第一章 晶体结构与晶体中的缺陷
第一章金属的晶体结构 本章重点与难点: ①金属键; ②最常见

第一章金属的晶体结构本章重点与难点:①金属键;②最常见的晶体结构:面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp);晶向指数和晶面指数;③晶体中存在的缺陷:点缺陷、面缺陷、线缺陷。
内容提要:固体物质的原子是由键结合在一起。
这些键提供了固体的强度和有关电和热的性质。
由于原子间的结合键不同,我们经常将材料分为金属、聚合物和陶瓷三类。
金属的原子之间时依靠金属键结合在一起的。
在结晶固体中,材料的许多性能都与其内部原子排列有关,可将晶体分为7种晶系,14种布拉菲点阵。
金属中最常见的晶体结构有面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)结构。
本章还介绍了晶向、晶面的概念及其表示方法(指数),因为这些指数被用来建立晶体结构和材料性质及行为间的关系。
实际的晶体结构中存在着一些缺陷,根据几何形态特征,分为点缺陷、面缺陷、线缺陷。
基本要求:1.建立原子结构的特征,了解影响原子大小的各种因素。
3.建立单位晶胞的概念,以便用来想像原子的排列;在不同晶向和镜面上所存在的长程规则性;在一维、二维和三维空间的堆积密度。
4.熟悉常见晶体中原子的规则排列形式,特别是bcc,fcc以及hcp。
我们看到的面心立方结构,除fcc金属结构外,还有NaCl结构和金刚石立方体结构。
5. 掌握晶向、晶面指数的标定方法。
一般由原点至离原点最近一个结点(u,v,w)的连线来定其指数。
如此放像机定为[u,v,w]。
u,v,w之值必须使互质。
晶面指数微晶面和三轴相交的3个截距系数的倒数,约掉分数和公因数之后所得到的最小整数值。
若给出具体的晶向、镜面时会标注“指数”时,会在三维空间图上画出其位置。
6.认识晶体缺陷的基本类型、基本特征、基本性质。
注意位错线与柏氏矢量,位错线移动方向、晶体滑移方向与外加切应力方向之间的关系。
7 了解位错的应力场和应变能,位错的增殖、塞积与交割。
第一节金属1 金属原子的结构特点金属原子的结构特点是外层电子少,容易失去。
第一章 硅的晶体结构

替位式杂质
34
举例Si中掺 四、施主杂质、施主能级(举例 中掺 ,Si:P) 施主杂质、施主能级 举例 中掺P,
35
电离结果: 电离结果:导带中的电 子数增加了,这也是掺 子数增加了,这也是掺 施主的意义所在 施主的意义所在
主要依靠导带电子导电的半 导体称为电子型或n型半导体 导体称为电子型或 型半导体
3
1.1 硅晶体结构的特点
1.1.1 晶胞
一、基本概念
晶格: 晶格:晶体中原子的周期性排列称为晶格。 晶胞: 晶胞:晶体中的原子周期性排列的最小单元,用来代表整 个晶格,将此晶胞向晶体的四面八方连续延伸,即 可产生整个晶格。
4
单晶体: 单晶体:整个晶体由单一的晶格连续组成的晶体。 多晶体: 多晶体:由相同结构的很多小晶粒无规则地堆积而成的晶 体。
n型杂质 型杂质
38
举例Si中掺 五、受主杂质、受主能级(举例 中掺 ,Si:B) 受主杂质、受主能级 举例 中掺B,
39
主要依靠价带空穴导电的半 导体称为空穴型或p型半导体 导体称为空穴型或 型半导体
电离结果: 电离结果:价带中的 空穴数增加了, 空穴数增加了,这也 掺受主的意义所在 是掺受主的意义所在
10
1.1.3 原子密度
例题: 硅在300K时的晶格常数a为 5.43Å。请计算出每立方厘米体积 中的硅原子数及常温下的硅原子密 度。 解: 每个晶胞中有8个原子,晶胞体积为a3,每个原子所占 的空间体积为a3/8,因此每立方厘米体积中的硅原子数为: 8/a3=8/(5.43×108)3=5×1022(个原子/cm3) 密度=每立方厘米中的原子数×每摩尔原子质量/阿伏伽德 罗常数=5×1022×28.09/(6.02×1023)g/cm3=2.33g/cm3
第一章-金属的晶体结构(共118张PPT)可修改全文

B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。
《晶体缺陷》课件

热稳定性
晶体缺陷可能影响材料在高温下的稳 定性,降低其使用温度范围。
比热容
晶体缺陷可能影响比热容,改变材料 吸收和释放热量的能力。
光学性能的影响
折射率与双折射
光吸收与散射
晶体缺陷可能导致折射率变化和双折射现 象,影响光学性能。
晶体缺陷可能导致光吸收增强或光散射增 加,改变光学透射和反射特性。
荧光与磷光
热电效应
某些晶体缺陷可能导致热电效应增强,影响 热电转换效率。
介电常数
晶体缺陷可能影响介电常数,改变电场分布 和电容。
电阻温度系数
晶体缺陷可能影响电阻温度系数,改变温度 对电阻的影响。
热学性能的影响
热导率变化
晶体缺陷可能降低材料的热导率,影 响热量传递和散热性能。
热膨胀系数
晶体缺陷可能影响热膨胀系数,影响 材料在温度变化下的尺寸稳定性。
。
韧性下降
晶体缺陷可能导致材料韧性下 降,使其在受到外力时更容易
脆裂。
疲劳性能
晶体缺陷可能影响材料的疲劳 性能,降低其循环载荷承受能
力。
强度与延展性
晶体缺陷可能影响材料的强度 和延展性,从而影响其承载能
力和塑性变形能力。
电学性能的影响
导电性变化
晶体缺陷可能改变材料的导电性,影响其在 电子设备中的应用。
传感器
基于晶体缺陷的原理,可以设计新型传感器,如压力传感 器、温度传感器和气体传感器等,以提高传感器的灵敏度 和稳定性。
在新能源领域中的应用
太阳能电池
在太阳能电池中,可以利用晶体 缺陷来提高光吸收效率和载流子 的收集效率,从而提高太阳能电
池的光电转换效率。
燃料电池
在燃料电池中,可以利用晶体缺陷 来改善电极的催化活性和耐久性, 从而提高燃料电池的性能和稳定性 。
第一章 硅的晶体结构

m3不为互质,那么这两个格点之间一定还包含有格点。对于 任何一个确定的晶格来说,x,y,z是确定的,实际上只用这 三个互质的整数m1、m2、m3来标记晶向,一般写作[m1、m2、 m3],称为晶向指数。
14
3. 硅晶体不同晶向上的原子分布情况
(或米勒指数)。
16
关于米勒指数的一些其他规定: ( h kl):代表在x轴上截距为负的平面,如 ( 1 00) {hkl} :代表相对称的平面群,如在立方对称平面中,可用 (00 1 )六个平面。 (0 1 0), ( 1 00), {100}表示(100),(010),(001), [hkl]:代表一晶体的方向,如 [100]方向定义为垂直于 (100) 平 面的方向,即表示 x 轴方向。而 [111] 则表示垂直于 (111) 平面的 方向。 <hkl> :代表等效方向的所有方向组,如 <100> 代表 [100] 、 [010]、[001]、 [ 1 00]、 [0 1 0]、 [00 1 ] 六个等效方向的族群。
间隙式杂质
替位式杂质
24
1.3.2 线缺陷
线缺陷,亦称位错-刃位错和螺位错: 晶体中的位错可以设想是由滑移所形成的,滑移以后两部分
晶体重新吻合。滑移的晶面中,在滑移部分和未滑移部分的 交界处形成位错; 当位错线与滑移矢量垂直时,这样的位错称为刃位错; 如果位错线与滑移矢量平行,称为螺位错。
3 4 r Si / 3 则空间利用率为: 34% 3 a /8
空隙为66%
12
1.2 晶向、晶面和堆积模型
1.2.1 晶向
一、晶列
晶体晶格中的原子被看作是处在一系列方向相同的平行 直线系上,这种直线系称为晶列。同一晶体中存在许多取向 不同的晶列,在不同取向的晶列上原子排列情况一般是不同 的。
晶体结构与缺陷

晶体结构与缺陷晶体是一种有着高度有序排列的原子、离子或分子的固体材料。
晶体的结构对其性质和应用具有重要影响,而缺陷则是晶体中不完美的部分。
本文将探讨晶体结构、晶格缺陷和它们在材料中的影响。
一、晶体结构晶体结构是指晶体中原子、离子或分子的排列方式。
晶体的结构可以通过晶体学方法(如X射线衍射)来表征。
根据晶体的结构特征,可以将晶体分为多种类型,包括立方晶系、正交晶系、单斜晶系等。
晶体结构的基本单位是晶胞,晶胞由晶体中最小的重复单元构成。
在晶体结构中,晶胞有各种不同的排列方式,例如简单立方晶胞、面心立方晶胞和体心立方晶胞。
这些不同的排列方式导致了不同类型的晶体结构。
二、晶格缺陷晶格缺陷是指晶体中原子、离子或分子位置的非理想性质。
晶格缺陷可以通过外部环境和材料制备过程中的条件引入。
晶格缺陷可以分为点缺陷、线缺陷和面缺陷三类。
1. 点缺陷点缺陷是指晶体中少数几个原子、离子或分子的位置与理想排列位置有所偏离。
最常见的点缺陷是空位缺陷和杂质缺陷。
空位缺陷是指晶体中某个位置上的原子或离子缺失,而杂质缺陷是指原子或离子被其他类型的原子或离子替代。
点缺陷可以对晶体的性质和行为产生重要影响。
例如,在半导体材料中,控制杂质缺陷的浓度可以改变材料的电导率。
在金属材料中,点缺陷可以影响金属的硬度、延展性和热导率等物理性能。
2. 线缺陷线缺陷是指晶体中沿某个方向出现的缺陷线。
常见的线缺陷包括位错和螺旋位错。
位错是晶体中原子排列顺序的偏移,而螺旋位错则是沿某个方向上原子排列的扭曲。
线缺陷可以导致晶体的塑性变形和断裂行为。
位错的运动可以使晶体发生滑移,从而导致材料的塑性变形。
而螺旋位错则可以在晶体中形成螺旋状的断裂。
3. 面缺陷面缺陷是指晶体中的平面缺陷。
最常见的面缺陷是晶界和孪晶。
晶界是两个晶粒之间的界面,它们的晶体结构可能有所不同。
孪晶是指两个对称的晶体结构在某个面上镜面对称的结合。
面缺陷可以对晶体的物理性能产生重要影响。
晶界可以影响晶体的弹性模量和导电性能。
固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
晶体结构缺陷

含量一般少于0.1%。
类型:置换式杂质原子和间隙式杂质原子
特征: 杂质缺陷的浓度与温度无关。
只决定于溶解度 杂质缺陷对材料性能的影响
3. 非化学计量结构缺陷
定义:指组成上偏离化学计量而形成的缺陷。 特点:其化学组成随周围气氛的性质及其分压大 小而变化,它是产生n型和p型半导体的基础, 为一种半导体材料。 如: TiO2 x
离子尺寸因素
晶体结构类型
离子的电价因素
电负性因素
(1)离子尺寸因素
பைடு நூலகம்离子尺寸越接近,固溶体越稳定
15%规则:
r1 r2 r1
< 15%, 连续型固溶体MgO-NiO 15~30%,不连续型固溶体MgO-CaO > 30%,不形成固溶体
(2)晶体的结构类型
晶体结构类型相同,易形成连续型固溶体 例如:
1、 按杂质原子在固溶体中的位置分类
(1)置换型固溶体 杂质原子进入晶体中正常格点位置所生成的 固溶体。如:MgO-CaO,MgO-CoO,
PbZrO3-PbTiO3,Al2O3-Cr2O3等
(2)间隙型固溶体 杂质原子进入溶剂晶格的间隙位置所生成 的固溶体。
2、按杂质原子在晶体中的溶解度分类
1. 写缺陷反应方程式应遵循的原则
(1)位置关系 (2)质量平衡
(3)电中性
(1)位置关系
在化合物MaXb中,无论是否存在缺陷,其
正负离子位置数(即格点数)的之比始终是一
个常数a/b,即:
M位置数 a = X位置数 b
注意:
V、M X — —算位置 M i — —不算位置
位置增值、表面位置
热缺陷
杂质缺陷 非化学计量结构缺陷 其它:电荷缺陷,辐照缺陷……
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章晶体结构与晶体中的缺陷
一、名词解释
1.正尖晶石与反尖晶石;2.弗伦克尔缺陷与肖特基缺陷;
3.刃位错与螺位错;4.固溶体;5.非化学计量化合物:
二、填空与选择
2.在硅酸盐结构分类中,下列矿物Ca[Al2Si2O8];CaMg[Si2O6];β-Ca2SiO4和Mg3[Si4O10](OH)2,分别属于;;;和四类。
3.在负离子作立方密堆的晶体中,为获得稳定的晶体结构,正离子将所有八面体空隙位置填满的晶体有,所有四面体空隙均填满的晶体有,填满一半八面体空隙的晶体有,填满一半四面体空隙的晶体有。
4.在尖晶石(MgAl2O4)型晶体中,O2-作面心立方最紧密堆积,Mg2+填入了;金红石晶体中,所有O2-作稍有变形的六方密堆,Ti4+填充了。
(A全部四面体空隙;B 全部八面体空隙;C四面体空隙的半数;D八面体空隙的半数;E四面体空隙的八分之一;F八面体空隙的八分之一)
5.构成层状硅酸盐的[Si2O5]片中的Si4+,通常被一定数量的Al3+所取代,为满足鲍林第二规则(静电价规则),在层状结构中结合有(OH)-离子和各种二价正离子或三价正离子。
这种以Al3+取代Si4+的现象,称为。
( A同质多晶(同质多象);B类质同晶;C有序-无序转化;D同晶置换(同晶取代))
6.高岭石与蒙脱石属于层状硅酸盐结构,前者的结构特征是,后者的结构特征是。
(A二层型三八面体结构;B三层型三八面体结构;C二层型二八面体结构;D 三层型二八面体结构)
7.在石英的相变中,属于重建型相变的是,属于位移式相变的是。
(A α-石英→α-鳞石英;B α-石英→β-石英;C α-鳞石英→α-方石英;D α方石英→β-方石英)
8.晶体结构中的热缺陷有和二类。
9.CaO掺杂到ZrO2中,其中置换了。
由于电中性的要求,在上述置换同时产生一个空位。
以上置换过程可用方程式表示。
10.由于的结果,必然会在晶体结构中产生"组分缺陷",组分缺陷的浓度主要取决于:和。
11.晶体线缺陷中,位错线与和垂直的是位错;位错线与二者平行的是位错。
12.在下列几类晶体中,
形成间隙型固溶体的次序是 。
(
A 沸石>CaF 2>TiO 2>MgO ;
B MgO>TiO 2>CaF 2>沸石;
C CaF 2>TiO 2>MgO>沸石;
D TiO 2>MgO>CaF 2>沸石 )
13.非化学计量化合物Cd 1+x O 、Cu 2-x O 和ZrO 2-x ,由于在化学组成上偏离化学计量而产生的晶格缺陷分别是 、 和 。
( A 负离子空位;B 间隙正离子;C 正离子空位;D 间隙负离子 )
14.在Fe 1-x O 晶体中,随氧分压增大,晶体的导电率 。
( A 降低 B 升高 C 不变 )
三、ThO 2具有萤石结构,Th 4+离子半径为0.100nm 。
O 2-
离子半径为0.140nm 。
试问(a )
实际结构中的Th 4+正离子配位数与预计配位数是否一致?(b )结构是否满足鲍林规则?
四、根据最紧密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只有34.01%),为什么它也很稳定?
五、(a )NaCl 属于何种结构?画图说明Na +离子在结构中的位置?Cl -离子在什么位置?
正、负离子配位数如何?
(b) CsCl 属于何种结构?画图说明Cs +离子在结构中的位置?Cl -离子在什么位置?
正、负离子配位数如何?
六、图2-1是Na 2O 的理想晶胞结构示意图,试回答:(a )晶胞分子数是多少;(b )结构中何种离子做何种密堆积;何种离子填充何种空隙,所占比例是多少;(c )结构中各离子的配位数为多少,写出其配位多面体;(d )计算说明O 2-的电价是否饱和。
图2-1 七、根据CaTiO 3晶胞图(见图2-2)回答下列问题:(a )晶面BCGF 、DEG 的晶面指数;晶向DF 、HA 的晶向指数;(b )结构中各离子的配位数为多少,写出其配位多面体;(c )晶胞分子数是多少?何种离子添何种空隙,空隙利用率是多少?(d )计算说明O 2-的电价是否饱和。
(e )结构中是否存在TiO 32-离子,为什么?
八、在萤石晶体中Ca 2+半径为0.112nm ,F -半径为0.131nm ,(a )求萤石晶体中离子堆积
系数?(b )萤石晶体a =0.547nm ,求萤石的密度?
九、Al 2O 3·2SiO 2·2H 2O 和Na 2O ·Al 2O 3·6SiO 2是什么物质?都属于何种硅酸盐结构类型?分别写出无机络盐形式。
十、堇青石与绿宝石具有相同的结构,分析其有显著的离子电导,较小的热膨胀系数的原因。
十一、Si 和Al 的原子量非常接近(分别为28.09和26.98),但SiO 2和Al 2O 3的密度相差很大(分别为2.65及3.96)。
运用晶体结构及鲍林规则说明这一差别。
图2-2
十二、什么叫阳离子交换?从结构上说明高岭石、蒙脱石阳离子交换容量差异的原因。
十三、为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多?十四、说明下列符号的含义:V Na,V Na’,V Cl·,.(V Na’V Cl·),C aK·,Ca Ca,Ca i··
十五、写出下列缺陷反应式:
(a)NaCl溶入CaCl2中形成空位型固溶体:
(b)CaCl2溶人NaC1中形成空位型固溶体:
(c)NaCl形成肖脱基缺陷:
(d)AgI形成弗仑克尔缺陷(Ag+进入间隙):
(e)CaF2中添加YF3形成间隙固溶体:
(f)ZrO2中添加CaO形成置换固溶体:
十六、金黄色的人造黄玉是在Al2O3中添加了0.5mol%NiO和0.02mol%Cr2O3。
试写出缺陷反应方程(置换型)及化学式。
十七、对于MgO、Al2O3和Cr2O3,其正、负离子半径比分别为0.47、0.36和0.40。
Al2O3和Cr2O3形成连续固熔体。
(1)这个结果可能吗?为什么?(2)试预计,在MgO-Cr2O3系统中的固熔度是有限还是很大的?为什么?
十八、在MgO-Al2O3和PbTiO2-PbZrO3中哪一对形成有限固溶体,哪一对形成无限固溶体,为什么?
十九、影响置换型固溶体形成的因素有哪些?
二十、试比较刃位错和螺位错的异同点。
二十一、TiO2-x和Fe1-x O分别为具有阴离子空位和阳离子空位的非化学计量化合物。
试说明其导电率和密度随氧分压P O2变化的规律。
(以缺陷方程帮助说明)
二十二、(a)在CaF2晶体中,弗仑克尔缺陷形成能为2.8eV,肖特基缺陷的生成能为5.5eV,计算在25℃和1600℃时热缺陷的浓度?(k=1.38×10-23J/K,1eV=1.602×10-1J)
(b)如果CaF2晶体中,含有百万分之一的YF3杂质,则在1600℃时,CaF2晶体中时热缺陷占优势还是杂质缺陷占优势?说明原因。