三种基本逻辑电路运算比较
《数字电子技术(第三版)》2. 基本逻辑运算及集成逻辑门

Y=A+ Y=A+B
功能表
开关 A 断开 断开 闭合 闭合 开关 B 断开 闭合 断开 闭合 灯Y 灭 亮 亮 亮
真值表
A 0 0 1 1
B 0 1 0 1
逻辑符号
Y 0 1 1 1
实现或逻辑的电 路称为或门。或 门的逻辑符号:
A B
≥1
Y=A+B
2.1.3、非逻辑(非运算) 2.1.3、非逻辑(非运算) 非逻辑指的是逻辑的否定。当决定事件(Y) 发生的条件(A)满足时,事件不发生;条件不 满足,事件反而发生。表达式为: Y=A 开关A控制灯泡Y
A E B Y
A断开、B接通,灯不亮。 断开、 接通 灯不亮。 接通, 断开
A E B Y
A接通、B断开,灯不亮。 接通、 断开,灯不亮。 接通 断开
A、B都接通,灯亮。 、 都接通,灯亮。 都接通
两个开关必须同时接通, 两个开关必须同时接通, 灯才亮。逻辑表达式为: 灯才亮。逻辑表达式为:
Y=AB
2.4 集成逻辑门
2.4.1 TTL与非门 TTL与非门 2.4.2 OC门和三态门 OC门和三态门 2.4.3 MOS集成逻辑门 MOS集成逻辑门 2.4.4 集成逻辑门的使用问题 退出
逻辑门电路:用以实现基本和常用逻辑运算的电子电 路。简称门电路。 基本和常用门电路有与门、或门、非门(反相器)、 与非门、或非门、与或非门和异或门等。 逻辑0和1: 电子电路中用高、低电平来表示。 获得高、低电平的基本方法:利用半导体开关元件 的导通、截止(即开、关)两种工作状态。 集成逻辑门 双极性晶体管逻辑门 TTL ECL I2L 单极性绝缘栅场效应管逻辑门 PMOS NMOS CMOS
(6)平均传输延迟时间tpd:从输入端接入高电平开始,到输出端 输出低电平为止,所经历的时间叫导通延迟时间(tpHL); 从输入端接入低电平开始,到输出端输出高电平为止,所经 历的时间叫截止延迟时间(tpLH)。 tpd=(tpHL+ tpLH)/2=3~40ns 平均传输延迟时间是衡量门电路运算速度的重要指标。 (7)空载功耗:输出端不接负载时,门电路消耗的功率。 静态功耗是门电路的输出状态不变时,门电路消耗的功率。其中: 截止功耗POFF是门输出高电平时消耗的功率; 导通功耗PON是门输出低电平时消耗的功率。 PON> POFF (8)功耗延迟积M:平均延迟时间tpd和空载导通功耗PON的乘积。 M= PON× tpd (9)输入短路电流(低电平输入电流)IIS:与非门的一个输入端直 接接地(其它输入端悬空)时,由该输入端流向参考地的电流。 约为1.5mA。
基本逻辑运算

1
1
0
1
1
0
(3) 逻辑符号 国 A 标 B
=1 L
国 外
A B
L *
10
4、同或逻辑
(1) 逻辑式: L=A⊙B (2) 真值表
A 0 0 1 1 B 0 1 0 1 L 1 0 0 1
L AB AB
只有两变量 参与运算
同入出1 异入出0
同或门 表示反相 L
(3) 逻辑符号 国 A 标 B
*
4
2、或逻辑(逻辑加)
(1)定义:在决定事物结果的诸条件中只要任何一个满 足,结果就会发生。 A (2)逻辑式:L= A + B
B + _
(3)真值表
设 开关闭合为 1,断开为 0 灯亮为 1,熄灭为 0
A 0 0 B 0 1 L 0 1
L
当逻辑变量A、B中任何一 个为1时,逻辑函数L等于1。 (低低得低)
只有输入A、B同时为0时,输 出L才为1 有1出0 全0出1
或非门 表示反相 L 表示反相
(3) 逻辑符号 国 A 标 B
1
国 A 外 B
L *
9
3、异或逻辑
(1) 逻辑式: L A B (2) 真值表
A 0 0 B 0 1 L 0 1
L AB AB
只有两变量 参与运算
同入出0 异入出1
分配律
B A.B B.A 0 0 0 1 0 0 0 0 0 1 1 1
*
13
2、常用恒等式
AB AC BC AB AC
含A的 原变量 含A的 反变量 含除A以外的 其余因子
冗余 项
如何证明?
检验等式两边的真值表 是否相等
数电简明教程第一章 逻辑代数基础知识

10
第六章 脉冲产生与整形电路
概述 6.1 施密特触发器
11
12
概 述
一、逻辑代数(布尔代数、开关代数) 逻辑: 事物因果关系的规律 逻辑函数: 逻辑自变量和逻辑结果的关系
Z f ( A, B, C )
逻辑变量取值:0、1 分别代表两种对立的状态 一种状态 另一状态 高电平 真 低电平 假 是 非 有 无 … … 1 0 0 1
概述 3.1 3.2 3.3 3.4 3.5 组合电路的分析方法和设计方法 加法器和数值比较器 编码器和译码器 数据选择器和分配器 用 MSI 实现组合逻辑函数
8
第四章
概述
触发器
4.1 基本触发器 4.2 同步触发器 4.3 边沿触发器 4.4 触发器的电气特性
9
第五章
时序逻辑电路
概述 5.1 时序电路的基本分析和设计方法 5.2 计数器 5.3 寄存器和读/写存储器
( 26 )10 = 16 + 8 + 2 = 24 +23 + 21 = ( 1 1 0 1 0 )2
16 8 4 2 1
20
(3) 二-八转换: 每 3 位二进制数相当一位 8 进制数
( 0 10 101 111 ) 2 ( 257 )8
2 5 7
( 0 1 0 0 1 1 1 0 0 0 0 1. 0 0 0 1 1 0 )2 ( 2 3 4 1 . 0 6 )8
(4) 八-二转换: 每位 8 进制数转换为相应 3 位二进制数
( 31. 47 )8 ( 011 001 . 100 111
)2
)2
( 375.64 )8 ( 011 111 101 . 110 100
基本的逻辑运算表示式-基本逻辑门电路符号

基本的逻辑运算表示式-基本逻辑门电路符号1、与逻辑(AND Logic)与逻辑又叫做逻辑乘,通过开关的工作加以说明与逻辑的运算。
从上图看出,当开关有一个断开时,灯泡处于灭的,仅当两个开关合上时,灯泡才会亮。
于是将与逻辑的关系速记为:“有0出0,全1出1”。
图(b)列出了两个开关的组合,以及与灯泡的,用0表示开关处于断开,1表示开关处于合上的;灯泡的用0表示灭,用1表示亮。
图(c)给出了与逻辑门电路符号,该符号表示了两个输入的逻辑关系,&在英文中是AND的速写,开关有三个则符号的左边再加上一道线就行了。
逻辑与的关系还用表达式的形式表示为:F=A·B上式在不造成误解的下可简写为:F=AB。
2、或逻辑(OR Logic)上图(a)为一并联直流电路,当两只开关都处于断开时,其灯泡不会亮;当A,B两个开关中有一个或两个一起合上时,其灯泡就会亮。
如开关合上的用1表示,开关断开的用0表示;灯泡的亮时用1表示,不亮时用0表示,则可列出图(b)的真值表。
这种逻辑关系通常讲的“或逻辑”,从表中可看出,只要输入A,B两个中有一个为1,则输出为1,否则为0。
或逻辑可速记为:“有1出1,全0出0”。
上图(c)为或逻辑门电路符号,通常用该符号来表示或逻辑,其方块中的“≥1”表示输入中有一个及一个的1,输出就为1。
逻辑或的表示式为:F=A+B3、非逻辑(NOT Logic)非逻辑又常称为反相运算(Inverters)。
下图(a)的电路实现的逻辑功能非运算的功能,从图上看出当开关A 合上时,灯泡反而灭;当开关断开时,灯泡才会亮,故其输出F的与输入A的相反。
非运算的逻辑表达式为图(c)给出了非逻辑门电路符号。
复合逻辑运算在数字系统中,除了与运算、或运算、非运算之外,使用的逻辑运算还有是通过这三种运算派生出来的运算,这种运算通常称为复合运算,的复合运算有:与非、或非、与或非、同或及异或等。
4、与非逻辑(NAND Logic)与非逻辑是由与、非逻辑复合而成的。
2.1基本逻辑运算和基本门电路

第二章逻辑代数与逻辑门电路基本要求:理解“与”逻辑及“与”门、“或”逻辑及“或”门、“非”逻辑及“非”门;理解正、负逻辑的概念,掌握逻辑代数的基本定律、基本规则和常用公式;理解复合逻辑的概念;了解集成门电路的分类;理解TTL、MOS门电路;理解逻辑函数的表示方法;掌握逻辑函数的代数化简法和卡诺图化简法。
本章主要内容:介绍逻辑代数、集成逻辑门电路和逻辑函数化简。
逻辑代数是数字电路的理论基础,是组合逻辑和时序逻辑电路分析、设计中要用到的基本工具;集成逻辑门电路是组成数字逻辑电路的基本单元电路;逻辑函数化简是逻辑电路分析的基础。
本章重点:基本逻辑门电路和功能逻辑代数的基本定律及常用公式逻辑函数的代数化简法本章难点:基本定律、公式及化简法的正确与准确一、逻辑变量与逻辑函数:在逻辑代数中的变量称逻辑变量,用字母A、B、C……来表示。
逻辑变量只能有两种取值:真和假。
常把真记作“1”,假记作“0”。
这里的“1”和“0”并不表示数量的大小,而是表示完全对立的两种状态。
在逻辑问题的研究中,涉及到问题产生的条件和结果。
表示条件的逻辑变量称输入变量,表示结果的逻辑变量称输出变量。
将输入变量和输出变量通过逻辑运算符连接起来的式子称逻辑函数,常用F、L表示。
基本的逻辑运算有“与”运算、“或”运算、“非”运算。
二、逻辑运算:逻辑运算的值要通过对逻辑变量进行逻辑运算来确定。
1.与运算及与门逻辑运算F与逻辑变量A、B的逻辑与运算表达式是:F=A·B, 式中“·”为与运算符。
在逻辑电路中,把能实现与运算的基本单元叫与门,它是逻辑电路中最基本的一种门电路。
二极管构成的与门电路及逻辑符号如下:2.或运算及或门逻辑函数F与逻辑变量A、B的逻辑运算表达式是:F=A+B,式中“+”为或运算符。
在逻辑电路中,把能实现或运算的基本单元叫或门。
二极管构成的或门电路及逻辑符号如下:3.非逻辑及非门对逻辑变量A进行逻辑非运算的表达式是:F=,这里的“-”是非运算符。
组合逻辑电路(半加器全加器及逻辑运算)

一种常见的实现方式是使 用异或门实现和S,使用 与门实现进位C。
半加器的性能分析
逻辑级数
半加器的逻辑级数通常较低,因 为它只涉及基本的逻辑运算。
可靠性
半加器的结构简单,因此具有较 高的可靠性。
延迟时间
由于逻辑级数较低,半加器的延 迟时间相对较短。
资源消耗
半加器使用的逻辑门数量相对较 少,因此在资源消耗方面较为经 济。
组合逻辑电路(半加器 全加器及逻辑运算)
• 组合逻辑电路概述 • 半加器原理与设计 • 全加器原理与设计 • 逻辑运算原理与设计 • 组合逻辑电路的分析与设计方法 • 组合逻辑电路在数字系统中的应用
目录
Part
01
组合逻辑电路概述
定义与特点
定义
无记忆性
组合逻辑电路是一种没有记忆功能的数字 电路,其输出仅取决于当前的输入信号, 而与电路过去的状态无关。
比较器
比较两个二进制数的大小关系,根 据比较结果输出相应的信号,可以 使用与门、或门和非门实现。
全加器
在半加器的基础上增加对进位的处理 ,使用与门、或门和异或门实现两个 一位二进制数带进位的加法运算。
多路选择器
根据选择信号的不同,从多个输 入信号中选择一个输出,可以使 用与门、或门和非门实现。
Part
用于实现控制系统的逻辑 控制、数据处理等功能。
Part
02
半加器原理与设计
半加器的基本原理
半加器是一种基本的组合 逻辑电路,用于实现两个 二进制数的加法运算。
它接收两个输入信号A和 B,并产生两个输出信号: 和S以及进位C。
半加器不考虑来自低位的进 位输入,因此只能处理两个 一位二进制数的加法。
组合逻辑电路的应用领域
三种基本逻辑门电路

三种基本逻辑门电路三种基本的门:全部其它组合规律功能都可由这三种门单之产生。
规律门表示法符号希尔符号NOT (非)ā 或/A — 或/ (非、负)AND (与)A * B * 与(积)OR (或)A+B + (和)二规律门等效于AND 和NOT : NAND 与非门OR 和NT : NOR 或非任何规律功能都可以表示为“ 与非门” 或者“ 或非门” 的功能。
三种基本规律门的真值表运算符的优先级正常的运算次序是:NOT ,AND ,OR, 括号中的内容总是比表达式的其它部分先进行运算。
例:交换律、结合律和安排律AND 功能和OR 功能可以交换和结合。
操作数可以任何次序消失,而不会影响功能的运算结果:1. 交换律2. 结合律3. 安排律1. A*(B+C) = (A*B)+(A*C) :象标准的代数规章(乘对加)2. A+(B*C) = (A+B)*(A+C) :真值表或规律变换证明( 加对乘)4.对偶性对偶性原理:– 假如用*替换+,+替换*,1替换0,0替换1,则替换后的表达式与原等式等同。
– 因此只要证明第一条安排律是正确的,通过对偶性就能证明其次条安排律的正确性。
5. 规律运算的法则四条基本公理– 公理1 :a. X+0=X b. X*0=0– 公理2 :a. X+/X=1 b. X*/X=0– 公理3 :a. X+Y=Y+X b. X*Y=Y*X– 公理4 :a. X*(Y+Z)=(X*Y)+(X*Z) b. X+(Y*Z)=(X+Y) *(X+Z)九条基本交理– 定理1 :a. X+X=X b. X*X=X– 定理2 :a. X+1=1 b. X*0=0– 定理3 :/(/X)=X ( 不包括具有对偶的元素+ 、* 、1 或0) – 定理4 :a. X+(Y+Z)=(X+Y)+Z l b. X*(Y*Z)=(X*Y) *Z– 定理5 :a. /(X+Y)=/X*/Y b. /(X*Y)=/X+/Y– 定理6 :a. X+(X*Y)=X b. X*(X+Y)=X– 定理7 :a. (X+Y)+(X*/Y)=X b. (X+Y) *(X+/Y)=X– 定理8 :a. X+(/X*Y)=X+Y b. X*(/X+Y)=X*Y– 定理9 : a. (X*Y)+(/X*Z)+(Y*Z)=(X*Y)+(/X*Z) b. (X+Y) *(/X+Z)*(Y*Z)=(X+Y)*(/X+Z)除定理3 ,每个定理或公理都有二种形式,属对偶性原理的关系。
理论三 逻辑门电路

1
课前预备
熟练数制间的转换
重、难点
基本逻辑运算及基本逻辑门电路
1.基本逻辑运算及基本逻辑门电路
概念
在数字电路中往往用输入信号表示“条件”,用输出信号表示“结果”,而
条件与结果之间的因果关系称为逻辑关系,能实现某种逻辑关系的数字电
子电路称为逻辑门电路。
基本的逻辑关系有:与逻辑、或逻辑、非逻辑;
能实现非逻辑功能的电路称为非门电路,又称 反相器 ,简称非
门
非门电路的电路图形符号
非逻辑函数表达式: =
ഥ
非逻辑功能为:“有0出1,有1出0”
2.复合逻辑运算
几种常用的复合逻辑运算
• 与非
或非
与或非
几种常用的复合逻辑运算
• 异或
• Y= A B
A
B
Y
0
0
0
0
1
1
1
0
1
1
1
0
几种常用的复合逻辑运算
与之相应的基本逻辑门电路有:与门、或门、非门。来自逻辑代数中的三种基本运算
与(AND)
或(OR)
非(NOT)
以A=1表示开关A合上,A=0表示开关A断开;
以Y=1表示灯亮,Y=0表示灯不亮;
三种电路的因果关系不同:
一、与逻辑和与门电路
1.与逻辑关系
当一件事情的几个条件全部具备之后,这件事情才能发生,否则不
三极管、MOS管和电阻等分立元件组成,也可以由集成电路组成。
与逻辑的真值表
与逻辑功能为:
“有0出0,全1出1”
与门电路的电路图形符号
逻辑表达式Y=A·B或
Y=AB
二、或逻辑和或门电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三种基本逻辑电路运算比较
01基本概念
1.逻辑常量与变量:逻辑常量只有两个,即0和1,用来表示两个对立的逻辑状态。
逻辑变量与普通代数一样,也可以用字母、符号、数字及其组合来表示,但它们之间有着本质区别,因为逻辑变量的取值只有两个,即0和1,而没有中间值。
2.逻辑运算:在逻辑代数中,有与、或、非三种基本逻辑运算。
表示逻辑运算的方法有多种,如语句描述、逻辑代数式、真值表、卡诺图等。
3.逻辑函数:逻辑函数是由逻辑变量、常量通过运算符连接起来的代数式。
同样,逻辑函数也可以用表格和图形的形式表示。
4.逻辑代数:逻辑代数是研究逻辑函数运算和化简的一种数学系统。
逻辑函数的运算和化简是数字电路课程的基础,也是数字电路分析和设计的关键。
02三种基本逻辑运算与运算1
图1(a)表示一个简单与逻辑的电路,电压V通过开关A和B向灯泡L供电,只有A和B同时接通时,灯泡L才亮。
A和B中只要有一个不接通或二者均不接通时,则灯泡L 不亮,其真值表如图1(b)。
因此,从这个电路可总结与运算逻辑关系。
语句描述:只有当一件事情(灯L亮)的几个条件(开关A与B都接通)全部具备之后,这件事情才会发生。
这种关系称与运算。
逻辑表达式:L=A·B
式中小圆点“·”表示A、B 的与运算,又称逻辑乘。
在不致引起混淆的前提下,乘号“·”被省略。
某些文献中,也有用符号∧、∩表示与运算的。
真值表:如果开关不通和灯不亮均用0表示,而开关接通和灯亮均用1表示,得到如图1(c)所示的真值表描述。
真值表的左边列出为所有变量的全部取值组合,右边列出的是对应于A,B变量的每种取值组合的输出。
因为输入变量有两个,所以取值组合有22=4种,对于n个变量,应该有2n种取值组合。
逻辑符号:与运算的逻辑符号如图1(d)所示,其中A,B为输入,L为输出。