普通物理学 第四章 复习思考题

合集下载

大学物理第四章习题解答PPT演示课件

大学物理第四章习题解答PPT演示课件
注意:最高点处摆锤(刚体)的速度恰好为零 时, 完成一个圆周运动。(区别:3-30)
16
解: 冲击:子弹和摆锤角动量守恒
mlvm2 vl(J1J2)0
J1
1 3
ml 2
J2 ml2
v 0
摆动:摆锤和地球机械能守恒
Ek Ep
1 2(J1J2)0 2mg2lmgl
4m vmin m
2gl
17
解:子弹+杆系统: M外 0
m 22 lv(1 JJ2) J2)(1JJ2)
J1
1 12
m1l
2
J2
m1(
l )2 2
v v r l/2
J2 6m 2v 2.1 9r3a/sd
J1J2 m 1l3m 2l
11
426:一质量 m/、 为半径 R的 为转台,以a角 转速 动度 ,转轴的
不计, 1)( 有一质 m的 量蜘 为蛛垂直地边 落缘 在上 转, 台此时角 ,
解: JJ盘2J柱
J盘 12m盘R盘 2
R盘
3
01 2
02
m
J柱 12m柱R柱 2
10102 R柱 2 m
m盘 V盘
m柱 V柱
J0.13k6gm2
7
413:如图所示m1, 1质 6kg的 量实心圆 A,柱 其体 半r径 15c为 m ,可 绕其固定水平 阻轴 力转 忽动 略, 不计 的。 柔一 绳条 绕轻 在圆 其柱 一
(A) 角速度从小到大,角加速度不变 O
A
(B) 角速度从小到大,角加速度从小 到大
(C) 角速度从小到大,角加速度从 大到小
(D) 角速度不变,角加速度为零
2
绕过O点的轴做定轴转动。求:运动过程中角速度和角 加速度的变化情况

普通物理学教程力学课后答案高等教育出版社第四章 动能和势能

普通物理学教程力学课后答案高等教育出版社第四章 动能和势能

第4章动能和势能习题解答4.2.2 本题图表示测定运动体能的装置。

绳拴在腰间沿水平展开跨过理想滑轮,下悬重物50kg ,人用力向后蹬传送带而人的质心相对于地面不动,设传送带上侧以2m/s 的速率向后运动,问运动员对传送带做功否?功率如何?解:人作用在传送带上的力有向下的压力和水平向后的静摩擦力,压力方向与传送带位移方向垂直,所以压力不做功,但静摩擦力方向与传送带位移方向相同,所以静摩擦力对传送带做正功。

分析人受力情况,由质心定理可知,人与传送带之间的静摩擦力的大小f=mg ,所以,人对传送带做功的功率为:N = fv = mgv = 50×9.8×2 = 9.8×102(瓦)4.2.3 一非线性拉伸弹簧的弹性力的大小为l l k l k f ,321+=表示弹簧的伸长量,k 1为正,⑴研究当k 2>0、k 2<0和k 2=0时弹簧的劲度df/dl 有何不同;⑵求出将弹簧由l 1拉长至l 2时弹簧对外界所做的功。

解:弹簧的劲度df/dl=k 1+3k 2l 2. k 2=0时,df/dl =k 1,与弹簧的伸长量 无关;当k 2>0时,弹簧的劲度随弹簧 伸长量的增加而增大;k 2<0时,弹簧 的劲度随弹簧伸长量的增加而减小。

在以上三种情况中,劲度df/dl 与弹簧伸长量l 的关系如图所示。

))](([)()()(2122212222112141422412122121321321212121l l l l k k l l k l l k dll k ldl k dl l k l k A l l l l l l -++-=----=--=+-=⎰⎰⎰4.2.4一细线系一小球,小球在光滑水平桌面上沿螺旋线运动,线穿过桌中心光滑圆孔,用力F 向下拉绳,证明力F 对线做的功等与线作用于小球的拉力所做的功,线不可伸长。

证明:以圆孔为顶点建立极坐标,设小球的位置由r 1,θ1变为r 2,θ2,由于忽略绳的质量、伸长,不计摩擦,所以绳对球的拉力T=FFT F r r r r r r rT A A r r T r r F A r r T drTTdrdr FA =∴-=-=-==-==⎰⎰⎰),()()(2121211221214.2.5 一辆卡车能够沿着斜坡以15km/h 的速率向上行驶,斜坡与水平面夹角的正切tg α=0.02,所受阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,卡车的速率是多少?解:设卡车匀速上坡时,速率为v, 牵引力为F, 功率为N,由质点平衡方程有,F = (0.04+sin α)mg ,∴N = Fv = (0.04+sin α)mgv设卡车匀速下坡时,速率为v ’,牵引力为F',功率为N', 由质点平衡方程有 F'+ mg sin α= 0.04mg, F'=(0.04-sin α)mg, ∴N'= (0.04-sin α)mgv'.令N'= N, 即(0.04+sin α)mgv = (0.04-sin α)mgv',可求得:v'= v(0.04+sin α)/(0.04-sin α). 利用三角函数关系式,可求得: sin α≈tg α=0.02 ,∴v'=3v =3×15×103/602 m/s = 12.5m/s.4.3.1质量为m=0.5kg 的木块可在水平光滑直杆上滑动,木块与一不可伸长的轻绳相连,绳跨过一固定的光滑小环,绳端作用着大小不变的力T=50N ,木块在A 点时具有向右的速率v 0=6m/s ,求力T 将木块从A 拉至B 点时的速度。

新版热学(秦允豪编)习题解答第四章热力学第一定律-新版.pdf

新版热学(秦允豪编)习题解答第四章热力学第一定律-新版.pdf

CV T0 2
CV (
R 2R
1
1
27 3 2
T2 T0
T0
(2)由( 1)式:
8
3
1.5 )
(3)左侧初态亦为 P0 T 0 V 0 ,终态为 P1V1T1
27
P1 P2
P0
∵ 活塞可移动,
8 ,由 PV
RT
RT 2
P0 V 0 T 2
V2
P2
T0
P2
14
V 1 2V 0 V 2
V0
9
P0V 0
3 T0
19
23
q 2 1 .60 10
6 .02 10 C
( q 2N Ae )
两极间电压为 , A q
19
A 1 .229 2 1 .60 10
6 .02
Q'
5
2. 858 10
23
10
82 . 84 %
4.4.7 设 1mol 固 体状 态 方程 为: v v 0 aT bP , 内 能 表示 为: u CT
Py L y S
P0 LS
其中 P0
gh 0
Py P0 可改写为
L Ly
1 P0
对微小振动 y L
Py P0
y 1
L
y
1 P0
1
1 P0
L
y P0
L
h0 gy
L
由功能关系:
m gy
1 mv 2 2
m max gy max
AP
式中 A P 是由于右端空气压强 P y 与左端空气压强 P0 对水银柱作功之和,且
2
T0
27 P0
8

普通物理学教程力学课后答案高等教育出版社第四章 动能和势能.

普通物理学教程力学课后答案高等教育出版社第四章 动能和势能.

第4章动能和势能习题解答4.2.2 本题图表示测定运动体能的装置。

绳拴在腰间沿水平展开跨过理想滑轮,下悬重物50kg ,人用力向后蹬传送带而人的质心相对于地面不动,设传送带上侧以2m/s 的速率向后运动,问运动员对传送带做功否?功率如何?解:人作用在传送带上的力有向下的压力和水平向后的静摩擦力,压力方向与传送带位移方向垂直,所以压力不做功,但静摩擦力方向与传送带位移方向相同,所以静摩擦力对传送带做正功。

分析人受力情况,由质心定理可知,人与传送带之间的静摩擦力的大小f=mg ,所以,人对传送带做功的功率为:N = fv = mgv = 50×9.8×2 = 9.8×102(瓦)4.2.3 一非线性拉伸弹簧的弹性力的大小为l l k l k f ,321+=表示弹簧的伸长量,k 1为正,⑴研究当k 2>0、k 2<0和k 2=0时弹簧的劲度df/dl 有何不同;⑵求出将弹簧由l 1拉长至l 2时弹簧对外界所做的功。

解:弹簧的劲度df/dl=k 1+3k 2l 2. k 2=0时,df/dl =k 1,与弹簧的伸长量 无关;当k 2>0时,弹簧的劲度随弹簧 伸长量的增加而增大;k 2<0时,弹簧 的劲度随弹簧伸长量的增加而减小。

在以上三种情况中,劲度df/dl 与弹簧伸长量l 的关系如图所示。

))](([)()()(2122212222112141422412122121321321212121l l l l k k l l k l l k dll k ldl k dl l k l k A l l l l l l -++-=----=--=+-=⎰⎰⎰4.2.4一细线系一小球,小球在光滑水平桌面上沿螺旋线运动,线穿过桌中心光滑圆孔,用力F 向下拉绳,证明力F 对线做的功等与线作用于小球的拉力所做的功,线不可伸长。

证明:以圆孔为顶点建立极坐标,设小球的位置由r 1,θ1变为r 2,θ2,由于忽略绳的质量、伸长,不计摩擦,所以绳对球的拉力T=FFT F rr r r r r r T A A r r T r r F A r r T dr T Tdr dr F A =∴-=-=-==-==⎰⎰⎰),()()(2121211221214.2.5 一辆卡车能够沿着斜坡以15km/h 的速率向上行驶,斜坡与水平面夹角的正切tg α=0.02,所受阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,卡车的速率是多少?解:设卡车匀速上坡时,速率为v, 牵引力为F, 功率为N,由质点平衡方程有,F = (0.04+sin α)mg ,∴N = Fv = (0.04+sin α)mgv设卡车匀速下坡时,速率为v ’,牵引力为F',功率为N', 由质点平衡方程有 F'+ mg sin α= 0.04mg, F'=(0.04-sin α)mg,∴N'= (0.04-sin α)mgv'.令N'= N, 即(0.04+sin α)mgv = (0.04-sin α)mgv',可求得:v'= v(0.04+sin α)/(0.04-sin α). 利用三角函数关系式,可求得: sin α≈tg α=0.02 ,∴v'=3v =3×15×103/602 m/s = 12.5m/s.4.3.1质量为m=0.5kg 的木块可在水平光滑直杆上滑动,木块与一不可伸长的轻绳相连,绳跨过一固定的光滑小环,绳端作用着大小不变的力T=50N ,木块在A 点时具有向右的速率v 0=6m/s ,求力T 将木块从A 拉至B 点时的速度。

程守洙《普通物理学》(第6版)(上册)(课后习题详解 相对论基础)【圣才出品】

程守洙《普通物理学》(第6版)(上册)(课后习题详解 相对论基础)【圣才出品】

4.2 课后习题详解一、复习思考题§4-1 狭义相对论基本原理洛伦兹变换4-1-1 爱因斯坦的相对性原理与经典力学的相对性原理有何不同?答:(1)经典力学的相对性原理:运动关系的相对性表明,物质之间存在着相对运动的关系而非彼此孤立.相对运动的形式丰富多样,由相对运动产生的相互作用力也形式不一.(2)爱因斯坦的相对性原理:在所有惯性系中,物理定律的形式相同,或者说,所有惯性系对于描述物理现象都是等价的.(3)二者的分析比较:①经典力学的相对性原理说明一切惯性系对力学规律的等价性,而爱因斯坦的相对性原理将此种等价性推广到一切自然规律上去,包括力学定律和电磁学定律.②爱因斯坦的相对性原理的等价性推广意义深刻.我们可借助于电学或光学实验确定出本系统的“绝对运动”来,绝对静止的参考系是存在的,然而这与实验事实相矛盾.③爱因斯坦基于对客观规律的根本认识以及对实验事实的总结,才提出这个相对性原理的.相对论是研究相对运动和相互作用的科学.它使研究物质、能量及其相互作用的物理学发展到更高更深的层次.4-1-2 洛伦兹变换与伽利略变换的本质差别是什么?如何理解洛伦兹变换的物理意义?答:(1)洛伦兹变换与伽利略变换的本质差别:①洛伦兹变换是相对论时空观的具体表述;②伽利略变换是经典力学绝对时空观的具体表述.(2)洛伦兹变换的物理意义①洛伦兹变换集中地反映了相对论关于时间、空间和物质运动三者紧密联系的观念.②洛伦兹变换是建立相对论力学的基础.a.运用洛伦兹变换,评判一条物理规律是否符合相对论的要求,凡是通过洛伦兹变换能保持不变式的物理规律都是相对论性的规律.b.在v<<c时,洛伦兹变换将转换为伽利略变换,从这个角度出发,相对论力学就是经典牛顿力学的继承、批判和发展.4-1-3 设某种粒子在恒力作用下运动,根据牛顿力学,粒子的速率能否超过光速?答:(1)牛顿力学认为粒子的质量不会改变,粒子的加速度正比于所受外力.外力越大,粒子所得的加速度也越大.因此,粒子速度是没有极限的,粒子的速率可以超过光速.(2)相对论力学认为,粒子的质量随速度的增大而增大,粒子的加速度并非与所受外力成简单正比关系,加速度的大小有限制,使得粒子的速率不会超过光速.§4-3 狭义相对论的时空观4-3-1 长度的量度和同时性有什么关系?为什么长度的量度和参考系有关系?答:(1)长度的量度:测量一物体的长度就是在本身所处的参考系中测量物体两端点位置之间的距离.(2)同时性分析:①当待测物体相对于观测者静止时,在不同的时刻测量两端点的位置,其距离总是物体的长度;②当待测物体相对于观测者运动时,物体的长度就必须同时测定物体两端点的位置.若非同时测定,测量了一端的位置时,另一端已移动到新的位置,其坐标差值不再是物体的长度了.(3)由于同时性的相对性,所以长度的量度与同时性紧密相连,从而与测量的参考系有关.(4)下面举例说明:假设有一细棒静止在K′系的x′轴上,而K′系相对惯性系K 以速度v沿O x 轴运动.如把记录细棒左端坐标为事件1,记录细棒右端坐标为事件2,则两事件在两参考系中相应的时空坐标为由于细棒静止在K '系,所以△x'=x '2-x '1就是细棒的固有长度,根据洛伦兹变换在K 系测量两端坐标必须同时进行,即△t=0,故有所以在K 系中测得物体的长度为这就是长度收缩效应现象.4-3-2 下面两种论断是否正确?(1)在某一惯性系中同时、同地发生的事件,在所有其他惯性系中也一定是同时、同地发生的.(2)在某一惯性系中有两个事件,同时发生在不同地点,而在对该系有相对运动的其他惯性系中,这两个事件却一定不同时.答:(1)正确.在一个惯性系中同时、同地发生的事件,实质上就是一个事件.因而,可得:△x=0,△t=0根据洛伦兹变换:△x'=0,△t'=0因此,在所有其他惯性系中也一定是同时、同地发生的.(2)正确.对惯性系K 中同时发生在不同地点的两个事件,可得△t=0.△x≠0在相对运动的其他惯性系K '中,有在惯性系K '中这两个事件一定不同时.因此,同时性是相对的.4-3-3 两只相对运动的标准时钟A 和B ,从A 所在惯性系观察,哪个钟走得更快?从B 所在惯性系观察,又是如何呢?答:(1)从A 所在惯性系观察,根据“时间膨胀”或“原时最短”的结论,相对静止的时钟A 所指示的时间间隔是原时,它走得“快”些;而时钟B 给出的时间间隔是运动时,因“时间膨胀”而走得“慢”些.(2)同理,从B所在惯性系观察时,则相反,时钟B走得“快”些,而时钟A走得“慢”些.4-3-4 相对论中运动物体长度缩短与物体线度的热胀冷缩是否是一回事?答:不是一回事.(1)“热胀冷缩”①是涉及分子微观热运动的基本热学现象;②这与物体的温度有关,与其宏观运动速度无关.(2)“长度收缩”①是由狭义相对论所得到的重要结论,指在相对物体运动的惯性系中测量物体沿运动方向的长度时,测得的长度总是小于固有长度或静长这一现象;②这与物体的运动速度有关,与物体的组成和结构无关,是普遍的时空性质的反映.4-3-5 有一枚以接近于光速相对于地球飞行的宇宙火箭,在地球上的观察者将测得火箭上的物体长度缩短,过程的时间延长,有人因此得出结论说:火箭上观察者将测得地球上的物体比火箭上同类物体更长,而同一过程的时间缩短.这个结论对吗?答:此结论不正确.(1)狭义相对论认为,“长度收缩”和“时间膨胀”都是相对的.(2)若以火箭和地球为相对运动的惯性参考系,则火箭上的观察者也会观测到“长度收缩”和“时间膨胀”的现象.4-3-6 比较狭义相对论的时空观与经典力学时空观有何不同?有何联系?答:(1)两种时空观的不同:①狭义相对论时空观:a.狭义相对论中关于不同惯性系之间物理事件的时空坐标变换的基本关系式是洛伦兹变换.在洛伦兹变换关系中,长度和时间都是相对的,反映了相对论的时空观.b.狭义相对论时空观认为:第一,空间和时间不可分割,与物质运动密切相关;第二,时间是相对的,时间间隔因惯性系不同则会有差别;第三,空间是相对的,在不同的惯性系中,相同两点的空间间隔会有差别.②经典力学时空观:a.经典力学中关于不同惯性系之间物理事件的时空坐标变换的关系式是伽利略变换.在伽利略变换关系中,长度和时间都是绝对的,反映了经典力学的绝对时空观.b.经典力学时空观认为:时间、空间是彼此独立的,都是绝对的,与物质运动无关.(2)两种时空观的联系:①洛伦兹变换式通过狭义相对论的两个基本原理推导得出,并由此得出反映相对论时空观的几个重要结论,比如同时性的相对性、长度收缩、时间膨胀等;②当v<<c时,洛伦兹变换可以过渡到伽利略变换,即经典力学是相对论力学的低速近似.§4-4 狭义相对论动力学基础4-4-1 化学家经常说:“在化学反应中,反应前的质量等于反应后的质量.”以2g 氢与16g氧燃烧成水为例,注意到在这个反应过程中大约放出了25J的热量,如果考虑到相对论效应,则上面的说法有无修正的必要?。

普通物理学第3,4单元课后习题答案

普通物理学第3,4单元课后习题答案

V2 QT 500 = = 0.11 ln V = v RT0 2×8.31×273 1 V 2 e 0.11 1.11 = = V1 V 2 = V 1×1.11 = 2×22.4×1.11 = 50(升)
= 0.05m3
V1 p2 = p1 = 44.8 ×1 = 0.89atm V2 50
(3) Q p =v C pΔ T
3 Qcd CV (Td Tc ) R(Td Tc ) 2 3 Vc ( Pd Pc ) 4.5 10 2 ( J ) 2 5 Qda C P (Ta Td ) R(Ta Td ) 2 5 Pd (Va Vd ) 2.5 10 2 ( J ) 2
根据电势叠加原理可知: q1 q2 4 R 4 R , 当r R1时 0 1 0 2 q1 q2 U U1 U 2 , 当R2 r R1时 4 0 R2 4 0 r q1 q2 , 当r R2时 4 0 r 4 0 r 代入数据可求得
0
ρd
4-5
解:根据对称性建立高为L,半径为r的同轴的圆 柱体面作为高斯面:
E cos dS E cos dS E cos 0 dS 上 下 侧 2 2 E 2rL
由高斯定理:




4-6
解:已知当取无穷远处为零势能面时,均匀带电球 面场中电势分布为: q U内 恒量 U q 1 外 4 0 R 4 r r
3-6 ,1mol氧气,温度为300K时,体积为2×103m3。试计算下列两过程中氧气所作的功:
• (1)绝热膨胀至体积为20×10-3m3; • (2)等温膨胀至体积为20×10-3m3,然 后再等容冷却,直到温度等于绝热膨胀后所达 到的温度时为止; • (3)将上述两过程在P-V图上表示出来。 • 怎样说明这两过程中功的数值的差别? • 解:(1)绝热过程理想气体氧的比热比 ,由 绝热方程得

大学物理第四章课后思考题详解

大学物理第四章课后思考题详解
--- Bernara Shaw
谐振动:
X. J. Feng,
1. 力学特征: 线性恢复力(力矩)
F kx
F mg
2.动力学方程:
d 2x dt 2
02 x

0
M mgb 思考: 拍皮球时球的往
3.运动学方程: x Acos(0t ) 复运动是否是谐振动?
v 0 Asin( 0t )
m

Px
X. J. Feng,
M 0t
Px
X. J. Feng,
M
P
x
M P
Xபைடு நூலகம் J. Feng,
x
X. J. Feng,
M
P
x
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
M Px
突然速度为0的质点m0轻粘在m上,求:m0粘上后振动系统
周期和振幅
m0
解: 两弹簧的等效系数:2k
km k
(请同学们课后自己证明)
m0粘上前系统振动的圆频率: 0
2k m
v 2l0
m0粘上后系统振动的圆频率:
2k
m m0
T 2 m m0
2k
A
x0

v02
2
x0 0
x
M
M nm
l0
·m
(2).t Tn 2
Tn

2 n
n
k M nm
MO
l0

2020复习方案高考物理人教版一轮复习讲义:第四章 核心素养提升——科学思维系列(四) 含答案

2020复习方案高考物理人教版一轮复习讲义:第四章 核心素养提升——科学思维系列(四) 含答案

核心素养提升——科学思维系列(四)竖直面内圆周运动的两种模型模型1轻绳模型轻“绳”模型除重力外,物体受到的弹力方向:向下或等于零如图甲,小球用不可伸长的轻绳连接后绕固定点O在竖直面内做圆周运动,小球经过最高点时的速度大小为v,此时绳子的拉力大小为T,拉力T 与速度v的关系如图乙所示,图象中的数据a和b包括重力加速度g都为已知量,以下说法正确的是()A.数据a与小球的质量有关B.数据b与圆周轨道半径有关C.比值ba只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径【解析】 在最高点对小球受力分析,由牛顿第二定律有T +mg =m v 2R ,可得图线的函数表达式为T =m v 2R -mg ,图乙中横轴截距为a ,则有0=m a R -mg ,得g =aR ,则a =gR ;图线过点(2a ,b ),则b =m 2a R -mg ,可得b =mg ,则b a =m R ,A 、B 、C 错.由b =mg 得m =b g ,由a =gR 得R =ag ,则D 正确.【答案】 D 模型2 轻杆模型轻“杆”模型除重力外,受到的弹力方向:零或向上(3)0<v <gr 时,杆对球有 (多选)如图所示,轻杆长为3L ,在杆的A 、B 两端分别固定质量均为m 的球A 和球B ,杆上距球A 为L 处的点O 装在光滑的水平转动轴上,外界给予系统一定的能量后,杆和球在竖直面内转动.在转动的过程中,忽略空气的阻力.若球B 运动到最高点时,球B 对杆恰好无作用力,则球B 在最高点时,下列说法正确的是( )A .球B 在最高点时速度为gL B .此时球A 的速度大小为2gL2C .杆对球A 的作用力为0.5mgD .杆对水平轴的作用力为1.5mg[审题指导] (1)杆和球在竖直平面内转动→两球做圆周运动. (2)杆对球B 恰好无作用力→重力恰好提供向心力.【解析】 设球B 在最高点时的速度为v 0,有mg =m v 202L ,解得v 0=2gL ,选项A 错误;因为A 、B 两球的角速度相等,根据v =rω知,此时球A 的速度为12v 0=122gL ,选项B 正确;根据牛顿第二定律得,F A -mg =m ⎝ ⎛⎭⎪⎫v 022L,解得F A =1.5mg ,A 对杆的作用力为1.5mg ,水平轴对杆的作用力与A 球对杆的作用力平衡,所以F =1.5mg ,选项C 错误、D 正确.【答案】 BD竖直面内圆周运动类问题的解题技巧(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同.(2)确定临界点:抓住绳模型中最高点v ≥gR 及杆模型中v ≥0这两个临界条件. (3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向.(5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程.1.(2019·黑龙江哈师大附中月考)如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击,使其在瞬间得到一个水平初速度v 0,若v 0大小不同,则小球能够上升的最大高度(距离底部)也不同.下列说法中不正确的是( C )A .如果v 0=gR ,则小球能够上升的最大高度等于R2B .如果v 0=3gR ,则小球能够上升的最大高度小于3R2C .如果v 0=4gR ,则小球能够上升的最大高度等于2RD .如果v 0=5gR ,则小球能够上升的最大高度等于2R解析:如果v 0=gR ,根据机械能守恒定律得12m v 20=mgh ,解得h =R2,当小球运动到h =R 2高度时速度可以为零,则小球能够上升的最大高度为R2,故A 正确;如果v 0=3gR ,根据机械能守恒定律得12m v 20=mgh ,解得h =3R2,根据竖直方向圆周运动向心力公式可知,小球在最高点的速度最小为gR ,则小球在上升到h =3R2处之前做斜抛运动,所以小球能够上升的最大高度小于3R2,B 正确;如果v 0=5gR ,根据机械能守恒定律得12m v 20=mg ·2R +12m v 2,解得v =gR ,所以小球恰好可以到达最高点,即小球能够上升的最大高度为2R ,故D 正确,C 错误.本题选错误的,故C 符合题意.2.(2019·湖南郴州二模)如图所示,质量为m 的小球置于立方体的光滑盒子中,盒子的棱长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R 的匀速圆周运动,已知重力加速度为g ,空气阻力不计,已知在最高点时盒子与小球之间的作用力恰为0,则下列说法正确的是( D )A .在最高点小球的速度水平,小球既不超重也不失重B .小球经过与圆心等高的位置时,处于超重状态C .盒子在最低点时对小球的弹力大小等于6mg ,方向向上D .该盒子做匀速圆周运动的周期等于2πR g解析:在最高点小球的速度方向沿圆周切线方向,即为水平方向,小球在最高点,重力提供向心力,处于完全失重状态,故A 错误;小球在经过与圆心等高的位置时,水平方向受盒子的弹力,竖直方向受重力和盒子的支持力,而此处小球在竖直方向加速度为0,小球既不超重也不失重,故B 错误;小球在最高点仅受重力作用,重力提供做圆周运动的向心力,即mg =m v 2R ,小球在最低点受重力、盒子的支持力,二力的合力提供做圆周运动的向心力,即F N -mg =m v 2R ,解得F N =2mg ,方向向上,故C 错误;小球在最高点仅受重力作用,重力提供做圆周运动的向心力,即mg =m 4π2T 2R ,解得T =2πRg ,故D 正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档