要找出图中阴影部分的面积,并将其与长方形面积一块代入几何概型的计算公式进行求解.【解答】解:由已知易得:S长方形=4×2=8,S阴影=∫04()dx===,故质点落在图中阴影区域的概率P==,故选A.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=e x f(x)﹣2e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣2e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣2e x=e x[f(x)+f′(x)﹣2],∵f(x)+f′(x)>2,∴f(x)+f′(x)﹣2>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>2e x+4,∴g(x)>4,又∵g(1)=ef(1)﹣2e=4,∴g(x)>g(1),∴x>1,故选:A.二、填空题(共4小题,每小题5分,共20分,请把答案写在答题卷上)13.已知函数f(x)=,则f=,∴f=f(1)=f(﹣4)=2﹣4=.故答案为:.14.已知两点A(0,2)、B(3,﹣1),设向量,=(1,m),若⊥,那么实数m= 1 .【考点】平面向量数量积的运算.【分析】由条件利用两个向量坐标形式的运算,两个向量垂直的性质,由=0,求得实数m 的值.【解答】解:∵两点A(0,2)、B(3,﹣1),设向量=(3,﹣3),=(1,m),若⊥,则=3+m(﹣3)=0,求得实数m=1,故答案为:1.15.已知实数x,y满足约束条件,若z=ax+by(a>0,b>0)的最大值为1,则的最小值为 4 .【考点】简单线性规划;基本不等式.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得最大值,可得2a+3b=1,然后结合基本不等式求得的最小值.【解答】解:由约束条件作出可行域如图,联立,解得B(2,3),化目标函数z=ax+by为,由图可知,当直线过B时,直线在y轴上的截距最大,等于2a+3b=1,∴=()(2a+3b)=2+.当且仅当2a=3b,即时上式等号成立.故答案为:4.16.如图,正方形ABCD中,坐标原点O为AD的中点,正方形DEFG的边长为b,若D为抛物线y2=2ax(0<a<b)的焦点,且此抛物线经过C,F两点,则= 1+.【考点】抛物线的简单性质.【分析】求出F点坐标,代入抛物线方程即可得出a,b的关系得到关于的方程,从而解出.【解答】解:∵D是抛物线y2=2ax的焦点,∴D(,0).∵正方形DEFG的边长为b,∴F(,b).∵F在抛物线上,∴b2=2a(),即b2﹣2ab﹣a2=0,∴()2﹣﹣1=0,解得=1+或1﹣.∵0<a<b,∴=1+.故答案为:三、解答题(本大题共6题,共70分,解答应写出文字说明、证明过程或者演算步骤)17.若向量=(sinωx,sinωx),=(cosωx,sinωx)其中ω>0,记函数f(x)=﹣,且函数f(x)的图象相邻两条对称轴之间的距离是.(Ⅰ)求f(x)的表达式及f(x)的单调递增区间;(Ⅱ)设△ABC三内角A、B、C的对应边分别为a、b、c,若a+b=3,c=,f(C)=1,求△ABC 的面积.【考点】余弦定理;平面向量数量积的运算.【分析】(Ⅰ)由已知利用平面向量数量积的运算化简可得函数解析式f(x)=sin(2ωx﹣),由题意可知其周期为π,利用周期公式可求ω,即可得解函数解析式,由2kπ﹣≤2x﹣≤2kπ+,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由f(C)=1,得,结合范围0<C<π,可得﹣<2C﹣<,解得C=,结合已知由余弦定理得ab的值,由面积公式即可计算得解.【解答】(本小题满分12分)解:(Ⅰ)∵=(sinωx,sinωx),=(cosωx,sinωx),∴,…由题意可知其周期为π,故ω=1,则f(x)=sin(2x﹣),…由2kπ﹣≤2x﹣≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,∴f(x)的单调递增区间为:[kπ﹣,kπ+],k∈Z,…(Ⅱ)由f(C)=1,得,∵0<C<π,∴﹣<2C﹣<,∴2C﹣=,解得C=.…又∵a+b=3,,由余弦定理得c2=a2+b2﹣2abcos,∴(a+b)2﹣3ab=3,即ab=2,由面积公式得三角形面积为.…18.某市对该市高三年级的教学质量进行了一次检测,某校共有720名学生参加了本次考试,考试结束后,统计了学生在数学考试中,选择选做题A,B,C三题(三道题中必须且只能选一题作答)的答卷份数如表:题号 A B C答卷份数160 240 320该校高三数学备课组为了解参加测试的学生对这三题的答题情况,现用分层抽样的方法从720份答卷中抽出9份进行分析.(Ⅰ)若从选出的9份答卷中抽出3份,求这3份中至少有1份选择A题作答的概率;(Ⅱ)若从选出的9份答卷中抽出3份,记其中选择C题作答的份数为X,求X的分布列及其数学期望E(X).【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)由题意求出分别从A,B,C题的答卷中抽出2份、3份、4份.利用对立事件概率计算公式能求出从选出的9份答卷中选出3份,这3份中至少有1份选择A题作答的概率.(Ⅱ)由题意可知,选出的9份答卷中C题共有4份,则随机变量X可能的取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和E(X).【解答】(本小题满分12分)解:(Ⅰ)由题意可得:题号 A B C答卷数160 240 320抽出的答卷数 2 3 4应分别从A,B,C题的答卷中抽出2份、3份、4份.…设事件D表示“从选出的9份答卷中选出3份,至少有1份选择A题作答”,则:P(D)=1﹣p()=1﹣=1﹣=,∴从选出的9份答卷中选出3份,这3份中至少有1份选择A题作答的概率.…(Ⅱ)由题意可知,选出的9份答卷中C题共有4份,则随机变量X可能的取值为0,1,2,3…P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,…∴随机变量X的分布列为:X 0 1 2 3P∴E(X)==.…19.已知四棱锥A﹣BCDE,其中AC=BC=2,AC⊥BC,CD∥BE且CD=2BE,CD⊥平面ABC,F为AD的中点.(Ⅰ)求证:EF∥平面ABC;(Ⅱ)设M是AB的中点,若DM与平面ABC所成角的正切值为,求平面ACD与平面ADE夹角的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)取AC中点G,连结FG、BG,推导出四边形BEFG是平行四边形,从而EF∥BG,由此能证明EF∥面ABC.(Ⅱ))由CD⊥平面ABC,是∠CMD为DM与平面ABC所成角,以C为坐标原点,CB为x轴,CA为y轴,CD为z轴建立空间直角坐标系,利用向量法能示出平面ACD与平面ADE夹角的余弦值.【解答】(本小题满分12分)证明:(Ⅰ)取AC中点G,连结FG、BG,∵F、G分别是AD、AC的中点,∴FG∥CD,且.又∵CD∥BE,且CD=2BE,∴四边形BEFG是平行四边形,∴EF∥BG,EF⊄面ABC且BG⊆面ABC,∴EF∥面ABC.…(Ⅱ))∵CD⊥平面ABC∴∠CMD为DM与平面ABC所成角,∵M为AB的中点,且AC=BC=2,AC⊥BC,得∵DM与平面ABC所成角的正切值为,∵CD=2,BE=1,…以C为坐标原点,CB为x轴,CA为y轴,CD为z轴建立空间直角坐标系,则B(2,0,0),A(0,2,0),D(0,0,2),E(2,0,1),∴=(0,﹣2,2),=(2,﹣1,0),设平面ADE的法向量为=(x,y,z),由,取x=1,得=(1,2,2),而平面ACD的法向量为=(2,0,0),由cos<>==,得平面ACD与平面ADE夹角的余弦值为.…20.已知椭圆C:+=1(a>b>0)的离心率为,若圆x2+y2=a2被直线x﹣y﹣=0截得的弦长为2(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点A、B为动直线y=k(x﹣1),k≠0与椭圆C的两个交点,问:在x轴上是否存在定点M,使得•为定值?若存在,试求出点M的坐标和定值;若不存在,请说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(I)求出圆x2+y2=a2的圆心(0,0)到直线x﹣y﹣=0的距离d,利用2=2,解得a2,又=,a2=b2+c2,联立解出即可得出.(II)假设在x轴上存在定点M(m,0),使得•为定值.设A(x1,y1),B(x2,y2),直线方程与椭圆方程联立化为:(1+2k2)x2﹣4k2x+2k2﹣2=0,利用根与系数的关系及其数量积运算性质可得•=,令2m2﹣4m+1=2(m2﹣2),解得m即可得出.【解答】解:(I)圆x2+y2=a2的圆心(0,0)到直线x﹣y﹣=0的距离d==1,∴2=2,解得a2=2,又=,a2=b2+c2,联立解得:a2=2,c=1=b.∴椭圆C的标准方程为:+y2=1.(II)假设在x轴上存在定点M(m,0),使得•为定值.设A(x1,y1),B(x2,y2),联立,化为:(1+2k2)x2﹣4k2x+2k2﹣2=0,则x1+x2=,x1•x2=.﹣m,y1)•(x2﹣m,y2)=(x1﹣m)(x2﹣m)+y1y2=(x1﹣m)(x2﹣m)+k2(x1﹣1)•=(x1(x2﹣1)=(1+k2)x1•x2﹣(m+k2)(x1+x2)+m2+k2=(1+k2)•﹣(m+k2)+m2+k2=,令2m2﹣4m+1=2(m2﹣2),解得m=.因此在x轴上存在定点M(,0),使得•为定值.21.已知函数f(x)=,g(x)=﹣﹣1.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数m的取值范围;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx<﹣成立.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导数的不等式,求出函数的单调区间即可;(Ⅱ)问题可化为对一切x∈(0,+∞)恒成立,令,根据函数的单调性求出h(x)的最小值,从而求出m的范围即可;(Ⅲ)问题等价于,即证,令,根据函数的单调性证明即可.【解答】解:(Ⅰ),得由f'(x)>0,得0<x<e∴f(x)的递增区间是(0,e),递减区间是(e,+∞)…(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,可化为对一切x∈(0,+∞)恒成立令,当x∈(0,1)时h'(x)<0,即h(x)在(0,1)递减当x∈(1,+∞)时h'(x)>0,即h(x)在(1,+∞)递增∴h(x)min=h(1)=4,∴m≤4,即实数m的取值范围是(﹣∞,4]…(Ⅲ)证明:等价于,即证由(Ⅰ)知,(当x=e时取等号)令,则,易知φ(x)在(0,1)递减,在(1,+∞)递增∴(当x=1时取等号)∴f(x)<φ(x)对一切x∈(0,+∞)都成立则对一切x∈(0,+∞),都有成立.…请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时写清题号,并用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图所示,AB为圆O的直径,BC,CD为圆O的切线,B,D为切点.(Ⅰ)求证:AD∥OC;(Ⅱ)若AD•OC=8,求圆O的面积.【考点】与圆有关的比例线段;圆周角定理.【分析】(Ⅰ)利用圆的切线的性质,及直径所对的角为直角,即可证明AD∥OC;(Ⅱ)由(Ⅰ)得Rt△BAD∽Rt△COB,利用AD•OC=8,求出半径,即可求圆O的面积.【解答】(Ⅰ)证明:连接BD,OD∵CB,CD是圆O的两条切线,∴BD⊥OC又∵AB为圆O的直径,则AD⊥DB,∴AD∥OC,∴∠BAD=∠BOC…(Ⅱ)解:设圆O的半径为r,则AB=2OA=2OB=2r由(Ⅰ)得Rt△BAD∽Rt△COB则,∴AB•OB=AD•OC=8,2r2=8,r=2,∴圆O的面积为S=πr2=4π…[选修4-4:坐标系与参数方程]23.已知在直角坐标系xOy中,圆C的参数方程为(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(Ⅰ)求圆C的普通方程和直线l的直角坐标方程;(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)根据参数方程和极坐标方程与普通方程的关系进行转化求解即可.(Ⅱ)求出圆心坐标以及圆心到直线的距离,结合四边形的面积公式进行求解即可.【解答】解:(Ⅰ)圆C的参数方程为(θ为参数),所以圆C的普通方程为(x﹣3)2+(y+4)2=4.…由得ρcosθ+ρsinθ=2,∵ρcosθ=x,ρsinθ=y,∴直线l的直角坐标方程x+y﹣2=0…(Ⅱ)圆心C(3,﹣4)到直线l:x+y﹣2=0的距离为d==…由于M是直线l上任意一点,则|MC|≥d=,∴四边形AMBC面积S=2×AC•MA=AC=2≥2∴四边形AMBC面积的最小值为…[选修4-5:不等式选讲]24.设函数.(Ⅰ)证明:f(x)≥2;(Ⅱ)若当m=2时,关于实数x的不等式f(x)≥t2﹣t恒成立,求实数t的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(Ⅰ)利用绝对值三角不等式,结合基本不等式证明:f(x)≥2;(Ⅱ)求出f(x)min=3,若∀x∈R,恒成立,则只需.【解答】(Ⅰ)证明:∵m>0,,当即时取“=”号…(Ⅱ)解:当m=2时,f(x)=|2x﹣1|+|2x+2|≥|(2x﹣1)﹣(2x+2)|=3则f(x)min=3,若∀x∈R,恒成立,则只需,综上所述实数t的取值范围是.…。
2021届陕西省渭南市高三下学期二模数学(理)试题(解析版)
2021届陕西省渭南市高三下学期二模数学(理)试题一、单选题1.已知集合{}2650A x N x x =∈-+,{2,3,4}B =,则()Z AC B =( )A .{}2,3B .{}1,2,3,4C .{}1,5D .{}1,2,3,5【答案】C【分析】求出集合A 后可求()Z AC B .【详解】{}{}151,2,3,4,5A x N x =∈≤≤=,故(){}1,5Z A C B =,故选:C.2.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由著名数学家欧拉发现的,它将指数函数定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式,若将2i e π表示的复数记为z ,则()12z i ⋅+的值为( ) A .2i -+ B .2i -- C .2i + D .2i -【答案】A【分析】根据欧拉公式求出z ,再由复数乘法运算即可求出.【详解】根据欧拉公式可得2cos sin22iz i i e πππ==+=,则()()12122z i i i i ⋅+=⋅+=-+. 故选:A.3.大数学家高斯在19岁时,解决了困扰数学界达千年之久的圆内接正十七边形的尺规作图问题,并认为这是他最得意的作品之一.设α是圆内接正十七边形的一个内角,则( )A .sin cos 0αα+>B .sin 20α>C .cos 20α>D .tan 20α>【答案】C【分析】利用多边形的内角和公式求出α,再逐项判断即可得正确的选项. 【详解】正十七边形内角和为()17-215ππ=,故1517πα,因为34παπ<<,故0sin 2α<<,而1cos 2α-<<-,故sin cos 0αα+<,故A 错误. 因为3222παπ,故sin 20α<,cos 20α>,tan 20α<,故C 正确,BD 均错误. 故选:C.4.已知离散型随机变量12,ζζ的分布列为则下列说法一定正确的是( ) A .()()12E E ζζ> B .()()12E E ζζ< C .()()12D D ζζ> D .()()12D D ζζ<【答案】D【分析】利用公式计算出两个随机变量的期望和方程后可得正确的选项. 【详解】()()1216512453,344E E ζζ+++++====,故()()12E E ζζ=, ()()2222222121325124592,9 2.544D E ζζ+⨯++++=-==-=,()()12D D ζζ<,故选:D.5.在等比数列{}n a 中,315,a a 是方程2620x x ++=的根,则1179a a a 的值为( ) A .B .C .D .【答案】B【分析】根据315,a a 是方程2620x x ++=的根,利用韦达定理得到3153156,2a a a a +=-⋅=,再利用等比数列的性质求解.【详解】因为在等比数列{}n a 中,315,a a 是方程2620x x ++=的根, 所以3153156,2a a a a +=-⋅=,所以3150,0a a <<,由等比数列的性质得23960a a a ⋅=>, 所以90a <,所以1179a a a === 故选:B6.已知31()3a =,133b =,13log 3c =,则A .a b c <<B .c b a <<C .c a b <<D .b c a <<【答案】C【分析】分析每个数的正负以及与中间值1的大小关系.【详解】因为3011()()133a <<=,103331>=,1133log 3log 10<=,所以01,1,0a b c <<><,∴c a b <<, 故选C.【点睛】指数、对数、幂的式子的大小比较,首先确定数的正负,其次确定数的大小(很多情况下都会和1作比较),在比较的过程中注意各函数单调性的使用.7.已知点P 为抛物线24x y =上任意一点,点A 是圆()22:65C x y +-=上任意一点,则PA 的最小值为( ) A.6BC.D.【答案】B 【分析】设2,4x P x ⎛⎫⎪⎝⎭,先求得点p 与圆心C 的距离的最小值,再减去半径即可. 【详解】设2,4x P x ⎛⎫⎪⎝⎭,则222264x PC x ⎛⎫=+- ⎪⎝⎭,4223616x x =-+, ()221162016x =-+,当216x =时,min 25PC =, 所以min 2555PA =-= 故选:B8.如图,四棱锥S ABCD -的底面为正方形,SD ⊥底面ABCD ,则下列结论中错误的是( )A .AC SB ⊥B .平面SCD ⊥平面SADC .SA 和SC 与平面SBD 所成的角相等D .异面直线AB 与SC 所成的角和异面直线CD 与SA 所成的角相等 【答案】D【分析】对A ,证明出AC ⊥平面SBD ,由线面垂直的性质可判断;对B ,证明出CD ⊂平面SCD 即可证明;对C ,设ACBD O =,连接SO ,易得CSO ∠即为SC 与平面SBD 所成的角,ASO ∠即为SA 与平面SBD 所成的角;对D ,可得异面直线AB 与SC 所成的角小于90,CD SA ⊥.【详解】底面为正方形,AC BD ∴⊥,SD ⊥底面ABCD ,AC ⊂底面ABCD ,SD AC ∴⊥, SDBD D =,AC ∴⊥平面SBD ,又SB ⊂平面SBD ,AC SB ∴⊥,故A 正确;底面为正方形,CD AD ∴⊥,SD ⊥底面ABCD ,SD CD ∴⊥,SD AD D ⋂=,CD平面SAD ,CD ⊂平面SCD ,∴平面SCD ⊥平面SAD ,故B 正确; 设ACBD O =,连接SO ,AC ⊥平面SBD ,CSO ∴∠即为SC 与平面SBD 所成的角,ASO ∠即为SA 与平面SBD 所成的角,易得SA SC =,O 为AC 中点,CSO ASO ∴∠=∠,故C 正确;//AB CD,∴SCD∠异面直线AB与SC所成的角,且90SCD∠<,又CD⊥平面SAD,SA⊂平面SAD,CD SA∴⊥,即异面直线CD与SA所成的角为90,故D错误.综上,只有D选项错误.故选:D.9.函数sinx xx xye e--=+的图象大致为()A.B.C.D.【答案】B【分析】判断函数的奇偶性,再判断函数值的正负,从而排除错误选项,得正确选项. 【详解】因为()sin x xx xy f x e e --==+所以()()sin sin x x x x x x x xf x e e e e------+-==++得()()f x f x =--, 所以sin x xx xy e e --=+为奇函数,排除C ;在[0,)+∞,设()sin g x x x =-,()1cos 0g x x ='-≥,()g x 单调递增,因此()(0)0g x g ≥=,故sin 0x xx xy e e--=≥+在[0,)+∞上恒成立, 排除A 、D , 故选:B.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.10.以“全民全运同心同行”为主题口号的第十四届全国运动会将于2021年9月15日至27日在陕西举行.组委会安排,,,,A B C D E 五名工作人员到我市三个比赛场馆做准备工作,每个场馆至少1人,则不同的安排方法有( ) A .150种 B .210种C .240种D .300种【答案】A【分析】先将5人按照要求分成三组,再排序分到三个不同场馆,按照分步乘法计数原理计算即得结果.【详解】根据题意,分两步进行分析: 第一步:分成3组,每组至少一人.(1)按照一组3人,其他两组各1人,共有3510C =种情况; (2)按照一组1人,其他两组各2人,共有1225422215C C C A =种情况. 故共有101525+=种分组方案; 第二步:排序.将分好的三组进行全排列,分到三个不同的比赛场馆,共336A =种排法.故五名工作人员到三个比赛场馆,每个场馆至少1人,不同的安排方法共有256150⨯=种. 故选:A.【点睛】易错点点睛:处理平均分问题时,按照组合数进行分组后,要除以平均组数的全排列,以除掉重复的情况,这是常考的易错点.11.已知ln 0a b -=,1c d -=,则22()()a c b d -+-的最小值是. A .1 BC .2D.【答案】C【分析】设点(),b a 是曲线:ln C y x =上的点,点()d c ,是直线:1l y x =+上的点;()()22a cb d -+-可看成曲线C 上的点到直线l 上的点的距离的平方.然后将问题转化为求曲线C 上一点到直线l 距离的最小值的平方,直接对函数ln y x =求导,令导数为零,可求出曲线C 上到直线l 距离最小的点,然后利用点到直线的距离公式可求出最小距离,从而得出答案.【详解】设(),b a 是曲线:ln C y x =上的点,()d c ,是直线:1l y x =+上的点;()()22a cb d -+-可看成曲线C 上的点到直线l 上的点的距离的平方. 对函数ln y x =求导得1y x'=,令1y '=,得1x =, 所以,曲线C 上一点到直线l 上距离最小的点为()10,, 该点到直线l的距离为 因此,()()22a c b d -+-的最小值为22=. 故选C .【点睛】本题考查距离的最值问题,将问题进行转化是解本题的关键,属于中等题.12.已知双曲线C :()222210,0x y a b a b-=>>的虚轴的一个顶点为D ,直线2x a =与C 交于A ,B 两点,若ABD △的垂心在C 的一条渐近线上,则C 的离心率为( ) A.B .2CD【答案】D【分析】由ABD △的垂心在C 的一条渐近线上,设垂心为(),H a b ,DH AB ⊥,再由直线2x a =与C 交于A ,B两点得()2A a,()2,B a ,化简整理可得22a b =,进而求得离心率.【详解】设ABD △的垂心为H ,则DH AB ⊥,不妨设()0,D b ,(),H a b,()2A a,()2,B a ,因为))1112AD BHb b kkaa=⨯=--,所以则22a b =,22212b e a=+=,e =故选:D .【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).二、填空题13.已知向量满足3||||1,()2a b a a b ==⋅+=,则,a b =___________. 【答案】3π【分析】由已知可求得12a b ⋅=,即可求出cos ,a b ,得出所求.【详解】3||||1,()2a b a a b ==⋅+=, 232a ab ∴+⋅=,则12a b ⋅=,1cos ,2a b a b a b=∴⋅=⋅, [],0,a b π∈,,3a b π∴=.故答案为:3π.14.设n S 为等差数列{}n a 的前n 项和,若32413,1S S S a =+=-,则3a =___________. 【答案】2【分析】根据3243S S S =+列出式子求出公差即可求出3a . 【详解】设等差数列{}n a 的公差为d ,则由3243S S S =+可得()111333246a d a d a d +=+++,即132d a =-,11a =-,32d ∴=, 312132a a d ∴=+=-+=.故答案为:2.15.下列四个命题是真命题的序号为___________. ①命题“,cos 1x R x ∀∈≤”的否定是“,cos 1x R ∃∈>”. ②曲线3y x =在0x =处的切线方程是0y =.③函数1,1,()23,1x ae x f x x x -⎧=⎨+>⎩为增函数的充要条件是05a <<.④根据最小二乘法,由一组样本点(,i i x y )(其中1,2,...,300i =)求得的线性回归方程是y bx a =+,则至少有一个样本点落在回归直线y bx a =+上.【答案】①②【分析】①由含有一个量词的命题的否定的定义判断;②利用导数的几何意义判断;③利用分段函数的单调性求解判断;④根据回归直线恒过样本中心,但样本点不一定在回归直线上判断;【详解】①由含有一个量词的命题的否定知:命题“,cos 1x R x ∀∈≤”的否定是“,cos 1x R ∃∈>”,故正确.②因为3y x =,所以()()2300,0,0y x y y ''===,所以曲线在0x =处的切线方程是0y =,故正确;③若函数1,1,()23,1x ae x f x x x -⎧=⎨+>⎩为增函数,则05a a >⎧⎨≤⎩,解得05a <≤,所以函数为增函数的充要条件是05a <≤,故错误;④回归方程y bx a =+恒过样本点的中心,但样本点不一定落在回归直线上,故错误; 故答案为:①②16.所谓正多面体,是指多面体的各个面都是全等的正多边形,并且各个多面角都是全等的多面角.例如:正四面体(即正棱锥体)的四个面都是全等的三角形,每个顶点有一个三面角,共有四个三面角,可以完全重合,也就是说它们是全等的.毕达哥拉斯学派将正多面体称为宇宙体,并指出只有五种宇宙体,即正四面体、正六面体、正人面体、正十二面体、正二十面体.由棱长为1的正方体的六个表面的中心可构成一正八面体,则该正八面体的内切球的表面积为___________. 【答案】3π【分析】如图所示,12345,,,,O O O O O 分别为所在正方形的中心,O 为正八面体内切球的球心,取23O O 的中点为E ,连接1O E ,过O 作1OK O E ⊥,垂足为K ,则OK 为内切球的半径,求出OK 的长度后可求内切球的表面积.【详解】如图所示,12345,,,,O O O O O 分别为所在正方形的中心,O 为正八面体内切球的球心. 由正方体和正八面体的对称性可得O 为正方形2345O O O O 的中心,且1O O ⊥平面2345O O O O ,取23O O 的中点为E ,连接1O E ,过O 作1OK O E ⊥,垂足为K ,则OK 为内切球的半径.因为正方体的棱长为1,故正方形2345O O O O,所以4OE =,而112OO =,故1OK ==, 故内切球的表面积为34363ππ⨯=, 故答案为:3π.三、解答题17.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a b c bc a b c-+=+-. (1)求角A ;(2)若ABC 的外接圆半径为1,求ABC 的面积S 的最大值. 【答案】(1) 3A π=;(2)4【分析】(1)化简,再用余弦定理和三角形内角和,即可求出角A .(2)根据正弦定理求出a ,根据余弦定理结合基本不等式以及三角形的面积公式进行求解即可. 【详解】解:(1)由a b c bc a b c-+=+-化简得222b c a bc +-=, 由余弦定理222cos 2b c a A bc+-=得1cos 22bc A bc == 又因为0A π<<, 所以3A π=. (2)由正弦定理得22sin 2sin sin 3a R a R A A π=⇒=== 所以2232b c bc bc bc bc =+--=, 当且仅当b c =时取等号.故11sin 32224S bc A =⨯⨯=(b c =时取等号).即ABC 面积S 的最大值为334【点睛】本题主要考查了正弦定理,余弦定理,三角形的面积公式,基本不等式的性质在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.如图,在多面体ABCDEF 中,矩形BDEF 所在平面与正方形ABCD 所在平面垂直,1AB =,点M 为AE 的中点.(1)求证://BM 平面EFC ;(2)若DEAD =,求二面角M BD A --的正弦值.【答案】(1)证明见解析;(26【分析】(1)连接AC 交BD 于点N .连接MN ,通过//MN CE 和//BN EF 证明平面//BMN 平面CEF ,再利用面面平行的性质可得出;(2)以D 为原点建立空间直角坐标系,分别求出平面BDM 和平面ABD 的一个法向量,利用向量关系即可求解.【详解】证明:(1)连接AC 交BD 于点N .连接MN . 因为四边形ABCD 是正方形,所以N 为AC 的中点, 由于M 为AE 的中点,所以//MN CE ,又因为MN ⊄平面CEF ,CE ⊂平面CEF ,所以//MN 平面CEF , 易知//BN EF ,BN ⊄平面CEF ,EF ⊂平面CEF , 所以//BN 平面CEF ,因为MN BN N ⋂=,BN ⊂平面BMN ,MN ⊂平面BMN , 所以平面//BMN 平面CEF . 又因为BM ⊂平面BMN ,所以//BM 平面EFC ;(2)以D 为原点建系如图.则()()110,0,0,,0,,1,1,022D M B ⎛⎫ ⎪⎝⎭,则11,0,22DM ⎛⎫= ⎪⎝⎭,(1,1,0)DB =,设平面BDM 的法向量为(),,n x y z =,则有00DM n DB n ⎧⋅=⎨⋅=⎩,即022x z x y ⎧+=⎪⎨⎪+=⎩.令1x =,得()1,1,1n =-- 由于DE ⊥平面ABD ,所以取平面ABD 的法向量为()0,0,1m = 则13cos ,||313m n m n m n ⋅-〈〉===-⨯,所以26sin ,1cos ,3m n m n 〈〉=-〈〉=, 则二面角M BD A --的正弦值为63.【点睛】思路点睛:利用法向量求解空间二面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 19.已知函数()2ln f x x a x =-.(1)当2a =时,试判断函数()f x 的单调性;(2)当0a >时,若对任意的1(,)∈+∞x e,()2xf x x e a >-+恒成立,求a 的取值范围.【答案】(1)在()0,1上单调递减;在(1,)+∞上单调递增;(2)()0,e .【分析】(1)由2a =得到22ln ()(0)f x x x x =->,再由()0f x '>, ()0f x '<求解即可;(2)将2()e xf x x a >-+恒成立,转化为对任意的1,x e ⎛⎫∈+∞ ⎪⎝⎭,e 1ln x a x<+恒成立,令e ()1ln xg x x=+,用导数法求解其最小值即可.【详解】(1)当2a =时,22ln ()(0)f x x x x =->,因为()2212()2x f x x x x-'=-=. 所以()0f x '>得:1x >;令()0f x '<得:01x <<, 所以函数()f x 在()0,1上单调递减;在(1,)+∞上单调递增. (2)2()e x f x x a >-+即e (1ln )x a x >+,因为1,x e ⎛⎫∈+∞ ⎪⎝⎭,所以1ln 0x +>,所以当0a >时,对任意的1,x e ⎛⎫∈+∞ ⎪⎝⎭,e 1ln xa x<+恒成立.令e ()1ln xg x x=+,则211ln ()(1ln )x e x x g x x ⎛⎫+- ⎪⎝⎭'=+,令1()1ln h x x x=+-,显然函数()h x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,由于()ln11011h =-=+, 所以当11x e<<时,()0h x <, ()0g x '∴>所以函数()g x 在1,1e ⎛⎫⎪⎝⎭上单调递减,在[1,)+∞上单调递增,所以()()1g x g e ≥=,所以0a e <<, 故a 的取值范围为()0,e .【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<;20.中国提出共建“一带一路”,旨在促进更多的经济增长和更大的互联互通,随着“一带一路”的发展,中亚面粉、波兰苹果、法国红酒走上了国人的餐桌,中国制造的汽车、电子元件、农产品丰富着海外市场.为拓展海外市场,某电子公司新开发一款电子产品,该电子产品的一个系统G 有3个电子元件组成,各个电子元件能正常工作的概率为23,且每个电子元件能否正常工作相互独立,若系统G 中有超过一半的电子元件正常工作,则G 可以正常工作,否则就需要维修,且维修所需费用为900元. (1)求系统需要维修的概率;(2)该电子产品共由3个系统G 组成,设ξ为电子产品所需要维修的费用,求ξ的期望;(3)为提高系统G 正常工作的概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率为p ,且新增元件后有超过一半的电子元件正常工作,则G 可以正常工作.问:p 满足什么条件时可以提高整个系统G 的正常工作概率?【答案】(1)727;(2)700;(3)21p <时,可以提高整个系统G 的正常工作概率.【分析】(1)由n 次独立重复试验中事件A 恰好发生k 次概率计算公式能求出系统需要维修的概率.(2)设X 为需要维修的系统的个数,则7~3,27X B ⎛⎫⎪⎝⎭,且900X ξ=,由此能求出ξ的期望()E ξ.(3)当系统G 有5个元件时,原来3个电子元件中至少有1个元件正常工作,G 系统正常才正常工作,若前3个电子元件中有1个正常工作,同时新增的两个必须都正常工作,若前3个电子元件中有2个正常工作,同时新增的两个至少有1个正常工作,若前3个电子元件都正常工作,则不管新增的两个是否正常工作,系统G 均能正常工作,由此求出新增两个元件后系统G 能正常一作的概率,从能求出p 满足什么条件时可以提高整个系统G 的正常工作概率.【详解】解:(1)系统需要维修的概率为32133121733327C C ⎛⎫⎛⎫+⋅= ⎪ ⎪⎝⎭⎝⎭,(2)设X 为需要维修的系统的个数,则7~3,27X B ⎛⎫⎪⎝⎭,且900X ξ=, 所以()()7900900370027E E X ξ==⨯⨯=. (3)当系统G 有5个电子元件时,原来3个电子元件中至少有一个元件正常工作,系统G 才正常工作①若前3个电子元件中有1个正常工作,则同时新增的两个必须都正常工作,则概率为21223212339C p p ⎛⎫⋅⋅= ⎪⎝⎭; ②若2个电子元件中有2个正常工作,则同时新增的两个至少有1个正常工作,则概率为()()11223221412339C C p p p p p ⎡⎤⋅⋅-+=-⎣⎦; ③若前3个电子元件中3个都正常工作,则不管新增两个元件能否正常工作,系统G 均能正常工作,则概率为33328327C ⎛⎫⋅= ⎪⎝⎭; 所以新增两个元件后系统G 能正常工作的概率为()22224882829927927p p p p p -+-+=+令28287192727p p -+>-,解得22p <<,即21p <时,可以提高整个系统G 的正常工作概率.21.已知点()2,1P -是椭圆()2222:10x y E a b a b +=>>上一点,且E 的离心率为2.(1)求椭圆E 的方程;(2)点A 、B 在椭圆E 上,PD AB ⊥,D 为垂足,若直线PA 和直线PB 斜率之积为16-.求证:存在定点N ,使得ND 为定值. 【答案】(1)22163x y +=;(2)证明见解析.【分析】(1)由已知条件可得出关于a 、b 的方程组,解出这两个量的值,由此可得出椭圆E 的标准方程;(2)对直线l 的斜率是否存在进行分类讨论,将直线l 的方程与椭圆E 的方程联立,利用已知条件求出直线AB 所过定点M 的坐标,取PM 的中点N ,利用直角三角形的几何性质可得出结果.【详解】(1)由题设可得224112a b e ⎧+=⎪⎪⎨⎪==⎪⎩,解得2263a b ⎧=⎨=⎩ 所以椭圆E 的方程为22163x y +=;(2)当直线AB 的斜率存在时,设其方程为y kx m =+.联立22163x y y kx m ⎧+=⎪⎨⎪=+⎩可得()()222214230k x kmx m +++-=, 由()()()2222221682138630k m k m m k ∆=-+-=--->,得()226 3.*m k <+设()11,A x y 、()22,B x y ,则有122421km x x k +=-+,()21222321m x x k -=+,因为()2,1P -,所以()()()()2212121212121211112224PA PBk x x k m x x m y y k k x x x x x x +-++---⋅=⨯=+++++()()()()222222222222234114211212188226234242121m km k k m m k m m k k k km m m km k k -⎛⎫⨯+--+- ⎪-+-+++⎝⎭===--+--⎛⎫+-+ ⎪++⎝⎭, 则22422310k km m m +-+-=,所以()()212210k m k m -++-=, 由于P ∉直线AB ,所以210k m -+≠,因此2210k m +-=即12m k =-(满足()*式),故直线AB 的方程可化为()112y k x =-+,所以直线AB 恒过定点11,2M ⎛⎫⎪⎝⎭;当直线AB 的斜率不存在时,可得其方程为1x =,不妨设1,2A ⎛ ⎝⎭、1,2B ⎛⎫- ⎪ ⎪⎝⎭,显然有11196PA PB k k ⎫⎛⎫--⎪⎪⎝⎭⎝⎭⋅==-. 因此直线AB 恒过定点11,2M ⎛⎫⎪⎝⎭. 因为PD AB ⊥,所以取N 为PM 的中点,即13,24N ⎛⎫- ⎪⎝⎭,有11,2M ⎛⎫⎪⎝⎭,12ND PM ==即存在定点N ,使ND 为定值.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.22.在平面直角坐标系xOy 中,直线l的参数方程为12x ty =+⎧⎪⎨=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为26cos 10.ρρθ-+=(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)设直线l 与曲线C 交于,A B 两点,求11||||OA OB +的值. 【答案】(1)y =,22610x y x +-+=;(2)3.【分析】(1)消参即可得出直线方程,222,cos x y x ρρθ+==即可得出直角坐标方程. (2)联立极坐标方程,由韦达定理可得31A B A B ρρρρ+==,,进而可得结果.【详解】(1)由12x t y =+⎧⎪⎨=⎪⎩消去参数t ,得直线l的普通方程为y =,将222,cos x y x ρρθ+==代入26cos 10ρρθ-+=中, 得曲线C 的直角坐标方程为22610x y x +-+=. (2)直线l 的极坐标方程是()3θρπ=∈R ,代入曲线C 的极坐标方程得2310.ρρ-+= 设,A B 两点对应的极径分别为,,A B ρρ则31A B A B ρρρρ+==,, 所以11|||| 3.||||||||A BA BOB OA OA OB OA OB ρρρρ+++===⋅ 23.已知函数()42 1f x x x =---的最大值为m . (1)求m ;(2)若,,a b c 均为正数,且满足a b c m ++=,求证:2223b c a a b c++.【答案】(1)3m =;(2)证明见解析.【分析】(1)根据绝对值的几何意义,分1x ≤,14x <<,4x ≥三种情况求解;(2)由(1)知,3a b c ++=,然后由222a b c a b c c a b+++++,利用基本不等式证明;【详解】(1)当1x ≤时,()23f x x =+≤, 当14x <<时,()()366,3f x x =-+∈-; 当4x ≥时,()26f x x =---.综上所述,函数()y f x =的最大值为3m = (2)由(1)知,3a b c ++=.由基本不等式得222a b c a b c c a b+++++,222222a b c c a b a b c c a b ⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当且仅当a b c ==时,等号成立,所以2223b c a a b c a b c++++=.【点睛】易错点睛:利用基本不等式证明或求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方。
陕西省渭南市2021届新高考数学考前模拟卷(2)含解析
陕西省渭南市2021届新高考数学考前模拟卷(2)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 是虚数单位,则复数24(1)i =-( ) A .2i B .2i -C .2D .2-【答案】A 【解析】 【分析】根据复数的基本运算求解即可. 【详解】224422(1)2ii i i i===---. 故选:A 【点睛】本题主要考查了复数的基本运算,属于基础题. 2.3481(3)(2)x x x+-展开式中x 2的系数为( ) A .-1280 B .4864 C .-4864 D .1280【答案】A 【解析】 【分析】根据二项式展开式的公式得到具体为:()23174268811322x C x C x x ⎡⎤⎡⎤⎛⎫⎛⎫-+⋅-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出33x 项,第二个括号里出1x项,或者第一个括号里出4x ,第二个括号里出21x ,具体为:()23174268811322x C x C x x ⎡⎤⎡⎤⎛⎫⎛⎫-+⋅-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦化简得到-1280 x 2 故得到答案为:A. 【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.3.设点A ,B ,C 不共线,则“()AB AC BC +⊥”是“AB AC =”( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】C 【解析】 【分析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可. 【详解】由于点A ,B ,C 不共线,则()()0AB AC BC AB AC BC +⊥⇔+⋅=()()22AB AC AC AB AC AB ⇔+⋅-=-=22AC AB ⇔=⇔“AB AC =”;故“()AB AC BC +⊥”是“AB AC =”的充分必要条件. 故选:C. 【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.4.已知函数()xe f x ax x=-,(0,)x ∈+∞,当21x x >时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A .(,]e -∞ B .(,)e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦【答案】D 【解析】 【分析】 由()()1221f x f x x x <变形可得()()1122x fx x f x <,可知函数()()g x xf x =在(0,)x ∈+∞为增函数, 由()20x g x e ax '=-≥恒成立,求解参数即可求得取值范围.【详解】(0,),x ∈+∞()()1122x f x x f x ∴<,即函数2()()x g x xf x e ax ==-在(0,)x ∈+∞时是单调增函数.则()20xg x e ax '=-≥恒成立.2xe a x∴≤.令()x e m x x =,则2(1)()xx e m x x-'= (0,1)x ∈时,()0,()m x m x '<单调递减,(1,)x ∈+∞时()0,()m x m x '>单调递增.min 2()(1),2ea m x m e a ∴≤==∴≤故选:D. 【点睛】本题考查构造函数,借助单调性定义判断新函数的单调性问题,考查恒成立时求解参数问题,考查学生的分析问题的能力和计算求解的能力,难度较难.5.已知直线l 20y ++=与圆O :224x y +=交于A ,B 两点,与l 平行的直线1l 与圆O 交于M ,N两点,且OAB 与OMN 的面积相等,给出下列直线1l 0y +-=20y +-=,③20x -+=0y ++=.其中满足条件的所有直线1l 的编号有( ) A .①② B .①④C .②③D .①②④【答案】D 【解析】 【分析】求出圆心O 到直线l 的距离为:112d r ==,得出120AOB ∠=︒,根据条件得出O 到直线1l 的距离1d '=或.【详解】解:由已知可得:圆O :224x y +=的圆心为(0,0),半径为2, 则圆心O 到直线l 的距离为:112d r ==, ∴120AOB ∠=︒,而1//l l ,OAB 与OMN 的面积相等, ∴120MON ∠=︒或60︒,即O 到直线1l 的距离1d '=或 根据点到直线距离可知,①②④满足条件. 故选:D.【点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.6.定义:{}()()N f x g x ⊗表示不等式()()f x g x <的解集中的整数解之和.若2()|log |f x x =,2()(1)2g x a x =-+,{}()()6N f x g x ⊗=,则实数a 的取值范围是 A .(,1]-∞- B .2(log 32,0)-C .2(2log 6,0]-D .2log 32(,0]4- 【答案】D 【解析】 【分析】 【详解】由题意得,{}()()6N f x g x ⊗=表示不等式22|log |(1)2x a x <-+的解集中整数解之和为6.当0a >时,数形结合(如图)得22|log |(1)2x a x <-+的解集中的整数解有无数多个,22|log |(1)2x a x <-+解集中的整数解之和一定大于6.当0a =时,()2g x =,数形结合(如图),由()2f x 解得144x <<.在1(,4)4内有3个整数解,为1,2,3,满足{}()()6N f x g x ⊗=,所以0a =符合题意.当0a <时,作出函数2()|log |f x x =和2()(1)2g x a x =-+的图象,如图所示.若{}()()6N f x g x ⊗=,即22|log |(1)2x a x <-+的整数解只有1,2,3.只需满足(3)(3)(4)(4)f g f g <⎧⎨≥⎩,即2log 342292a a <+⎧⎨≥+⎩,解得2log 3204a -<≤,所以2log 3204a -<<. 综上,当{}()()6N f x g x ⊗=时,实数a 的取值范围是2log 32(,0]4-.故选D. 7.已知向量(,1)a m =,(1,2)b =-,若(2)a b b -⊥,则a 与b 夹角的余弦值为( )A .B .C .65-D 【答案】B 【解析】 【分析】直接利用向量的坐标运算得到向量2a b -的坐标,利用(2)=0a b b -⋅求得参数m ,再用cos ,||||a ba b a b ⋅〈〉=计算即可. 【详解】依题意,2(2,3)a b m -=+-, 而(2)=0a b b -⋅, 即260m ---=, 解得8m =-, 则cos ,||||5a b a b a b ⋅〈〉===⋅故选:B. 【点睛】本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想. 8.设全集,U R =集合{}{}1,||2M x x N x x =<=>,则()UM N ⋂=( )A .{}|2x x >B .{}|1x x ≥C .{}|12x x <<D .{}|2x x ≥【答案】A 【解析】 【分析】 先求出UM ,再与集合N 求交集.【详解】 由已知,{|1}UM x x =≥,又{}|2N x x =>,所以{|2}U M N x x ⋂=>.故选:A. 【点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.9.已知向量a 与向量()4,6m =平行,()5,1b =-,且14a b ⋅=,则a =( ) A .()4,6B .()4,6--C .1313⎛ ⎝⎭D .1313⎛-- ⎝⎭【答案】B 【解析】 【分析】设(),a x y =,根据题意得出关于x 、y 的方程组,解出这两个未知数的值,即可得出向量a 的坐标. 【详解】设(),a x y =,且()4,6m =,()5,1b =-,由//a m 得64x y =,即32x y =,①,由514a b x y ⋅=-+=,②,所以32514x y x y =⎧⎨-+=⎩,解得46x y =-⎧⎨=-⎩,因此,()4,6a =--.故选:B. 【点睛】本题考查向量坐标的求解,涉及共线向量的坐标表示和向量数量积的坐标运算,考查计算能力,属于中等题.10.已知三棱锥P ﹣ABC 的顶点都在球O 的球面上,PA =PB =,AB =4,CA =CB =,面PAB ⊥面ABC ,则球O 的表面积为( ) A .103πB .256πC .409πD .503π【答案】D 【解析】 【分析】由题意画出图形,找出△PAB 外接圆的圆心及三棱锥P ﹣BCD 的外接球心O ,通过求解三角形求出三棱锥P ﹣BCD 的外接球的半径,则答案可求. 【详解】如图;设AB 的中点为D ;∵PA =PB =AB =4,∴△PAB 为直角三角形,且斜边为AB ,故其外接圆半径为:r 12=AB =AD =2; 设外接球球心为O ;∵CA=CB10=,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC226CA AD=-=. ∴O在CD上;故有:AO2=OD2+AD2⇒R2=(6-R)2+r2⇒R56 =;∴球O的表面积为:4πR2=4π255036π⎛⎫⨯=⎪⎝⎭.故选:D.【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.11.已知函数2()ln(1)f xx x-=+-,则函数(1)=-y f x的图象大致为()A.B.C.D.【答案】A【解析】【分析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像. 【详解】设2()(1)ln 1g x f x x x -=-=-+,由于120112ln 22g -⎛⎫=> ⎪⎝⎭+,排除B 选项;由于()2222(e),e 2e 3eg g --==--,所以()g e >()2e g ,排除C 选项;由于当x →+∞时,()0>g x ,排除D 选项.故A 选项正确. 故选:A 【点睛】本题考查了函数图像的性质,属于中档题.12.已知双曲线C :22221(0,0)x y a b a b-=>>的焦点为1F ,2F ,且C 上点P 满足120PF PF ⋅=,13PF =,24PF =,则双曲线C 的离心率为A2B.C .52D .5【答案】D 【解析】 【分析】根据双曲线定义可以直接求出a ,利用勾股定理可以求出c ,最后求出离心率. 【详解】依题意得,2121a PF PF =-=,125F F ==,因此该双曲线的离心率12215F F e PF PF ==-.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力. 二、填空题:本题共4小题,每小题5分,共20分。
陕西省渭南市2021届新高考数学第二次押题试卷含解析
陕西省渭南市2021届新高考数学第二次押题试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R ,集合2{|340}A x x x =-->,则U A =ð( )A .{x|-1 <x<4}B .{x|-4<x<1}C .{x|-1≤x≤4}D .{x|-4≤x≤1}【答案】C【解析】【分析】解一元二次不等式求得集合A ,由此求得U A ð【详解】由()()234410x x x x --=-+>,解得1x <-或4x >. 因为{|1A x x =<-或4}x >,所以U {|14}x x A =-≤≤ð.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.2.集合{}|M y y x ==∈Z 的真子集的个数为( ) A .7B .8C .31D .32 【答案】A【解析】【分析】计算{}M =,再计算真子集个数得到答案.【详解】 {}{}|M y y x ==∈=Z ,故真子集个数为:3217-=.故选:A .【点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.3.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .【答案】B【解析】【分析】由题意首先确定导函数的符号,然后结合题意确定函数在区间()()(),0,0,1,1,-∞+∞和0,1x x ==处函数的特征即可确定函数图像.【详解】Q 函数()f x 在R 上可导,其导函数为()f x ',且函数()f x 在1x =处取得极大值,∴当1x >时,()0f x '<;当1x =时,()0f x '=;当1x <时,()0f x '>.0x ∴<时,()0y xf x '=->,01x <<时,()0y xf x '=-<,当0x =或1x =时,()0y xf x '=-=;当1x >时,()0xf x '->.故选:B【点睛】根据函数取得极大值,判断导函数在极值点附近左侧为正,右侧为负,由正负情况讨论图像可能成立的选项,是判断图像问题常见方法,有一定难度.4.过双曲线()2222:10,0x y C a b a b-=>>左焦点F 的直线l 交C 的左支于,A B 两点,直线AO (O 是坐标原点)交C 的右支于点D ,若DF AB ⊥,且BF DF =,则C 的离心率是( ) A 5 B .2 C 5D .102【答案】D【解析】【分析】如图,设双曲线的右焦点为2F ,连接2DF 并延长交右支于C ,连接FC ,设2DF x =,利用双曲线的几何性质可以得到2DF x a =+,4FC x a =+,结合Rt FDC ∆、2Rt FDF ∆可求离心率.【详解】如图,设双曲线的右焦点为2F ,连接FC ,连接2DF 并延长交右支于C .因为2,==FO OF AO OD ,故四边形2FAF D 为平行四边形,故2FD DF ⊥.又双曲线为中心对称图形,故2F C BF =.设2DF x =,则2DF x a =+,故22F C x a =+,故4FC x a =+.因为FDC ∆为直角三角形,故()()()2224222x a x a x a +=+++,解得x a =.在2Rt FDF ∆中,有22249c a a =+,所以51022c e a ===. 故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于,,a b c 的方程,本题属于难题.5.若复数21z m mi =-+(m R ∈)在复平面内的对应点在直线y x =-上,则z 等于( )A .1+iB .1i -C .1133i --D .1133i -+ 【答案】C【解析】【分析】由题意得210m m -+=,可求得13m =,再根据共轭复数的定义可得选项. 【详解】由题意得210m m -+=,解得13m =,所以1133z i =-+,所以1133z i =--, 故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.6.在ABC V 中,12BD DC =u u u v u u u v ,则AD uuu v =( ) A .1344+AB AC u u u v u u u v B .21+33AB AC u u u v u u u v C .12+33AB AC u u u v u u u v D .1233AB AC -u u u v u u u v 【答案】B【解析】【分析】在,AB AC 上分别取点E F 、,使得12,2AE EB AF FC ==u u u r u u u r u u u r u u u r , 可知AEDF 为平行四边形,从而可得到2133AD AE AF AB AC u u u r u u u r u u u r u u u r u u u r =+=+,即可得到答案. 【详解】如下图,12BD DC =u u u r u u u r ,在,AB AC 上分别取点E F 、,使得12,2AE EB AF FC ==u u u r u u u r u u u r u u u r , 则AEDF 为平行四边形,故2133AD AE AF AB AC u u u r u u u r u u u r u u u r u u u r =+=+,故答案为B.【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.7.已知等差数列{}n a 中,若5732a a =,则此数列中一定为0的是( )A .1aB .3aC .8aD .10a 【答案】A【解析】【分析】将已知条件转化为1,a d 的形式,由此确定数列为0的项.【详解】由于等差数列{}n a 中5732a a =,所以()()113426a d a d +=+,化简得10a =,所以1a 为0.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.8.i 为虚数单位,则32i 1i-的虚部为( ) A .i -B .iC .1-D .1【答案】C【解析】【分析】利用复数的运算法则计算即可.【详解】 ()()()()32122111111i i i i i i i i i i i -+-===-+=----+,故虚部为1-. 故选:C.【点睛】本题考查复数的运算以及复数的概念,注意复数(),a bi a b R +∈的虚部为b ,不是bi ,本题为基础题,也是易错题.9.若直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为m =( )A .1B .2CD .3【答案】A【解析】【分析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆222230x x y y ++--=的标准方程22(1)(1)5x y ++-=,圆心坐标为(1,1)-,因为直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为所以直线20x y m ++=过圆心,得2(1)10m ⨯-++=,即1m =.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.10.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )A .6.25%B .7.5%C .10.25%D .31.25%【答案】A【解析】【分析】 由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】 水费开支占总开支的百分比为25020% 6.25%250450100⨯=++. 故选:A【点睛】本题考查折线图与柱形图,属于基础题.11.下列函数中,在区间(0,)+∞上单调递减的是( )A .12y x =B .2x y =C .12log y = xD .1y x =- 【答案】C【解析】【分析】由每个函数的单调区间,即可得到本题答案.【详解】 因为函数12,2x y x y ==和1y x=-在(0,)+∞递增,而12log y x =在(0,)+∞递减. 故选:C【点睛】本题主要考查常见简单函数的单调区间,属基础题. 12.要得到函数2sin 26y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数2cos2y x =的图象 A .向左平移3π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度 【答案】D【解析】【分析】 先将2sin 26y x π⎛⎫=+⎪⎝⎭化为2cos 26π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦y x ,根据函数图像的平移原则,即可得出结果. 【详解】 因为2sin 22cos 22cos 2636y x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以只需将2cos2y x =的图象向右平移6π个单位. 【点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。
陕西省渭南市2021届新高考数学一模考试卷含解析
陕西省渭南市2021届新高考数学一模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为()A.6.25%B.7.5%C.10.25%D.31.25%【答案】A【解析】【分析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为25020% 6.25% 250450100⨯=++.故选:A【点睛】本题考查折线图与柱形图,属于基础题.2.执行下面的程序框图,若输出的S的值为63,则判断框中可以填入的关于i的判断条件是()A .5i ≤B .6i ≤C .7i ≤D .8i ≤【答案】B 【解析】 【分析】根据程序框图,逐步执行,直到S 的值为63,结束循环,即可得出判断条件. 【详解】 执行框图如下: 初始值:0,1S i ==,第一步:011,112S i =+==+=,此时不能输出,继续循环; 第二步:123,213S i =+==+=,此时不能输出,继续循环; 第三步:347,314S i =+==+=,此时不能输出,继续循环; 第四步:7815,415S i =+==+=,此时不能输出,继续循环; 第五步:151631,516S i =+==+=,此时不能输出,继续循环; 第六步:313263,617S i =+==+=,此时要输出,结束循环; 故,判断条件为6i ≤. 故选B 【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型. 3.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .【答案】B 【解析】 考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S 的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案. 解:程序在运行过程中各变量的值如下表示: S i 是否继续循环 循环前 1 1/ 第一圈3 2 是 第二圈7 3 是 第三圈15 4 是 第四圈31 5 否 故最后当i <5时退出, 故选B .4.若复数z 满足(23i)13i z +=,则z =( ) A .32i -+ B .32i +C .32i --D .32i -【答案】B 【解析】 【分析】 由题意得,13i23iz =+,求解即可. 【详解】因为(23i)13i z +=,所以13i 13i(23i)26i 3932i 23i (23i)(23i)49z -+====+++-+. 故选:B. 【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题. 5.函数()f x 的图象如图所示,则它的解析式可能是( )A .()212xx f x -= B .()()21xf x x =-C .()ln f x x =D .()1xf x xe =-【答案】B 【解析】【分析】根据定义域排除C ,求出()1f 的值,可以排除D ,考虑()100f -排除A . 【详解】根据函数图象得定义域为R ,所以C 不合题意;D 选项,计算()11f e =-,不符合函数图象;对于A 选项, ()10010099992f -=⨯与函数图象不一致;B 选项符合函数图象特征.故选:B 【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法. 6.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D 【解析】 试题分析:m α⊥,,n βαβ∴⊥,故选D.考点:点线面的位置关系.7.已知复数z 满足i•z =2+i ,则z 的共轭复数是() A .﹣1﹣2i B .﹣1+2iC .1﹣2iD .1+2i【答案】D 【解析】 【分析】两边同乘-i ,化简即可得出答案. 【详解】i•z =2+i 两边同乘-i 得z=1-2i,共轭复数为1+2i ,选D. 【点睛】(,)z a bi a b R =+∈的共轭复数为z a bi =-8.某四棱锥的三视图如图所示,记S 为此棱锥所有棱的长度的集合,则( ).A .22S ∉,且23S ∉B .22S ∉,且23S ∈C .22S ∈,且23S ∉D .22S ∈,且23S ∈【答案】D 【解析】 【分析】首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长. 【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体, 如图所示:所以:2AB BC CD AD DE =====,22AE CE ==,22(22)223BE =+=.故选:D.. 【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题. 9.要得到函数32sin 2y x x =-的图像,只需把函数sin 232y x x =-的图像( )A .向左平移2π个单位 B .向左平移712π个单位 C .向右平移12π个单位D .向右平移3π个单位 【答案】A 【解析】 【分析】运用辅助角公式将两个函数公式进行变形得2sin 23y x π⎛⎫=--⎪⎝⎭以及2sin 23y x π⎛⎫=-⎪⎝⎭,按四个选项分别对2sin 23y x π⎛⎫=- ⎪⎝⎭变形,整理后与2sin 23y x π⎛⎫=--⎪⎝⎭对比,从而可选出正确答案. 【详解】 解:313cos2sin 22cos2sin 22sin 22sin 22233y x x x x x x ππ⎛⎫⎛⎫⎛⎫=-=-=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13sin 23cos 22sin 2cos 22sin 2223y x x x x x π⎛⎫⎛⎫ ⎪ ⎪- ⎪⎝⎭⎝⎭=-==-. 对于A :可得2sin 22sin 22sin 22333y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 故选:A. 【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.10.已知双曲线2222:1(0,0)x y C a b a b-=>>,O 为坐标原点,1F 、2F 为其左、右焦点,点G 在C 的渐近线上,2F G OG ⊥,且16||||OG GF =,则该双曲线的渐近线方程为( ) A .22y x =± B .32y x =±C .y x =±D .2y x =±【答案】D 【解析】 【分析】根据2F G OG ⊥,先确定出2,GF GO 的长度,然后利用双曲线定义将16||||OG GF =转化为,,a b c 的关系式,化简后可得到ba的值,即可求渐近线方程. 【详解】 如图所示:因为2F G OG ⊥,所以22222,1bc a GF b OG c b a b a===-=+,又因为16OG GF =,所以16OG GF =,所以2216OG GF F F =+, 所以222216OG GF F F =+,所以()222216422cos 180a b c b c GF F =++⨯⨯︒-∠,所以2226422b a b c b c c ⎛⎫=++⨯⨯- ⎪⎝⎭,所以222,2b b a a ==, 所以渐近线方程为2y x =±. 故选:D. 【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半. 11.已知复数12iz i-=-(i 为虚数单位)在复平面内对应的点的坐标是( ) A .31,55⎛⎫- ⎪⎝⎭ B .31,55⎛⎫-- ⎪⎝⎭C .31,55⎛⎫ ⎪⎝⎭D .31,55⎛⎫- ⎪⎝⎭【答案】A 【解析】 【分析】直接利用复数代数形式的乘除运算化简,求得z 的坐标得出答案. 【详解】 解:1(1)(2)312(2)(2)55i i i z i i i i --+===---+, z ∴在复平面内对应的点的坐标是31,55⎛⎫- ⎪⎝⎭.故选:A. 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题. 12.如图,四边形ABCD 为平行四边形,E 为AB 中点,F 为CD 的三等分点(靠近D )若AF x AC yDE =+,则y x -的值为( )A .12-B .23-C .13-D .1-【答案】D 【解析】 【分析】使用不同方法用表示出AF ,结合平面向量的基本定理列出方程解出. 【详解】解:13AF AD DF AB AD =+=+, 又11()()()()22AF xAC yDE x AB AD y AB AD x y AB x y AD =+=++-=++- 1231y x x y ⎧+=⎪∴⎨⎪-=⎩解得5949x y ⎧=⎪⎪⎨⎪=-⎪⎩,所以1y x -=- 故选:D 【点睛】本题考查了平面向量的基本定理及其意义,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省渭南市2021届新高考数学模拟试题(2)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,PA ⊥平面ABCD ,ABCD 为正方形,且PA AD =,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为( )A .2B .3 C .3 D .2 【答案】C 【解析】 【分析】分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A xyz -,再利用向量法求异面直线EF 与BD 所成角的余弦值. 【详解】由题可知,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A xyz -.设2AD =.则3(2,2,0),(1,2,1),cos ,686BD EF BD EF =-=-〈〉==⨯u u u r u u u r u u u r u u u r . 故异面直线EF 与BD 所成角的余弦值为36. 故选:C 【点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平. 2.已知函数()ln f x x =,()()23g x m x n =++,若对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,记()23m n +的最小值为(),f m n ,则(),f m n 最大值为( )A .1B .1eC .21eD 【答案】C 【解析】 【分析】对任意的()0,x ∈+∞总有()()f x g x ≤恒成立,因为ln (23)x m x n ≤++,对()0,x ∈+∞恒成立,可得230m +>,令ln (23)y x m x n =-+-,可得1(23)y m x'=-+,结合已知,即可求得答案. 【详解】Q 对任意的()0,x ∈+∞总有()()f x g x ≤恒成立∴ln (23)x m x n ≤++,对()0,x ∈+∞恒成立, ∴230m +>令ln (23)y x m x n =-+-,可得1(23)y m x'=-+ 令0y '=,得123x m =+ 当123x m >+,0y '<当1023x m <<+0y '> ∴123x m =+,max 1ln1023y n m =--≤+,123n m e --+≥ 故1(23)(,)n nm n f m n e ++≥=Q 11(,)n nf m n e+-'=令110n ne+-=,得 1n = ∴当1n >时,(,)0f m n '<当1n <,(,)0f m n '>∴当1n =时,max 21(,)f m n e =故选:C.本题主要考查了根据不等式恒成立求最值问题,解题关键是掌握不等式恒成立的解法和导数求函数单调性的解法,考查了分析能力和计算能力,属于难题.3.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0 B .1 C .2 D .3【答案】C 【解析】 【分析】设切点为()00x ,y ,则300y x =,由于直线l 经过点()1,1,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,从而可求方程. 【详解】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=, 故选C . 【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.4.在复平面内,复数z a bi =+(a ,b R ∈)对应向量OZ uuu r(O 为坐标原点),设OZ r =u u u r ,以射线Ox为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i rn i n θθθθ+=+⎡⎤⎣⎦,已知)4z i =,则z =( )A.B .4C.D .16【答案】D 【解析】 【分析】根据复数乘方公式:()()cos sin cos sin nnr i rn i n θθθθ+=+⎡⎤⎣⎦,直接求解即可.)4441216cos sin2266z i i iππ⎡⎤⎛⎫⎛⎫==+=+⎢⎥⎪ ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦16cos4sin4866iππ⎡⎤⎛⎫⎛⎫=⨯+⨯=-+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,16z==.故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.5.已知函数()()3sinf x xωϕ=+,()0,0πωϕ><<,若03fπ⎛⎫-=⎪⎝⎭,对任意x∈R恒有()3f x fπ⎛⎫≤ ⎪⎝⎭,在区间ππ,155⎛⎫⎪⎝⎭上有且只有一个1x使()13f x=,则ω的最大值为()A.1234B.1114C.1054D.1174【答案】C【解析】【分析】根据()f x的零点和最值点列方程组,求得,ωϕ的表达式(用k表示),根据()1f x在ππ,155⎛⎫⎪⎝⎭上有且只有一个最大值,求得ω的取值范围,求得对应k的取值范围,由k为整数对k的取值进行验证,由此求得ω的最大值.【详解】由题意知1122ππ,3,πππ+,32kk k Zkωϕωϕ⎧-+=⎪⎪∈⎨⎪+=⎪⎩,则()()321,421π,4kkωϕ⎧+=⎪⎪⎨='+⎪⎪⎩其中12k k k=-,21k k k'=+.又()1f x在ππ,155⎛⎫⎪⎝⎭上有且只有一个最大值,所以ππ2π251515T-=≤,得030ω<≤,即()321304k+≤,所以19.5k≤,又k Z∈,因此19k≤.①当19k =时,1174ω=,此时取3π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()1173π 2.7π,6.6π44x +∈,所以当11173π4.5π44x +=或6.5π时,()13f x =都成立,舍去; ②当18k =时,1114ω=,此时取π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()111π 2.1π,5.8π44x +∈,所以当1111π2.5π44x +=或4.5π时,()13f x =都成立,舍去; ③当17k =时,1054ω=,此时取3π4ϕ=可使12ππ,3πππ+,32k k ωϕωϕ⎧-+=⎪⎪⎨⎪+=⎪⎩成立,当ππ,155x ⎛⎫∈ ⎪⎝⎭时,()1053π 2.5π,6π44x +∈,所以当11053π4.5π44x +=时,()13f x =成立; 综上所得ω的最大值为1054.故选:C 【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.6.35(1)(2)x y --的展开式中,满足2m n +=的m n x y 的系数之和为( ) A .640 B .416C .406D .236-【答案】B 【解析】 【分析】2m n +=,有02m n =⎧⎨=⎩,11m n =⎧⎨=⎩,20m n =⎧⎨=⎩三种情形,用33(1)(1)x x -=-+中m x 的系数乘以55(2)(2)y y -=-+中n y 的系数,然后相加可得.【详解】当2m n +=时,35(1)(2)x y --的展开式中m nx y 的系数为358()55353535(1)(2)(1)22m m m n n n n n m n n m n n m n m n C x C y C C x y C C x y ---+---⋅-=⋅⋅-⋅=⋅⋅.当0m =,2n =时,系数为3211080⨯⨯=;当1m =,1n =时,系数为4235240⨯⨯=;当2m =,0n =时,系数为523196⨯⨯=;故满足2m n +=的m nx y 的系数之和为8024096416++=.故选:B . 【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键. 7. “1cos 22α=-”是“3k παπ=+,k Z ∈”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】B 【解析】 【分析】先求出满足1cos 22α=-的α值,然后根据充分必要条件的定义判断. 【详解】 由1cos 22α=-得2223k παπ=±,即3k παπ=±,k Z ∈ ,因此“1cos 22α=-”是“3k παπ=+,k Z ∈”的必要不充分条件.故选:B . 【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题基础.解题时可根据条件与结论中参数的取值范围进行判断.8.直线l 过抛物线24y x =的焦点且与抛物线交于A ,B 两点,则4||||AF BF +的最小值是 A .10 B .9C .8D .7【答案】B 【解析】 【分析】根据抛物线中过焦点的两段线段关系,可得1121AF BF p+==;再由基本不等式可求得4AF BF +的最小值. 【详解】由抛物线标准方程可知p=2因为直线l 过抛物线24y x =的焦点,由过抛物线焦点的弦的性质可知1121AF BF p+==所以4AF BF +()114AF BF AF BF ⎛⎫=+⋅+ ⎪ ⎪⎝⎭ 441BF AF AF BF ⎛⎫=+++ ⎪ ⎪⎝⎭因为AF BF 、为线段长度,都大于0,由基本不等式可知4415BF AF AF BF ⎛⎫+++≥+ ⎪ ⎪⎝⎭522≥+⨯9≥,此时2BF AF =所以选B 【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题. 9.已知函数2()sin cos444f x x x x πππ=,则(1)(2)...(2020)f f f +++的值等于( )A .2018B .1009C .1010D .2020【答案】C 【解析】 【分析】首先,根据二倍角公式和辅助角公式化简函数解析式,根据所求函数的周期性,得到其周期为4,然后借助于三角函数的周期性确定其值即可. 【详解】 解:2()sincos444f x x x x πππ=.1(1cos )222x x ππ=- 1sin()262x ππ=-++,1()sin()262f x x ππ∴=-++,()f x ∴的周期为242T ππ==,()1f ,()21f =, ()3f =,()40f =, ()()()()12342f f f f +++=. ()()()122020f f f ∴+++L()()()()5051234f f f f =⨯+++⎡⎤⎣⎦5052=⨯1010=.故选:C 【点睛】本题重点考查了三角函数的图象与性质、三角恒等变换等知识,掌握辅助角公式化简函数解析式是解题的关键,属于中档题.10.已知函数()()()2cos 0,0f x x ωϕωϕπ=+><≤的图象如图所示,则下列说法错误的是( )A .函数()f x 在1711,1212ππ⎡⎤--⎢⎥⎣⎦上单调递减B .函数()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上单调递增 C .函数()f x 的对称中心是(),026k k Z ππ⎛⎫-∈ ⎪⎝⎭ D .函数()f x 的对称轴是()5212k x k Z ππ=-∈ 【答案】B 【解析】 【分析】根据图象求得函数()y f x =的解析式,结合余弦函数的单调性与对称性逐项判断即可. 【详解】由图象可得,函数的周期5263T πππ⎛⎫=⨯-=⎪⎝⎭,所以22T πω==.将点,03π⎛⎫⎪⎝⎭代入()()2cos 2f x x ϕ=+中,得()2232k k Z ππϕπ⨯+=-∈,解得()726k k Z πϕπ=-∈,由0ϕπ<≤,可得56πϕ=,所以()52cos 26f x x π⎛⎫=+⎪⎝⎭. 令()52226k x k k Z ππππ≤+≤+∈,得()51212k x k k πππ-≤≤π+∈Z , 故函数()y f x =在()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递减, 当1k =-时,函数()y f x =在1711,1212ππ⎡⎤--⎢⎥⎣⎦上单调递减,故A 正确;令()52226k x k k Z ππππ-≤+≤∈,得()1151212k x k k Z ππππ-≤≤-∈, 故函数()y f x =在()115,1212k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦上单调递增. 当2k =时,函数()y f x =在1319,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,故B 错误; 令()5262x k k Z πππ+=+∈,得()26k x k Z ππ=-∈,故函数()y f x =的对称中心是,026k ππ⎛⎫-⎪⎝⎭()k Z ∈,故C 正确; 令526x k ππ+=()k Z ∈,得5212k x ππ=-()k Z ∈,故函数()y f x =的对称轴是5212k x ππ=-()k Z ∈,故D 正确. 故选:B. 【点睛】本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.11.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .316【答案】A 【解析】 【分析】首先求出样本空间样本点为5232=个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为5232=个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”, 有以下3种位置1__ __,__1__,__ __1.剩下2个空位可是0或1,这三种排列的所有可能分别都是224⨯=, 但合并计算时会有重复,重复数量为224+=, 事件的样本点数为:444228++--=个. 故不同的样本点数为8个,81324=. 故选:A 【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题 12.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8 B .9C .10D .11【答案】D 【解析】 【分析】由题意,本题符合几何概型,只要求出区间的长度以及使不等式成立的x 的范围区间长度,利用几何概型公式可得概率,即等差数列的公差,利用条件2642a a a +=,求得42a =-,从而求得1033n n a =-+,解不等式求得结果. 【详解】由题意,本题符合几何概型,区间[]3,3-长度为6,使得301xx -≥-成立的x 的范围为(]1,3,区间长度为2, 故使得301x x -≥-成立的概率为2163d ==, 又26442a a a +=-=,42a ∴=-,()11024333n na n ∴=-+-⨯=-+, 令0n a >,则有10n >,故n 的最小值为11, 故选:D. 【点睛】该题考查的是有关几何概型与等差数列的综合题,涉及到的知识点有长度型几何概型概率公式,等差数列的通项公式,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。