11幂函数与函数的图像
幂函数课件(优质课)(共20张PPT)

③y x 2 x 否
⑤y x 0 是
2 2
⑥y 1 否
2、若函数 f ( x) (a 3a 3) x 是幂函数,求a的值。 -1或4 规律
x 的系数是1
底数是单一的x 指数是常数
总结
幂函数的定义 幂函数的定义:一般地函数 y 其中x是自变量,α是常数。
上是增函数,0.5< 3 ∴ ∴ ( )2 (
3 2 3 ∴( ) ( ) 底数相同,若指数相同利用幂函数的
9 10
9 10
1.40.5 1.4 3
5
) 2∴ ( ) 2 ( ) 3 10 5 10
课堂练习 1、下列函数不是幂函数的是( c )
3 1 A y x B y x C y 2x D y x
定义域
y x2
R
(0,+∞)
O
x
值域
奇偶性
偶
单调性(-∞,0)减
(0,+∞)增
y
y x3
函数
y x3
定义域 R
O
x
值域
R
奇偶性 奇
单调性 增
y
1 x2
y
函数
y
1 x2
定义域 [0,+∞)
O
x
值域
[0,+∞)
奇偶性 非奇非偶
单调性
增
幂函数的性质
函数 定义域 值域 奇偶性
yx
yx
5
(
9 10
1 )3
9 2 (4)取中间量 ( ) ,∵函数 9 x 10 y ( ) 在R 上是增函数
幂函数与函数的图象变换

时曲线上凸;当α>1时,曲线下凸;直α线=1
时,为过(0,0)点和(1,1)点的(1,1)
.
❖ (2减)当α<0时,幂函数图象总经过 点, 且在第一象限为 函数.
❖ (3)α=0时y=x0,表示过(1,1)点平行于x 轴的直线(除去(0,1)点).
❖ 二、函数的图象与图象变换
❖ 1.画图
❖ 描点法
❖ (2)比较大小:0.80.7与0.70.8.
❖ 解析:(1)∵0<0.71.3<1,1.30.7>1, ∴0.71.3<1.30.7
❖ 考察幂函数y=xm由(0.71.3)m<(1.30.7)m
❖ 知y=xm为(0,+∞)上的增函数,∴m>0.
❖ (2)指数函数y=0.8x是减函数, ∴0.80.7>0.80.8
❖ 若(a+1)- <(3-2a)- ,则a的取值范 围是______.
❖ 解析:幂函数y=x- 在(0,+∞)上为减 函数,函数值y>0;在(-∞,0)上也是减 函数,函数值y<0.
❖ 答案:(
)∪(-∞,-1)
❖ [例2] 设x∈(0,1)时,函数y=xp的图象 在直线y=x的上方,则p的取值范围是 ________.
❖ 解析:(1)当p>0时,根据题意p<1, ∴0<p<1.
❖ (2)p=0时,函数为y=1(x≠0),符合题 意.
❖ (3)p<0时,在(0,+∞)上过(1,1)点,函数 为减函数,符合题意.
❖ 综上所述,p的取值范围(-∞,1).
❖ 解析:由幂函数图象特点, ❖ C1、C2对应n>0,C3、C4对应n<0 ❖ ∴曲线C1、C2、C3、C4对应n为2, ,
常用函数图像

函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
幂函数九个基本图像

幂函数九个基本图像幂函数的图像和性质图表幂函数的图像:幂函数的性质:一、正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;二、负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。
利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。
其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
三、零值性质当α=0时,幂函数y=xa有下列性质:a、y=x0的图像是直线y=1去掉一点(0,1)。
它的图像不是直线。
扩展资料一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
参考资料:百度百科—幂函数幂函数的图像和性质幂函数是基本初等函数之一。
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
幂函数的一般形式是,其中,a可为任何常数,但中学阶段仅研究a为有理数的情形(a为无理数时,定义域为(0,+∞) ),这时可表示为,其中m,n,k∈N*,且m,n互质。
特别,当n=1时为整数指数幂。
正值性质当α>0时,幂函数y=xα有下列性质:a、图像都经过点(1,1)(0,0);b、函数的图像在区间[0,+∞)上是增函数;c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增);负值性质当α<0时,幂函数y=xα有下列性质:a、图像都通过点(1,1);b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。
幂函数图像(课堂PPT)

2
4
6
-1
(-1,-1)
-2
-3
-4
12
(-2,4 4 )
3
(2,4) y x 2 =
y=x
2
(-1 1 ,1 (1 ) ,1)
-6
-4
-2
2
4
6
-1
(-1,-1)
x -2 -3 -2 -1 0 1 2 3 -3y=x3 -27 -8 -1 0 1 8 27
-4
13
( 4 y x 3 ( y x 2
- - 6 - 4 2 2 4 6
- 在第一象限1 内, ( 当α>0时,图象随x增大而- 上升。
- 当α<0时,2 图象随x增大而下降
-3
-4
19
不管指数是多少( , 4 y x 3 ( -
图象都经过哪个
y x 2
定点?
3 y 1 y x 2
2
(
( 1 ( y x - - y= x0
- - 6 - 4 2 2 4 6
3 y
2
( 1 ( -
- - 6 - 4 2 2 4 6
-1
( x 0 1 2 - 4
-2
1
- y x 2 0
1 22
3
-4
14
( 4 y x 3 ( y x 2
3
y
2
( ( 1 ( - 1
- - 6 - 4 2 2 4 6
-1
(-
-2
-3
-4
15
( 4 y x 3 ( y x 2
3 y 1 y x 2
m2
舍去m1
22
例5. 利用单调性判断下列各值的大小。
高考数学第一轮复习幂函数图像与性质

幂函数的性质与图像 幂函数及其性质 1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂孙函数,其中x是自变量,α是常数.如11234,,y x y x y x-===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 2、函数的图像(1)y x = (2)12y x= (3)2y x= (4)1y x-= (5)3yx=用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出幂函数的性质。
3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)x >0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.(4)在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数 . y 轴和直线1x =之间,图象由上至下,指数α .:4. 规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 在[0,+∞]上,y x =、2y x=、3y x=、12y x=是增函数, 在(0,+∞)上,1y x -=是减函数。
例1.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =-变式训练: 已知函数()()2223m m f x m m x--=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。
幂函数、指数函数、对数图像及性质
质
x>1时, y>0
x>1时, y<0
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
x
小
x
指数函数的图象和性质 y a
图 象 性 值域:
y
x
(a 0且a 1)
a>1
y 1 o
0<a<1
1 o R (0,义域:
过定点: 当x>0时,y>1. 当x>0时,0<y<1, 当x<0时,y>1. 质 当x<0时,0<y<1. 单调性:是R上的增函数 单调性:是R上的减函数 奇偶性: 非奇非偶 奇偶性: 非奇非偶
1. 幂函数的图像
y x, y x , y x ,
2 3
y
y x , y x
的图象.
1 2
y x3 y x2 y x
1
yx
1
1 2
yx
1
O1
y x 2
x
幂函数的性质
(1) 所有的幂函数在(0,+∞)都有定义,
并且图象都通过点(1,1); (2) 如果a>0,则幂函数图象过原点, 并且在区间 [0,+∞)上是增函数;
3、对数函数的图像
y log2 x y log0.5 x y lg x
y log0.1 x
1
对数函数的图象和性质
a>1 图 象
o y (1, 0) x
对数函数y=log a x (a>0, a≠1)
幂函数的概念,图象与性质ppt 人教课标版
定义域:
R
) 值 域: [0,
奇偶性:在R上是偶函数
在 ( ,0]上是减函数
[0, )上是增函数 单调性: 在
定义域:
值 域:
R R
在R上是奇函数 奇偶性:
单调性:在R上是增函数
) 定义域: [0,
) 值 域: [0,
奇偶性: 非奇非偶函数 在 [ 0 , ) 上是增函数 单调性:
R R
{x|x≠0}
{y|y≠0}
值域
[0,+∞)
奇偶性 奇
单调性
偶
x∈[0,+∞)时,增 x∈(-∞,0]时,减
奇 增
(1,1) (0,0)
非奇 非偶
奇
x∈[0,+∞)时,减 x1) (0,0)
(1,1) 公共点 (0,0)
(1,1) (0,0)
(1,1)
y=x y=x y=x ² ³
(4)如果某人 t s内骑车行进1 km,那么他骑车的平均速度___ V=t⁻¹ km/s V是t 的函数 _____________
以上的函数有什么的共同的特征?
答:形似:y=xª
以上问题中的函数有什么共同特征?
(1)
(2)
(3)
(4) (5)
y=x y=x2 y=x3 y=x1/2 y=x-1
幂函数的概念,图象与性质
目标: 1) 理解幂函数的概念和性质 难点和重点:
2) 会画出五种幂函数的图象
学会数形结合的思想概括出五种幂函数的性质
一 引入
我们先来看看几个具体的问题:
(1)如果张红买了每千克1元的蔬菜W千克,那么她需要支付 P=W 元 p是w的函数 __________
河南专升本六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y=C(其中C为常数);αy=x y=x2y=x3R R RR[0,+∞)R奇偶奇增[0,+∞)增增(-∞,0]减y y=x2 y=x2x-1O1)当α为正整数时,函数的定义域为区间为x ∈(-∞,+∞),他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数;3)当α为正有理数m 时,n 为偶数时函数的定义域为(0,+∞),n 为奇数时函数的定义域为(-n∞,+∞),函数的图形均经过原点和(1,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数y =a x(x 是自变量,a 是常数且a >0,a ≠1),定义域是R ;[无界函数]1.指数函数的图象:y(0,1)Oy =ax(a >1)y =1xy =ax(0<a <1)y(0,1)Oy =1x2.指数函数的性质;1))当a >1时函数为单调增,当0<a <1时函数为单调减;2))不论x 为何值,y 总是正的,图形在x 轴上方;3))当x =0时,y =1,所以它的图形通过(0,1)点。
⎩=*=3.(选,补充)指数函数值的大小比较a ∈N *;a.底数互为倒数的两个指数函数⎛1⎫xf (x )=a x,f (x )= ⎪⎝a ⎭的函数图像关于y 轴对称。
h (x )=3xf (x )=2xy(0,1)b.1.当a >1时,a 值越大,y =a x的图像越靠近y 轴;Ox⎛1⎫xg (x )= ⎪y⎝3⎭⎛1⎫xq (x )= ⎪b.2.当0<a <1时,a 值越大,y =a x的图像越远离y 轴。
高中数学人教A版必修第一册课件3.3幂函数课件
又
t=x-1 1在[-1,1)上是减函数,
a≥(x
)1
-1
=-1. 2
m ax
综上知 a≥-1. 2
A 级 基础巩固
一、选择题
1.(2020·濮阳模拟)已知函数 f(x)=(m2-m-1)xm2+2m-3 是幂函数,且其图象
与两坐标轴都没有交点,则实数 m=( A )
A.-1
B.2
C .3
D.2 或-1
10.已知幂函数 f (x)=(m-1)2xm2-4m+2 在(0,+∞)上单调递增,函数 g(x)=2x -k.
(1)求 m 的值; (2)当 x∈[1,2)时,记 f(x),g(x)的值域分别为集合 A,B,设 p:x∈A,q:x∈B, 若 p 是 q 成立的必要条件,求实数 k 的取值范围.
f (x)的对称轴为x 2
因此设 f(x)=a(x-1)(x-3).又点(4,3)在 y=f(x)的图象上所以 3a=3,则 a=1.
故 f(x)=(x-1)(x-3)=x2-4x+3.
考点二:二次函数的解析式
【训练 2】 已知二次函数 f(x)的图象经过点(4,3),它在 x 轴上截得的线段长为
(4a
b)x
4a
2b
c
化简得34a16ba04b
c解得bc
3 4a
f (x) ax2 bx c(a 0)在x轴上截得线段长为2
令y 0, ax2 bx c 0中| x1 x2 |
(x1 x2 )2 4x1x2 2,
( b )2 4 c 2 2a a
联立解方程组得ba
7.函数 f(x)=-x2+4x+a,x∈[0,1],若 f(x)有最小值-2,则 f(x)的最大值为1___.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第一轮 复习学案(11) 幂函数与函数的图象 制作人 刘彦丽
[知识梳理]
1、幂函数
(1)定义:一般地,形如_________()a R ∈的函数称为幂函数,其中a 为常数. 几种常见幂函数的图像:①;y x =②12
;y x =③2;y x =④1;y x -=⑤3;y x =
(2)幂函数的性质
①所有幂函数在_________都有定义,并且图像都过点________;
②0a >时,幂函数的图像通过_________,并且在区间[)0,+∞上是_________, ③0a <时,幂函数的图像在区间()0,+∞上是_________, [题型示例]
例1. 已知函数253()(1),m f x m m x
m --=--为何值时,()f x :
(1)是正比例函数,
(2)是反比例函数,
(3)是二次函数,
(4)是幂函数
例2.
若点在幂函数()f x 的图像上,点1
(2,)2
在幂函数()g x 的图像上,定义(),()()()(),()()
f x f x
g x
h x g x f x g x ≤⎧=⎨>⎩,试求函数()h x 的最大值以及单调区间.
练习:已知函数f(x)=⎩⎨⎧>-≤3
,13,2x x x x 则求f(f(2))
例3、画出下列函数的简图:(1)
2y x x =- (2)22y x x =--
(2) 作出下列函数的大致图像: 2)y= x ㏒2 1)2log y x =
[巩固练习]
1、函数1()f x x x
=-的图像关于( )A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称
2 把函数2(2)
2y x =-+的图像向左平移1个单位,再向上平移1个单位,所得图像对应的函数解析式是( ) A2(3)
3y x =-+ B2(3)1y x =-+ C2
(1)3y x =-+ D2(1)1y x =-+ 3、为了得到函数3lg
10
x y +=的图像,只需把函数lg y x =的图像上所有的点 A .向左平移3个单位长度,再向上平移1个单位长度
B .向右平移3个单位长度,再向上平移1个单位长度
C .向左平移3个单位长度,再向下平移1个单位长度
D .向右平移3个单位长度,再向下平移1个单位长度 4、函数22x y x =-的图像大致是
5、幂函数的图像过点,则它的单调递增区间是( )
A[)1,-+∞ B[)0,+∞ C(),-∞+∞ D(),0-∞
6.若函数f(x)=a x (a>0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g(x)=(1-4m)x 在[)+∞,0上是增函数,则a =。