发动机换气过程
3单元 发动机的换气过程

1、排气提前角 30o~80o:
从排气门打开到下止点这段曲轴转角。
作用:
①在活塞上行时排气门有足 够大的开启面积,减小排气 阻力;
②减小活塞上行时的阻力( 强制排气损失-负功);合 理匹配可以减小泵气损失。
③高温废气迅速排出可减小 发动机热负荷;
5、 气门重叠
气门重叠(气门叠开)
指换气过程中进、排气 门同时开启的现象。
气门重叠角 进、排气门同时开启时 对应的曲轴转角。一般为 20º~ 80º曲轴转角,对增 压柴油发动机,因其进气压 力高,可达80º~ 160º。
气门重叠的作用
在气门重叠时期,进气管、气缸、排气 管互相连通,可以利用气流的压差、惯性或 进、排气管压力波的帮助,达到:
2、排气迟闭角 10o~35o:
从上止点到排气门完全关闭这段曲轴转角。
作用:
1)增大排气门开启面积; 2)利用压力差和废气流惯
性尽可能排净出废气。
3、进气提前角 0 o~40 o: 从进气门打开到上止点这段曲轴转角。
作用: 1)在活塞下行时进 气门有足够大的开启 面积,新鲜工质可以 顺利流入气缸;
pa Ta
1
1
由充气效率v的表达式可知,单独 看压缩比 提高,则充气效率v 有所下 降;但压缩比 提高,残余废气系数
减小。
压缩比 对充气效率v 影响不大, 提高压缩比 ,充气效率v 略微提高。
6、环境温度Ts和环境压力Ps
环境温度Ts
随环境温度的增加,环境温度与缸壁等热部件的温 差减小,Ts/Ta↑,充气效率有所增加。
进气
从排气门开启进气门关闭的整个时期,约占 410º~480º 曲轴转角。
第2章 四冲程发动机的换气过程

Pa=Ps--△Pa
式中,△pa为气体流动时,克服进气系统阻力而引起的压降 kPa)。一般可写成 v 2
pa
△
式中
2
——管道阻力系数;
——进气状态下气体的密度;
V——管道内气体的流速(m/s)。
可见,△pa主要取决于各段管道的阻力系数和气体流速。若大、 高时,△pa增加,使pca下降。
(1)自由排气损失(图中 面积W),是由于排气门提 前打开而引起的膨胀功的减 少。
(2)强制排气损失(图 中面积Y),是活塞上行强 制推出废气所消耗的功。
随着排气提前角增大,自由排气损失面积 增加,强制排气损失面积减小,如图中b曲线, 如排气提前角减少则强制排气损失面积增加, 如图中c曲线。所以最有利的排气提前角应使面 积(W+Y)之和最小。
缸径小于80mm时,采用三进二排结构。
四气门机与 二气门机相比, 功 率 可 提 高 70% , 扭 矩 可 提 高 30% , 且 响应性比增压 机好,故是汽 车发动机高功 率化的有力措 施。
4.气门升程
气门升程增加、改进凸轮型线、 减小运动件质量、增加零件刚度, 在惯性力允许条件下使气门开闭尽 可能快,以增大时面值,提高充气 效率。 最大气门升程与阀盘直径之比 L/d取0.26~0.28。
5.5.压缩比 压缩比增加,压缩容积减小,残余废气量随之减小,因 而有所增加。
第三节
提高充气效率的措施
进气系统:空气滤清器或加进气消声器、化油器 或喷油器、节气门、进气管、进气道和进气门等组成。 减少各段通道的阻力,增大其流通能力,是提高 充气效率,改善发动机性能的主要途径。 一、进气门 1.时面值 气门开启断面与对应开启时间的乘积称为气门开 启的时面值。它表示气体流过气门的通过能力。气门 开启时间长,开启断面大,则气门开启时面值大,气 流通过能力越强,阻力越小。 增大进气门头部直径,减小气门头部锥角,增大 气门升程,延长气门开启时间,均可扩大气门开启时 面值。
车辆工程_换气过程

第三节 减少进气系统的阻力
局部阻力 管 道 摩 擦 阻 力
一、减小进气门处的流动损失
Δp = λ
ρv
2
2
2、进气马赫数 Ma
vm Ma = c
须限制进气马赫数。
3、气门直径和气门数
4、气门升程
气门流通截面积随气门升程的增大而增加。
5、减少气门处的流动损失
二、进气道和进气管
足够的流通截面和光滑壁面
三、影响充量系数的主要因素
配气定时
进气加热 流动损失
1、进气终了的压力 pa
影响因素:
¾ 管路的流动阻力 ¾ 管路的压力波动
克服进气系统流动阻力的压力降
pa = ps − Δpa
Δpa = λ
ρv
2
2
式中:λ为管道阻力系 数,ρ为进气状态下气体 密度(kg / m3 ),v为进 气平均流速(m / s)。
气门叠开期间,若排气管压力高于进气 管压力,可能会出现废气倒流现象,反而使 缸内残余废气量增多。
(1)汽油机的气门叠开角 回火
自然吸气汽油机的 气门叠开角最小。
(2)自然吸气柴油机
新鲜充量为空气。 自然吸气柴油机的气门叠开角较大。
(3)增压柴油机
增压柴油机的 气 门叠开角最大。
二、换气损失和泵气损失
理论循环与实际循环的换气功之差。
由排气损失和进气损失两部分组成。
1、排气损失
¾W:自由排气损失
转速对排气损失的影响
转速越高,排气损失越大。
随转速升高,最佳排气提前角增大。
2、进气损失
进气损失与排气损失相比较小, 但对发动机性能影响却很大。
¾Y:进气损失
3、换气损失和泵气损失
第二章 发动机的换气过程

原理。
件(如排气门)热负荷低。
重叠角过大,气门易碰活塞, 使得活塞上气门凹坑过深,破坏
了进气涡流和燃烧,同时加重增
压器的负担。
排气迟闭
排气提前
四冲程发动机配气相位
一般柴油机为20~50 °CA,增压柴油机为80 °~50 °CA 。
3)重叠角对汽油机的影响: 大多数汽油机吸入的新鲜工质是可燃混合气,过大重叠
塞下行时气门具有较大的流通截
面积(一般提前角为10°~
40°CA)。 2)进气门迟闭: 充分利用气
进气门开
流惯性继续充气(一般迟闭角为
40°~ 70°CA)。
迟闭角
进气门提前与迟闭
3)迟闭角的选择: (1)转速升高,气流惯性大, 迟闭角也应增大;
进气提前
排气迟闭
(2)迟闭角不宜过大,否则
低速时部分新鲜工质会被压出气 缸,不仅影响发动机动力性,柴 油机还会因此起动困难。
门升程,实现快速开与闭。
4)改善气道动力性:光滑壁面、圆弧过度、并使气门 升起后远离壁面。 5)高速柴油机采用较小的S/D。
2、进气终了气体温度 Ta : Ta 越大,气体密度越小,
充量系数也越小(增压发动机进气中冷)。
3、残余废气系数γ: 残余废气越多,充量系数也就越小; 同时,废气越多,还会使燃烧恶化,降低发动机的经济性和 排放性。 排气系统阻力越大、排气终了压力也越大,残余废气 量也就越多。但是,适当量的残余废气可以改善发动机的 排放性能。 4、压缩比 c: 压缩比大,余隙相对容积减少,废气残余 量就减少,充量增大。 5、合适的配气相位
二、废气残余系数γ:
定义: 进气过程结束时气缸内残余废气质量与进入气缸 的新鲜空气质量之比。
发动机换气过程PPT课件

• 换气损失(W+Y+X) 理论循环换气功与实际循环换气功之差。 进气损失--X
自由排气损失--W
排气损失 强制排气损失--Y
• 泵气损失(X+Y-d)
如何使排气损失最小 ⑴?e`(排气门太早开启)
如果排气提前角↑,则w↑,y↓
⑵e``(排气门太晚开启)
排气提前角↓,则w↓,y↑
e’ e”
所以:最有利的排气提前角,必须是使(w+y) 最小。
换气过程
自由排气 强制排气 进气 气门叠开
用曲轴转角表示进排气门开启到关闭 的时候和持续的时间,称为配气相位(定 时)。
通常把配气相位用相当于上下止点曲 轴转角的环形图表示成为配气相位图。
进气提前角 进气迟闭角
排气迟闭角 排气提前角
1、自由排气阶段—-废气根据自身的压力自 行排出
从排气门打开到气 缸压力接近了排气管压 力的这个时期称为自由 排气阶段
则有m1=ma/(1+r)
影响充气效率因素的公式推导
进气终了时气缸内总容积va’(有效 进气容积)与气缸总容积va的比值为ξ〈1 (有效进气体积系数)
影响充气效率因素的公式推导
v
m1 ms
ma ms (1 r)
aVa '
Pa RaTa
•Va
(1 r)sVs
1 r
Ps R sTs
•Vs
影响充气效率因素的公式推导 因为PV=mRT 有P/RT=m/V=ρ Va/Vc=ε Vs/Vc=(Va-Vc) /Vc=ε-1
发动机换气过 程
一、四冲程发动机的换气过程
内
容
介
二、四冲程发动机的换气损失
绍
三、四冲程发动机的充气效率
发动机原理发动机的换气过程

发动机原理发动机的换气过程发动机的换气过程是指在内燃机的工作循环中,利用活塞一上一下的往复运动,通过进气、压缩、燃烧和排气四个过程,完成混合气体的吸入、压缩和燃烧排出废气的过程。
下面我们将详细阐述发动机的换气过程,包括四个过程的具体操作:1. 进气过程(Induction Process)进气过程是指活塞内运动时,下行的活塞在气门开启的情况下,通过诱导系统将混合气体吸入燃烧室的过程。
进气过程中,活塞下行,曲轴带动气门运动机构打开进气气门(一般为吸气门),同时缸内压力降低,外界气体通过进气道和空气滤清器进入缸内,与燃油形成可燃混合物。
压缩过程是指活塞内运动时,上行的活塞在气门关闭的情况下,将混合气体压缩至高压的过程。
压缩过程中,活塞上行,压缩混合气体使其体积减小,从而增大混合气体的压力和密度。
这个过程中,活塞上方的火花塞会产生高压电火花,将压缩的混合气体点燃,形成爆震燃烧。
燃烧过程是指在压缩后的混合气体中,由于点燃火花的作用,混合气体发生爆炸燃烧所产生的高温高压气体。
燃烧过程中,经过压缩后的混合气体在火花塞的火花点燃下,迅速发生燃烧,产生高温和高压气体。
高温气体的体积膨胀迅速,推动活塞下行,同时驱动曲轴旋转,在连杆机构的作用下将活塞机械能转化为输出功。
4. 排气过程(Exhaust Process)排气过程是指活塞向上运动时,废气在气门开启的情况下,从燃烧室中排出的过程。
排气过程中,活塞上行,鞘管运动机构打开排气气门,废气被排出燃烧室,通过排气系统最终排出发动机。
总结:发动机的换气过程是通过进气、压缩、燃烧和排气过程,将可燃混合物吸入、压缩、燃烧、排出的过程。
进气过程中,混合气体通过进气道进入缸内;压缩过程中,混合气体被压缩至高压;燃烧过程中,可燃混合物被点燃形成高压气体;排气过程中,废气通过排气系统排出发动机。
通过这一连续的工作过程,发动机将化学能转化为机械能,推动车辆的运动。
发动机换气过程

发动机原理第三章发动机的换气过程发动机的排气过程和进气过程统称为换气过程。
换气过程的任务是将气缸内废气排除干净,并充入尽可能多的新鲜气量--在柴油机中是空气;在汽油机中是燃油与空气的混合气(可燃混合气),这是保证发动机动力性的重要条件。
燃料在气缸内完全燃烧需要一定量的空气,完全燃烧时汽油与空气的体积比约为1:10000,而柴油与空气的体积比还要更大一些。
由此可见,可燃混合气中燃料所占容积比例很小,所以充入气缸的混合气燃烧放热量的大小,主要取决于充入缸内的空气量多少。
每循环进入气缸的空气量多,既可多供给一些燃料,又可以提高燃料的完全燃烧程度。
提高发动机的扭矩和功率。
此外,换气过程有功率损失使热效率降低。
换气过程的好坏对发动机零件的热复合、排气冒烟、大气污染等也有一定影响。
为了不断提高发动机性能,必须深入研究换气过程的进行情况,分析影响充气量的各种因素,找出提高充气量和减少换气损失的方向与措施。
3.1 四行程发动机的换气过程一、换气过程四行程发动机配气机构均采用气门换气方案,其换气过程是排气门开启到进气门关闭的整个时期,约占曲轴转角380°~490°。
根据气体流动特点和进排气门运动规律,换气过程可分为自由排气、强制排气、惯性排气、准备进气、正常进气和惯性进气六个阶段,如图3-1所示。
图3-1 换气过程气缸压力、排气管压力、进排气门流通截面积的变化(a)气缸压力、排气管压力随曲轴转角θ的变化曲线(b)进排气门相对流通截面积随曲轴转角θ的变化曲线(c)四行程发动机进、排气门开闭时间1. 自由排气阶段从排气门在下止点前开启到活塞行至下止点这个时期称自由排气阶段。
该阶段曲轴转过的角度称为排气提前角,一般为40°~80°轴转角。
由于配气机构惯性力的限制,气门开启与关闭不能太快,需要一定时间,如果活塞到下止点时排气门才开始开启,在开启初期开度极小,废气不能通畅流出,气缸内压力下降缓慢,不能实现充分排气,而且在活塞向上止点回行时会形成较大的反压力,增加排气行程所消耗的功。
发动机的换气过程

排气门迟闭使 >1,使新鲜充量扫出气缸,从而使 c 降低。 解决措施:合理选择排气相位角,使新鲜充量既能利用气流惯性多充入气缸, 又不至于随废气扫出气缸。 5. 压缩比
c
有所增加。
压缩比增加,余隙容积减小,残余废气量减少,因此充量系数 6. 进气状态
进气温度和压力一般对充量系数
c
影响不大。
p
二、排气损失
' 从排气门提前打开( pb 点),直到进气行程开始,
' pb W
Y
缸内压力到达大气压力前循环功的损失称为排气
损失。它分为自由排气损失和强制排气损失。
p0
X
V
自由排气损失(W ):因排气门提前打开,引起膨胀功的减少而产生的热量损失。 强制排气损失( Y ):活塞将废气推出所消耗的功。 减少排气损失的措施:1)当排气门截面小,发动机转速高时,应加大排气提前角; 2)减小排气系统阻力及排气门处流动损失; 3)排气消声系统的结构和布置形式; 三、进气损失(X ) 进气过程中,因进气管及进气门对气流形成的阻力而消耗的功,称为进气损失。 减少进气损失的措施:1)加大进气门的流通截面积;2)正确设计进气管流道; 3)降低活塞平均速度;4)合理调整配气定时。
降低排气系统流通阻力,可减少残余废气系数,也可减少泵气功。 可采取的措施有: • 将排气道的一部分做成扩压形,可降低缸内与排气管内之间压力差;
提高充量系数;
• 避免排气管内截面突变、急转弯和凸台; • 选择良好的排气支管流形; • 尽可能降低消声器的流通阻力。
四、合理选择进、排气相位角
合理选择进、排气相位角,可以获得较好的充气效果,特别是在高转速时, 适当推迟进气门关闭时间,可以利用高速气流的惯性来增加气缸充气量。 采取措施: 利用气门可变正时技术,优化气门正时,可提高充量系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机原理第三章发动机的换气过程发动机的排气过程和进气过程统称为换气过程。
换气过程的任务是将气缸内废气排除干净,并充入尽可能多的新鲜气量--在柴油机中是空气;在汽油机中是燃油与空气的混合气(可燃混合气),这是保证发动机动力性的重要条件。
燃料在气缸内完全燃烧需要一定量的空气,完全燃烧时汽油与空气的体积比约为1:10000,而柴油与空气的体积比还要更大一些。
由此可见,可燃混合气中燃料所占容积比例很小,所以充入气缸的混合气燃烧放热量的大小,主要取决于充入缸内的空气量多少。
每循环进入气缸的空气量多,既可多供给一些燃料,又可以提高燃料的完全燃烧程度。
提高发动机的扭矩和功率。
此外,换气过程有功率损失使热效率降低。
换气过程的好坏对发动机零件的热复合、排气冒烟、大气污染等也有一定影响。
为了不断提高发动机性能,必须深入研究换气过程的进行情况,分析影响充气量的各种因素,找出提高充气量和减少换气损失的方向与措施。
3.1 四行程发动机的换气过程一、换气过程四行程发动机配气机构均采用气门换气方案,其换气过程是排气门开启到进气门关闭的整个时期,约占曲轴转角380°~490°。
根据气体流动特点和进排气门运动规律,换气过程可分为自由排气、强制排气、惯性排气、准备进气、正常进气和惯性进气六个阶段,如图3-1所示。
图3-1 换气过程气缸压力、排气管压力、进排气门流通截面积的变化(a)气缸压力、排气管压力随曲轴转角θ的变化曲线(b)进排气门相对流通截面积随曲轴转角θ的变化曲线(c)四行程发动机进、排气门开闭时间1. 自由排气阶段从排气门在下止点前开启到活塞行至下止点这个时期称自由排气阶段。
该阶段曲轴转过的角度称为排气提前角,一般为40°~80°轴转角。
由于配气机构惯性力的限制,气门开启与关闭不能太快,需要一定时间,如果活塞到下止点时排气门才开始开启,在开启初期开度极小,废气不能通畅流出,气缸内压力下降缓慢,不能实现充分排气,而且在活塞向上止点回行时会形成较大的反压力,增加排气行程所消耗的功。
为此,排气门必须在下止点前开启(图3-1中b`点),这时气缸废气压力较高,可利用废气自身的压力自行排出。
从图3-1中可见,此阶段气缸内压力大于排气管压力两倍以上,排气的流动处于超临界状态,读者参考工程热学气体的流动和压缩章节)此时通过排气门口的废气流速,等于该状态下的音速,废气流量只与气缸内的气体状态及气门最小开启截面积有关,而与排气管内压力 p 无关。
并且因排气流甚高,在排气过程中伴有刺耳的噪声,所以排气系统必须装有消声器。
随着废气大量排出及活塞向下止点移动,气缸内压力迅速下降,当缸内压力与排气管内压力之比下降到2以下时,排气流动转入亚临界状态,废气流速降低,产生的噪声较小。
此时排出的废气量由缸内及排气管内的压力差来决定。
压力差越大排出废气越多。
当到某一时刻缸内与排气管内压力相等,自由排气阶段结束(一般下止点后10°~30°曲轴转角)。
此阶段虽然历程很短,但因排气流速甚高,排出废气量达60%以上。
由此可见,在自由排气阶段中,排出的废气量与发动机转速无关。
发动机转速高时,在同样的排气时间(以秒计)所相当的曲轴转角增大,因此,在高速发动机中,排气提前角要大一些。
但不宜过大,否则会使排气损失加大。
由于排气系统阻力的影响,当活塞到下至点b时,气缸内压仍高于大气压力。
2.强制排气阶段自由排气以后,由于排气门节流的影响,气缸内平均压力与排气管内平均压力之差较小,因此不能再自行流出,而是靠活塞从下止点向上止点移动时的推力强制排出废气,由上行活塞强制推出的这个时期称为强制排气阶段。
此阶段虽然持续时间较长,但因缸内废气压力逐渐接近大气压力,故该阶段排除废气只占总气量的一小部分。
3.惯性排气阶段从活塞由上止点下行至排气门关闭这个时期称为惯性排气段,该阶段的曲轴角称为排气迟闭角,一般为10°~30°。
强制排气以后,气缸内压力仍稍高于大气压力,如果此时排气门继续保持开启状态,则利用气缸内外的压力差和废气流动惯性可继续排气,所以排气门都在上止点后才关闭,用以延长排气时间以便进一步排除废气。
4.准备进气阶段为了增加进气量,进气门必须在上止点前,排气尚未结束时就开始开启,以保证活塞下行进气开始时,就有较大的进气通道截面,为进气作好准备,从进气门开始开启到活塞行至上止点这个时期称为准备进气阶段。
该阶段曲轴转过的角度称为进气提前角,一般为10°~30°曲轴转角。
由于进气提前角较小,进气门通道截面也小,再加气缸内残余废气压力高于大气压力,所以在此阶段中新鲜气体一般不能进入气缸。
5.正常进气阶段准备进气阶段后,活塞由上止点开始下行,初期由于气缸内残余废气压力 pr 仍高于大气压力 p0 ,新鲜气体不能冲入气缸,只有将残余废气由r点膨胀到r'点,使压力由 pr 下降到 pr'后,新鲜气体才能冲入气缸。
由于进气门早开,此时进气门通道截面已开启较大,所以保证了大量新气进入气缸内,但因进气系统有阻力,所以在活塞移到下止点时,气缸内压力 pα仍低于大气压力。
6.惯性进气阶段从活塞由下止点向上行至进气门关闭这个时期称为惯性进气阶段。
该阶段中曲轴转过的角度称为进气迟闭角,一般为40°~80°曲轴转角。
在进气过程活塞到下止点的瞬间,进气门口仍有一定的流速,进气门迟闭就可以利用新鲜气体流动惯性和气缸内外压力差,继续进气,所以进气门都在下止点之后才关闭,使冲气量增加。
由于排气门迟闭和进气门早开,因此在上止点附近将出现进、排气门同时开启的状态,称为气门重叠或气门叠开,气门叠开时曲轴转过的角度称为气门叠开角或重叠角,一般为20°~80°曲轴转角。
由于气门重叠角小,进气门升起高度不大,且废气又具有一定惯性,所以废气不会倒流入气管中,为此在气门叠开期间因进气管、气缸、排气管连通在一起,可以利用气流的压差和惯性清除残余废气,增加进气量。
在换气过程中,由于活塞移动速度不均匀,气门通道截面也时时变化,使气流速度的变化很复杂。
同时气缸内压力变化是波动的,进而引起进、排气管内压力变化也是波动的。
因此,利用进气管的动态效应可以提高进气量。
二、换气损失换气损失由排气损失和进气损失两部分组成,如图3-2所示;1.排气损失排气损失是从排气门提前打开,直到进气行程开始,气缸内压力到达大气压力之前,循环功的损失。
它可分为:1)自由排气损失(图3-2中面积w),是由排气门提前打开而引起的膨胀功的减少。
2)强制排气损失(图中面积y),是活塞上行强制推出废气所消耗的功。
随着排气提前角增大,自由排气损失面积w增加,强制排气损失面积y减小,如排气提前角减少则强制排气损失面积增加。
所以最有利的排气提前应使面积(w+y)之和最小。
减少排气损失的主要措施是:减小排气系统阻力和排气门处的流动损失。
2.进气损失进气损失主要是进气过程中,因进气系统的阻力而引起的功的损失。
如图中面积x所示。
它与排气损失相比相对较小。
排气损失与进气损失之和称换气损失,即图中面积(w+y+x)。
在实际循环示功图中把面积(x+y-d)相当的负功,称为泵气损失。
这部分损失放在机械损失中加以考虑。
3.2 充量与充量系数换气过程常用的评价指标是:循环充量、充量系数和单位时间充量。
一、充量充量即充气量,它表示充入发动机气缸内新鲜气体的质量,常用每循环充量和单位时间充量来表示。
1.每循环充量每循环充量是指发动机在每一个循环的进气过程中,实际进入气缸的新鲜气体(空气或可燃混合气)的质量,即循环实际充量,用ΔG表示。
前已分析,由于排起系统存在阻力,当排气门关闭时,气缸内尚有一部分残余废气存在,所占气缸容积为v r,压力为p r,温度为T r,则其质量为:(kg)式中: δr—残余废气密度。
在准备进气阶段,由于气门开度很小,气缸内残余废气压力又高于大气压力,新鲜气体不能立即进入气缸。
只有到正常进气阶段新鲜气体才能进入气缸,直到活塞达下止点后进气门关闭为止,此阶段进入气缸的新鲜气量即为循环充量。
在进气门关闭进气终了时,气缸内既有新鲜气体,又有残余气体,所占容量为vα、压力为p cα、温度为T cα,气缸内气体的总质量为:(kg)则充入气缸的新鲜气体质量为:(3-1)为了衡量残余废气量的多少,引如残余废气系数的概念。
残余废气系数是指每循环残留在气缸内的废气质量与新鲜气体质量之比,用表示,即:于是气缸内气体总质量可表示为:(kg)则气缸内新鲜气体的质量又可表示为:(kg) (3-2)2.单位时间充量单位时间充量指每小时进入气缸的新鲜气体的质量,用ΔG h表示,即(kg/h)(3-3)式中: n—发动机转速,r/min;i—气缸数。
循环充量增大,则每循环燃烧的燃料便可增多,因此直接影响发动机的平均有效压力和扭矩。
而单位时间充量,它决定发电机单位时间燃烧的燃烧量,因而直接影响发动机的功率。
循环充量ΔG与单位时间充量ΔG h随发动机转速变化的趋势是不同的,如图3-4所示。
由图可见,如果循环充量ΔG保持不变,则转速增高时,单位时间充量将成直线的增加(图中虚线),发动机功率也不会增加。
但是,实际上由于进气系统阻力的影响,当转速增高时,循环充量显著减少,而单位时间充量的增加也逐渐变缓。
当转速增到某一数值后,循环充量达到最大值,而且在此转速后单位时间充量基本保持一定。
这是因为通过气门口的气体流速达到音速时,单位时间充量达到极限的缘故。
3.2 充量与充量系数(双击鼠标自动滚屏)上一页下一页二、充量系数发动机在换气过程中,每循环进入气缸的实际充量ΔG与进气状态下充满气缸工作容积为v s,与在进气状态下充满气缸工作容积的理论充量ΔG0的比值,称为充量系数,用Φc表示,即:所谓进气状态,是指空气滤清器后进气管内的气体状态。
为了测量方便,在非增压发动机上一般都采用当时的大气状态。
在增压发动机上采用增压器出口的状态。
若大气压力及温度分别为p0及T0,气缸工作容积的理论充量ΔG0为:(3-5)将式(3-1)、(3-5)代入式(3-4)得:式中: T0、p0—大气温度及压力;T、p cα—进气终了时的气体温度及压力;cαT、p r—残余废气的温度及压力;rεc—压缩比;Φr—残余废气系数。
由式(3-6)及(3-7)看出,充量系数与发动机气缸容积无关,因而可用来评价不同排量发动机换气过程的良好程度。
Φc值越大,说明每循环实际充量越多,每循环可燃烧的燃料随之增加,因而单位气缸工作容积的有效功和发动机功率,扭矩也越大,则发动机动力性越好,所以希望Φc值高些。
一般非增压发动机在全负荷工况工作时,Φc值大致范围是:汽油机顶置气门0.75~0.85侧置气门0.70~0.80柴油机0.75~0.90实际内燃机充量系数可用试验方法直接测定。