14种布拉维格子及堆积方式
14种布拉维格子和球体紧密堆积

实验一14种布拉维格子和球体紧密堆积一、实验目的加深对14种布拉维格子和球体紧密堆积原理的理解。
二、基本原理1、布拉维格子只在单位平行六面体的八个角顶上分布有结点的空间格子,称为原始格子(Primitive lattice,符号P),在单位平行六面体的体中心还有一个结点时,则构成体心格子(Body-centered lattice,,符号I)。
如果在某一对面的中心上各有一个结点时,称为单面心格子(One-face-centered lattice)(001)面上有心的格子为底心格子或称为C心格子(End-centered , Based-centered lattice or C-centered lattice,符号C)当(100)面或(010)面上有心是,分别称为A心格子(A-centered lattice,符号A)和B心格子(B-centered lattice,符号B)如果在所有的三对面的中心都有结点时,称为面心格子或全面心格子(Face-centered lattice or All-faced-centered lattice,符号F)。
符合对称特点和选择原则的格子共有7种类型,共计14种不同形式的空间格子,即通常所称的14种布拉维格子(The fourteen Bravais space lattices),如下图所示。
布拉维格子是空间格子的基本组成单位,只要知道了格子形式和单位平行六面体参数后,就能确定整个空间格子的一切特征。
2、球体紧密堆积原子核离子都具有一定的有效半径,可以看作是具有一定大小的球体。
金属晶体和离子晶体中的金属键和离子键没有方向性和饱和性,因此金属原子之间或离子之间相互结合,再形式上可以看作是球体间的相互堆积。
由于晶体具有最小的内能性,原子核离子相互结合时,彼此间的引力和斥力达到平衡状态,相当于要求球体间做紧密堆积。
最紧密堆积的方式有两种,一种是六方最紧密堆积(Cubic closest packing,缩写为CCP),最紧密排列层平行于{0001},可以用ABABAB……顺序来表示,如下图所示:另一种是立方最紧密堆积(Hexagonal closest packing,缩写为HCP),最紧密排列层平行于{111},可以用ABCABCABC……顺序表示,如下图所示:自然铜、自然金、自然铂等矿物的晶体结构属于立方最紧密堆积方式。
第一章结晶学基础-1.3.1十四种布拉维点阵_6.14ZSQ

材料科学基础第1 章1.3.1 十四种布拉维点阵十四种布拉维点阵一、单位平行六面体的选取二、十四种布拉维点阵三、晶胞空间点阵的划分 空间点阵是一个由无限多结点在三维空间作有规则排列的图形。
整个空间点阵就被这些平行线分割成多个紧紧地排列在一起的平行六面体有缘学习更多驾卫星ygd3076或关注桃报:奉献教育(店铺)单位平行六面体的 选取原则 3.大小原则体积最小 1 对称性原则应能反映空间点阵对称性 2 角度原则 直角关系尽可能多4 对称性规定夹角不为直角 结点间距最小的行列做棱,夹角最接近直角的平行六面体二维平面点阵的划分(A)具有L44P的平面点阵;(B)具有L22P的平面点阵单位平行六面体在空间点阵中,选取出来的能够符合这几条原则的平行六面体称为单位平行六面体;可以用三条互不平行的棱a、b、c和棱间夹角α、β、γ来描述,如下图所示。
点阵常数棱a、b、c和棱间夹角α、β、γ的大小称为点阵常数。
晶体的点阵常数十四种布拉维点阵(格子)简单(原始)点阵(格子)(P) 结点分布在角顶,每个点阵包含一个结点体心点阵(格子)(I)结点分布在角顶和体心,每个点阵包含二个结点十四种布拉维点阵(格子)面心点阵(格子)(F) 结点分布在角顶和面心,每个点阵包含四个结点单面心点阵(格子)(A/B/C) 结点分布在角顶和一对面心,每个点阵包含2个结点根据布拉维推导,从一切晶体结构中抽象出来的空间点阵,按上述原则来选取平行六面体,只能有14种类型,称为14种布拉维点阵。
十四种空间点阵正交P(简单) C(底心) I(体心) F(面心) 点阵常数 a ≠ b ≠ cα= β= γ= 90°立方简单立方(P) 体心立方(I)面心立方(F)点阵常数 a =b =cα= β= γ= 90°如图立方为什么没有底心呢?假如有底心,将破坏立方的3L 4的对称性,只有1L 4。
立方三方(R ) 90120≠<====γβαc b a 点阵常数:六方(H )12090===≠=γβαcb a 点阵常数: 四方(P ) 四方(I )90===≠=γβαc b a 点阵常数:四方也不可能有底心,假如有,则破坏了“点阵点最少”的条件,还可画出只有一个点阵点的格子。
晶体结构知识

晶体结构
1.拉伐格子
布拉伐格子指的是多个点在空间格子的排列组合,任何晶体的宏观对称型都可以归结为其原子分布所对应的布拉伐格子的对称性。
三维空间的布拉伐格子总共有十四种,详见下表
2.晶系与布拉伐格子及空间点群的关系
晶系布拉伐格子所属点群
三斜晶系简单三斜C1, C i
单斜晶系简单单斜底心单斜C2 C s C2h
正交晶系简单正交底心正交体心正交面心正交D2 C2v D2h
三角晶系三角C3 C3i D3 C3v D3d
四方晶系简单四方体心四方C4 C4h D4 C4v D4h S4 D2d 六角晶系六角C6 C6h D6 C3v D6h C3h D2h 立方晶系简单立方体心立方面心立方T T h T d O O h
3.单质的晶体结构
单质的晶体结构
名称英文名称代号晶格类型晶系金属铜结构 metallic copper structure A1型面心立方晶格立方晶系
金属钠结构 metallic sodium structure A2型体心立方晶格立方晶系
金属镁结构 metallic magnesium structure A3型六方密排晶格六方晶系
金刚石结构 diamond structure A4型立方晶系
石墨结构graphite structure A9型六方晶系4.化合物的晶体结构。
布拉菲点阵

关于奥古斯特·布拉菲及布拉菲点阵浅析奥古斯特·布拉菲(August Bravais,1811—1863),法国物理学家,于1845年推导出了三维晶体原子排列的所有14种点阵结构,首次将群的概念应用到物理学,为固体物理学做出了重大贡献。
这是非常有意义的结论,为了纪念他,后人称这14种点阵为布拉菲点阵。
除此之外,布拉菲还对磁性、极光、气象、植物地理学、天文学和水文学等方面进行过研究。
图1 奥古斯特·布拉菲在几何学以及晶体学中,布拉菲晶格(又译布拉菲点阵)是为了纪念奥古斯特·布拉维在固态物理学的贡献命名的。
法国晶体学家布拉菲(A.Bravais)于1850年用数学群论的方法推导出空间点阵只能有十四种: 简单三斜、简单单斜、底心单斜、简单正交、底心正交、体心正交、面心正交、简单六方、简单菱方、简单四方、体心四方、简单立方、体心立方、面心立方。
根据其对称特点,它们分别属于七个晶系。
空间点阵到底有多少种排列形式?按照“每个阵点的周围环境相同”的要求,在这样一个限定条件下,法国晶体学家布拉菲(A. Bravais)曾在1848年首先用数学方法证明,空间点阵只有14种类型。
这14种空间点阵以后就被称为布拉菲点阵。
空间点阵是一个三维空间的无限图形,为了研究方便,可以在空间点阵中取一个具有代表性的基本小单元,这个基本小单元通常是一个平行六面体,整个点阵可以看作是由这样一个平行六面体在空间堆砌而成,我们称此平行六面体为单胞。
当要研究某一类型的空间点阵时,只需选取其中一个单胞来研究即可。
在同一空间点阵中,可以选取多种不同形状和大小的平行六面体作为单胞,如下图所示:其选取方式有,1.固体物理选法:在固体物理学中,一般选取空间点阵中体积最小的平行六面体作为单胞,这样的单胞只能反映其空间点阵的周期性,但不能反映其对称性。
如面心立方点阵的固体物理单胞并不反映面心立方的特征。
2.晶体学选法:由于固体物理单胞只能反映晶体结构的周期性,不能反映其对称性,所以在晶体学中,规定了选取单胞要满足以下几点原则:①要能充分反映整个空间点阵的周期性和对称性;②在满足①的基础上,单胞要具有尽可能多的直角;③在满足①、②的基础上,所选取单胞的体积要最小。
对称性和布拉维格子的分类

群论作为数学的分支,是处理有一定对称性 的物理体系的有力工具,可以简化复杂的计算, 也可以预言物理过程的发展趋势,还可以对体 系的许多性质作出定性的了解。 群及其表示理论是物理系研究生的一门重要 基础课,对于本科生不作要求。因此,我们不 打算在这里讲过多的群论的知识。只是简单介 绍一下,让大家对群的概念有一个认识。 一、群的知识简介 1. 群的定义 ts)或操 作的集合,常用符号 G 来表示。
Ai Aj Ak , i j or i j
2). 群中一定包含一个不变元素(单位元素) E E G, EAi Ai E Ai 3). 存在逆元素 Ai G, Ai1 Ai Ai1 Ai1 Ai E
4). 满足组合定则
( Ai Aj ) Ak Ai ( Aj Ak )
因为B 和A 完全等价,所有旋转同样可以绕B 进行. 由此可设想绕B 转角,这将使A 格点转到 A的 位臵。同样 A处原来也必定有一个格点
显然n=1,相当于不动操作(元素)E, n=2,3,4,6的转轴分别称为二度、三度、四度、 六度转轴
晶体的对称性定律的证明
B
A
如图,A为格点,B为离A最近 a a 的格点之一,则与 AB 平行的 格点之间的距离一定是 AB a B A 的整数倍。 如果绕A转角,晶格保持不变(对称操作).则该 操作将使B格点转到B’ 位臵,则由于转动对称操作 不改变格子,在 B’ 处必定原来就有一个格点。
在晶体的几何对称性的研究中,每一个能 使晶体复原的对称操作,都满足上述群中的 元素的要求,由这些元素(或操作)所构成的 群叫对称性群(symmetry group),包括点群 (point group)和空间群(space group)
1830年,赫塞耳(Johann Friedrich Christian Hessel)首先导出了32种点群,由32种点群出发, 可以对布拉维点阵进行分类,这正是1850年布 拉维所作的工作,他证明了只有7个晶系。(点 群不含平移对称操作,因为平移导致任何格点 都要动,而点群必须至少有一个格点不动) 熊夫利(Schoenflies1891)和费奥多罗夫 (Fedorove 1892) 为了研究复式晶格(几套简单 格子的平移)的分类,考虑了平移对称操作, 提出了空间群的概念,并证明只有230种独立 的空间群。 1850年布拉维由此证明只有14种 三维布拉维点阵
2.2.4 晶体的14种Bravais格子简介

a b c, 90 0
格点有两种分布方式:其一,分布于惯用元胞的八个顶点上;
其二,除顶点外,还分布于面心(0,1/2,1/2)和(1,1/2,1/2)
或(1/2,0,1/2)和(1/2,1,1/2)
有 两种 Bravais 格子:分
别称为简单单斜Bravais格子、底心单斜Bravais格子
背景音乐:
5°六方(Hexagonal)晶系或六角晶系
Bravais格子之惯用元胞的几何特征为:
a b c, 90 0 , 120 0 有 格点的分布方式只有一种:分布于惯用元胞的八个顶点上 一种Bravais格子,称为简单六方
Bravais格子 Pearson 记法 hP, 平行六面体元胞不能显示出点对 称性,常选用正六方棱柱体作为
背景音乐:
4°四方(Tetragonal) 晶系或正方晶系或四角晶系 Bravais格子之惯用元胞的几何特征为:
a b c, 90 0
格点有两种分布方式:其一,分布于惯用元胞的八个顶点上;
有 其二,除顶点外,还分布于体心 两种Bravais格子,分别称
为简单四方Bravais格子和体心四方Bravais格子 Pearson 记法 tP 和tI,惯用元胞分别如图2.2.2-1中的(h)图和(i)图所示
Pearson 记法 mP、mA 或 mB ,惯用元胞分别如图 2.2.2-1中的(b)图、(c)图所
示。
背景音乐:
背景音乐:
3°斜方晶系或正交(Orthorhombic)晶系
Bravais格子之惯用元胞的几何特征为:
a b c, 900
格点有四种分布方式:其一,分布于惯用元胞的八个顶点 上;其二,除顶点外,还分布于体心;其三,除顶点外,还分 布于两个面心(0,1/2,1/2)和(1,1/2,1/2)或面心(1/2, 0,1/2)和(1/2,1,1/2)或面心(1/2,1/2,0)和(1/2, 1/2,1);其四,除顶点外,还分布于六个面心 四种 有
!七大晶系十四种布喇菲格子

晶系
晶胞基矢的 特性
布喇菲 格子
所属点群
三斜晶系
简单三斜
单斜晶系
简单单斜 底心单斜
01_07_晶格的对称性 —— 晶体结构
正交晶系 三角晶系
简单正交 底心正交 体心正交 面心正交
三角
01_07_晶格的对称性 —— 晶体结构
四方晶系 六角晶系 立方晶系
简单四方 体心四方
六角
简单立方 体心立方 面心立方
01_07_晶格的对称性 —— 晶体结构
9) 简单四方(四角) 10) 体心四方(四角)
01_07_晶格的对称性 —— 晶体结构
11) 六角
01_07_晶格的对称性 —— 晶体结构
12) 简立方 13) 体心立方 14) 面心立方
01_07_晶格的对称性 —— 晶体结构
七大晶系的布喇菲格子、晶胞和所属点群
立方 三角
四方
正交
三斜
按晶胞个点分布特点分为14种布喇菲原胞 1) 简单三斜
01_07_晶格的对称性 —— 晶体结构
2) 简单单斜 3) 底心单斜
01_07_晶格的对称性 —— 晶体结构
4) 简单正交 5) 底心正交 6) 体心正交 7) 面心正交
01_07_晶格的对称性 —— —— 晶体结构
底心立方?=简单四方
底心四方=简单四方
01_07_晶格的对称性 —— 晶体结构
体心四方与面心四方等价
01_07_晶格的对称性 —— 晶体结构
§1.7 晶格的对称性
—— 32种点群描述的晶体对称性 —— 对应的只有14种布喇菲格子 —— 分为7个晶系
—— 晶胞的三个基矢
沿晶体的对称轴或对称面
的法向,在一般情况下,它们构成斜坐标系
十四种布拉菲格子

就目前所知,晶体多达20000多种以上,它们的几何 就目前所知,晶体多达 多种以上, 多种以上 外形更是多姿多彩、精美绝伦、奥妙无比, 外形更是多姿多彩、精美绝伦、奥妙无比,足以让所有 的能工巧匠叹为观止!然而,种类繁多、 的能工巧匠叹为观止!然而,种类繁多、形状各异的晶 体在微观结构的周期性特征上却是极其简单的, 体在微观结构的周期性特征上却是极其简单的,描述晶 体微观结构周期性特征的Bravais格子总共只有十四种不 格子总共只有十四种不 体微观结构周期性特征的 格子总共只有十四种 同的类型。 同的类型。
Pearson记法 →
hR
7°立方(Cubic) 晶系 立方(Cubic) Bravais格子之惯用元胞的几何特征为: Bravais格子之惯用元胞的几何特征为: 格子之惯用元胞的几何特征为
a = b = c,α = β = γ = 90 0
格点有三种分布方式:其一,分布于惯用元胞的八个顶点上; 格点有三种分布方式:其一,分布于惯用元胞的八个顶点上; 其二,除顶点外,还分布于体心;其三,除顶点外,还分布于六 其二,除顶点外,还分布于体心;其三,除顶点外, Bravais格子 简单立方Bravais格子、 个面心 有 三种Bravais格子,分别称为简单立方Bravais格子、 → 三种Bravais格子,分别称为简单立方Bravais格子 体心立方Bravais格子和面心立方Bravais格子 体心立方Bravais格子和面心立方Bravais格子 Bravais格子 Bravais cP、 cP Pearson记法 → 、
cI和cF,惯用元胞分别如图1.2.6- 中的( cI和cF,惯用元胞分别如图1.2.6-1中的(l)图、(m)图和(n) 1.2.6 (m)图 图所示 背景音乐: 背景音乐:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2-5
常见配位多面体示意图
(a)三角体
(b)四面体
(c)八面体 (d)立方体
返回
空隙结论
• 有n个等径球体作六方紧密堆积,必定有 n个八面体空隙、2n个四面体空隙; • 六方和面心立方紧密堆积有同样的结论 。 • 空隙率:
• 六方和面心立方紧密堆堆积的空隙率相 同,均为25.95%。 • 每个球体同时与12个球体直接相邻。
法国学者A.布拉菲根据晶体结构的最高 点群对称和平移群(所有平移轴的组合) 对称及以上原则,将所有晶体结构的空间 点阵划分成十四种类型的空间格子,称14 种空间格子或布拉菲格子
简单三斜
C=P I=P
简单单斜
I=C
F=C
底心单斜
F=P
简单正交
底心正交
体心正交
面心正交
简单六方
C、I、F 不符六 方对称
三方:I=P
P代表原始格子,三方菱面体格子用专门的符号R表示,I表示体心格子,C代表底心 格子,F代表面心格子。
三方:F=P
P代表原始格子,三方菱面体格子用专门的符号R表示,I表示体心格 子,C代表底心格子,F代表面心格子。
2. 球体紧密堆积
• 原子和离子都具有一定的有效半径,可 以看作是具有一定大小的球体。金属晶 体和离子晶体中的金属键和离子键没有 方向性和饱和性,因此金属原子之间或 离子之间的相互结合,在形式上可看成 是球体间的相互堆积。由于晶体具有最 小的内能性,原子和离子相互结合时, 彼此间的引力和斥力达到平衡状态,相 当于方最紧密堆积(Cubic closest packing, 缩写为CCP),最紧密排列层平行于 {0001},可以用ABABAB……顺序来表 示(图2-3-2)。另一种是立方最紧密堆 积(Hexagonal closest packing,缩写为 HCP),最紧密排列层平行于{111},可 以用ABCABCABC……顺序来表示(图 2-3-3)。自然铜、自然金、自然铂等矿 物的晶体结构属立方最紧密堆积方式, 而锇铱矿以及金属锌等晶体的结构属六 方最紧密堆积方式。
2.3 14种布拉维格子和球体 紧密堆积
2.3.1 实验目的
• 加深对14种布拉维格子和球体紧密堆积 原理的理解。
2.3.2 基本原理
1. 布拉维格子 只在单位平行六面体的八个角顶上分布有 结点的空间格子,称为原始格子 (Primitive lattice,符号P),在单位平行 六面体的体中心还有一个结点时,则构 成体心格子(Body-centered lattice,符 号I)。
2.3.4 思考题
• 1. 什么是布拉维格子?试指出14种布拉 维格子的特征。 • 2. 等大球体的紧密堆积有几种形式?并 指出相应的空隙情况。
2.3.3 实验内容
• 1.制作14种布拉维格子并认识其特征。 • 2.观察等大球体紧密堆积模型,搞清其配 位关系及其中的八面体和四面体两种空 隙的分布,找出面心立方紧密堆积的 ABCABC……密堆方向及紧密堆积的 ABAB……密堆方向。
• 3.动手试制面心立方密堆、六方密堆的模 型,并制作四面体空隙和八面体空隙, 以及认识球数与空隙的关系。 • 4.用大小不等的球练习制作不等大球体的 密堆,了解大球的堆积方式和小球的填 充形式。
单斜:I=C
P代表原始格子,三方菱面体格子用专门的符号R表示,I表示体心格子,C代表底心 格子,F代表面心格子。
四方:C=P
P代表原始格子,三方菱面体格子用专门的符号R表示,I表示体心格子,C代表底心 格子,F代表面心格子。
四方:F=I
P代表原始格子,三方菱面体格子用专门的符号R表示,I表示体心格子,C代表底心 格子,F代表面心格子。
• 如果在某一对面的中心各有一个结点时, 称为单面心格子(One-face-centered lattice),(001)面上有心的格子为底心格 子或称C心格子(End-centered lattice, Base-centered lattice or C-centered lattice,符号C),当(100)面或(010)面上 有心时,分别称为A心格子(A-centered lattice,符号A)和B心格子(B-centered lattice,符号B)。如果在所有三对面的 中心都有结点时,称为面心格子或全面 心格子(Face-centered lattice or Allface-centered lattice,符号F)。
符合对称特点和选择原则的格子共有7 种类型,共计14种不同型式的空间格子, 即通常所称的十四种布拉维格子(the fourteen Bravais space lattices),如图2-31所示。布拉维格子是空间格子的基本组成 单位,只要知道了格子形式和单位平行六 面体参数后,就能够确定整个空间格子的 一切特征。
在等大球体的最紧密堆积中,球体间 的空隙视空隙周围球体的分布情况有两种: 四面体空隙(Tetrahedral void)和八面体 空隙(Octahedral void)。
晶胞
任何晶体都对应一种布拉菲格子 ,因此任何晶体都可划分出与此种布 拉菲格子平行六面体相对应的部分, 这一部分晶体就称为晶胞。 晶胞是能够反映晶体结构特征的最小 单位。 由一组具体的晶胞参数 —晶体常数来 表征( a 、 b 、 c , α(b∧c) 、 β(a∧c) 、 γ(a∧b)), 例如:NaCl晶体的晶胞,对应的是立 方 面 心 格 子 , a=b=c=0.5628nm , α=β=γ=90°。许许多多该晶胞在三维 空间无间隙的排列就构成了 NaCl晶体 。
三方菱面体
C:与本晶系 对称不符
I=P F=P
简单四方
C=P
体心四方
F=I
简单立方
体心立方
C:与本晶系对称不符
面心立方
三斜:F=P
P代表原始格子,三方菱面体格子用专门的符号R表示,I表示体心格子,C代表底心 格子,F代表面心格子。
单斜:C=P
P代表原始格子,三方菱面体格子用专门的符号R表示,I表示体心格子,C代表底心 格子,F代表面心格子。