第3章-广义线性模型

合集下载

广义线性混合模型的研究与应用

广义线性混合模型的研究与应用

广义线性混合模型的研究与应用第一章:引言广义线性混合模型(GLMM)是一种既兼顾线性模型又兼顾混合模型的强大工具。

该模型在诸多实际问题中得到了广泛的应用,如医学、农业、生态等领域。

本文旨在系统性介绍GLMM的相关概念、特点、推导以及应用。

第二章:GLMM的概念和定义广义线性混合模型GLMM其实是对线性模型LM和混合模型MM的一个统一框架。

它不仅考虑了个体间和个体内的随机因素,从而可以更好地适应实际生活中各种不确定因素的影响,而且广泛适用于探索各种非正态和非独立数据结构。

同时可以建模各种响应变量的方差不等和非常偏态分布,具有很强的灵活性和可拓展性。

第三章:GLMM的特点GLMM最大的特点是对于个体之间的差异建立了一个统一、完整的随机因素模型。

与之前的混合模型不同,GLMM的随机因素是基于一个广义线性模型而来的,具有较强的可解释性和可变性。

同时,GLMM也可以与各种模型结合,如时间序列、空间模型等,更加灵活地应用于各种实际问题。

第四章:GLMM的推导在GLMM中,我们既有固定效应,又有随机因素。

假设我们需要建立可拓展的随机因素模型$$y_i = X_i\beta + Z_iu_i + \varepsilon_i$$其中$y_i$是第$i$个个体的响应变量,$\beta$是固定效应系数,$X_i$是该个体的固定特征(设计矩阵),$Z_i$是该个体的随机特征(设计矩阵),$u_i$是该个体的随机效应,$\varepsilon_i$是该个体的误差项。

我们一般假设$u_i\sim N(0,D)$,$\varepsilon_i\sim N(0,R)$,即随机效应和误差项都服从正态分布。

因此$$E(y_i) = X_i\beta$$$$Var(y_i) = Z_iDZ_i^T + R$$由于$D$和$R$是未知的,并且难以直接估计,我们要借助一些方法,通过最大化似然函数使$D$和$R$可被估计。

第五章:GLMM应用的案例和研究GLMM可应用于多个领域,例如生态学、医学、农业和社会科学等。

广义线性模型.PPT

广义线性模型.PPT
4
广义线性模型具有以下三个特征:
1.假定观测量是相互独立的随机变量Yi ,i 1, , n. , 其密度函数为指数散布族.最重要的例子有: · 正态随机变量 N (i , i ); · 泊松随机变量 Possion(i );
· 总体服从泊松分布 Possion(i ) 的样本容量为
ni 1/ i 的样本均值;
从泊松分布的索赔次数,则由(8.2)表示的 BS 恰是一 2
统计量
13
现就(8.2)中的 BS 针对每一参数求偏导,即得一 正规方程组:
逐项置换法
14
性质 8.3.7( Bailey Simon 方法导致“安全保费” )可以
证明,利用这一方法所得保费总额要较观测到的损失总额多.
即:若 ˆi 与 ˆ j 表示(8. 4 )的解,则有
6
2 .一个线性预估量i j xij j , ,它是诸参数 1, , p 的
线性函数,可以作为模型观察值的估计。
3 .设 Yi 的期望值 i ,则可用联结函数与线性预估量i 的关 系: i g(i ) .
7
注8.2.1(典则联结)
注8.2.2 (方差函数)
以下依方差函数中 的幂次的升幂序,分别表述
之:
1 .具有常值方差 2 0 的正态分布(同方差性) 2 .方差与均值相等的泊松分布以及泊松总体的 样本均值.对前者,我们有 2 1,对后者而言, 方差与均值成正比,即有 2 1;
8
3 .如列举的参数化所示, (, ) 句分布具有固
定的形状参数,从而其变异系数 / 取常值,故 有 2 2;
·
i
与二项随机变量的积:
i
B( 1
i
,
i
)
(从而表示

广义线性模型

广义线性模型

⼴义线性模型⼴义线性模型GLM是⼀般线性模型的扩展,它处顺序和分类因变量。

所有的组件都是共有的三个组件:随机分量系统分量链接函数===============================================随机分量随机分量跟随响应Y的概率分布例1. (Y1,Y2,。

....YN)可能是正态的。

在这种情况下,我们会说随机分量是正态分布。

该成分导致了普通回归和⽅差分析。

例2. y是Bernoulli随机变量(其值为0或1),即随机分量为⼆项分布时,我们通常关注的是Logistic回归模型或Proit模型。

例2. y是计数变量1,2,3,4,5,6等,即y具有泊松分布,此时的连接函数时ln(E(y)),这个对泊松分布取对数的操作就是泊松回归模型。

============================================系统分量系统组件将解释变量x1、x2、···、xk作为线性预测器:============================================连接函数GLM的第三分量是随机和系统分量之间的链路。

它表⽰平均值µ=e(y)如何通过指定函数关系g(µ)到线性预测器中的解释性变量称G(µ)为链接函数..==============================================⼴义线性模型Y被允许从指数型分布族中得到⼀个分布。

链路函数G(µI)是任何单调函数,并且定义了µI和Xβ之间的关系。

=================================================逻辑回归因变量是⼆进制的评估多个解释变量(可以是数值型变量和/或类别型变量)对因变量的影响。

=============================================模型含义:鸟类的巢址使⽤响应变量是有巢的站点的概率,其中概率计算为p/(1-p),p是有巢的站点的⽐例。

广义线性模型及其在数据分析中的应用

广义线性模型及其在数据分析中的应用

摘要广义线性模型是一类现如今十分重要的数学模型,它是经典线性模型的推广,在当今社会有着广泛的应运。

在医学、生物以及经济等数据的统计和分析上有着很深的意义。

它可适用于离散的数据和连续的数据,尤其是前者,像属性数据、计数数据等等。

广义线性模型包括了许多模型,其中有方差分析模型、线性回归、交替响应的对数和概率单位模型、计数的多项响应模型、对数线性模型以及生存数据的一些常用模型等等。

本论文前两章讨论了广义线性模型的研究现状以及广义线性模型的基本理论。

第三章通过医学、生物和经济三个方面的实例来研究广义线性模型在日常生活中的广泛应用。

医学方面讨论了新药试验过程中广义线性模型对于新药的有效性研究提供了一种最为合适且快捷的方案。

生物方面通过浙江省一个水稻区域试验来说明广义线性模型在非平衡数据的处理上较与经典线性回归模型有着很显著的优越性。

经济方面则通过车辆保险费率厘定的实例来说明广义线性模型处理数据的简便与快捷。

三个方向的研究与探讨都说明了广义线性模型在现今社会生活中有着无法替代的存在感,在各个领域都有着极其广泛的应用。

关键词:广义线性模型;数据分析;timi分级;极大似然估计AbstractThe generalized linear model is a kind of mathematical model which is very important nowadays. It is the popularization of the classical linear model. It is widely used in today's society. In the medical, biological and economic data and statistical analysis and has a deep meaning. It can be applied to discrete data and continuous data, especially the former, like attribute data, count data and so on. The generalized linear model includes a number of models, including variance analysis models, linear regression, logarithm of alternating responses and probability unit models, counting multiple response models, logarithmic linear models, and some common models of survival data. The first two chapters of this paper discuss the general situation of generalized linear model and the basic theory of generalized linear model. The third chapter studies the broad application of generalized linear model in daily life through medical, biological and economic aspects. In this paper, the generalized linear model of the new drug trial is discussed in the medical field, which provides a most suitable and quick solution for the effectiveness of the new drug. The biological aspect shows that the generalized linear model has a significant superiority with the classical linear regression model in the treatment of non - equilibrium data through a rice regional experiment in Zhejiang Province. Economic aspects of the vehicle through the insurance rate to determine the examples to illustrate the generalized linear model of data processing is simple and fast. The study and discussion of the three directions show that the generalized linear model has an irreplaceable sense of existence in today's social life and has a wide range of applications in various fields.Key words: Generalized linear model; data analysis; timi classification; maximum likelihood estimation目录摘要 (I)Abstract (II)目录.................................................................................................................... I II 第一章绪论.. (1)1.1课题研究目的与意义 (1)1.2国内外研究现状 (1)第二章广义线性模型的研究 (3)2.1两种线性模型 (3)2.2常见的广义线性模型 (3)2.3广义线性模型的优点 (4)2.4广义线性模型的两种参数估计方法 (4)2.4.1极大似然估计 (4)2.4.2两参数估计 (9)第三章广义线性模型在数据分析中的应用 (11)3.1 广义线性模型在timi分级影响因素分析中的应用 (11)3.2 广义线性模型在水稻区域试验中的应用 (13)3.2.1实例 (15)3.2.2分析与结果比较 (16)3.2.3分析与展望 (17)3.3 广义线性模型在汽车保险定价中的应用 (17)3.4 广义线性模型在保险赔款预估中的应用 (19)第四章总结 (24)参考文献 (25)致谢 (26)第一章绪论1.1课题研究目的与意义广义线性模型是从线性模型演变过来的,但是它比经典的线性模型适应性更强,在处理很多数据分析问题中表现出很多优点。

广义线性模型(GeneralizedLinearModels)

广义线性模型(GeneralizedLinearModels)

⼴义线性模型(GeneralizedLinearModels)在线性回归问题中,我们假设,⽽在分类问题中,我们假设,它们都是⼴义线性模型的例⼦,⽽⼴义线性模型就是把⾃变量的线性预测函数当作因变量的估计值。

很多模型都是基于⼴义线性模型的,例如,传统的线性回归模型,最⼤熵模型,Logistic回归,softmax回归。

指数分布族在了解⼴义线性模型之前,先了解⼀下指数分布族(the exponential family)指数分布族原型如下如果⼀个分布可以⽤上⾯形式在表⽰,那么这个分布就属于指数分布族,⾸先来定义⼀下上⾯形式的符号:η:分布的⾃然参数(natural parameter)或者称为标准参数(canonical parameter)T (y):充分统计量,通常⽤T(y) = ya(η):对数分割函数(log partition function):本质上是⼀个归⼀化常数,确保概率和为1。

当给定T时,a、b就定义了⼀个以η为参数的⼀个指数分布。

我们变化η就得到指数分布族的不同分布。

论证伯努利分布和⾼斯分布为指数分布族,伯努利分布均值φ,记为Bernoulli(φ),y ∈ {0, 1},所以p(y = 1; φ) = φ; p(y = 0; φ) = 1 − φ对⽐指数分布族的表达式可以得到:η = log(φ/(1-φ)) 我们将φ⽤η表⽰,则:φ=1/(1+e-η),是不是发现和sigmoid函数⼀样了。

这就表明,当我们给定T,a,b,伯努利分布可以写成指数分布族的形式,也即伯努利分布式指数分布族。

同理,在⾼斯分布中,有:对⽐指数分布族,我们得到:因为⾼斯分布的⽅差与假设函数⽆关,因⽽为了计算简便,我们设⽅差=1,这样就得到:所以这也表明,⾼斯分布也是指数分布族的⼀种。

构造⼴义线性模型(Constructing GLMs)怎么通过指数分布族来构造⼴义线性模型呢?要构建⼴义线性模型,我们要基于以下三个假设:1. 给定特征属性和参数后,的条件概率服从指数分布族,即。

广义线性模型的优化算法

广义线性模型的优化算法

广义线性模型的优化算法广义线性模型是一种非常常见的回归模型,其调整变量x和响应变量y之间的函数关系。

通过将x带入模型方程中,可以得到y 的估计值。

广义线性模型可以用于各种不同的应用领域,例如金融、医学和社会科学等。

然而,广义线性模型的优化算法并不是一件容易的事情。

这是因为广义线性模型中的响应变量y并不是线性关系,而是与一个分布函数相关联的。

这就要求我们使用不同的目标函数和优化算法来寻找最佳的模型。

一、目标函数广义线性模型最常用的目标函数是最大似然函数。

最大似然函数给出了响应变量y在各种条件下出现的概率。

我们的目标是找到一个系数向量β,最大化最大似然函数的值。

因此,我们可以将最大似然函数表示为:L(β) = ∏f(yᵢ|xᵢ;β) i=1,2,…,N其中,f(yᵢ|xᵢ;β)是分布函数,可以是正态分布、泊松分布或二项分布等。

由于最大似然函数通常非常复杂,因此我们通常将对数似然函数最大化,即:l(β) = ∑log(f(yᵢ|xᵢ;β)) i=1,2,…,N这个对数似然函数在最大值处可以给出β的最优解。

除了最大似然函数,我们还可以使用其他的目标函数来最小化误差。

例如,最小二乘法可以用于拟合线性回归模型,最小化其残差平方和。

在广义线性模型中,我们可以替换为其他的误差函数,例如平均绝对误差或带权中位数误差等。

二、优化算法1.牛顿法和拟牛顿法:牛顿法是一种用于求解非线性方程组的方法,可以用来优化广义线性模型的目标函数。

该方法要求目标函数是二次可导的,因此对于一些广义线性模型,可能无法使用牛顿法。

拟牛顿法是一种对牛顿法的扩展,通过对Hessian矩阵做近似来避免假定目标函数是二次可导的,因此更加适用于包括广义线性模型在内的非线性函数的优化。

2.梯度下降:梯度下降是一种根据目标函数梯度下降的迭代算法。

每次迭代,我们沿着梯度方向步进一定的距离。

在广义线性模型中,我们可以使用批量梯度下降或随机梯度下降。

批量梯度下降每次迭代都需要遍历整个训练集,因此它的计算成本相对较高。

广义线性模型的分析及应用

广义线性模型的分析及应用

广义线性模型的分析及应用一、引言广义线性模型(Generalized Linear Model, GLM)提供了一种在保持简单性的前提下,对非正态响应变量建立连续性预测模型的方法,适用于许多实际应用问题中。

本文旨在介绍广义线性模型的基本概念、模型构建方法、推断等内容,并通过实际案例的分析加深对GLM的理解与应用。

二、基本概念GLM是统计学中一种具有广泛适用性的模型框架,它的基本思想是将未知的响应变量与已知的协变量之间的关系描述为一个线性预测器和一个非线性函数的组合,即:g(E(Y)) = β_0 + β_1X_1 + ⋯+ β_pX_p其中,g(·)称为联接函数(Link Function),它定义了响应变量的均值与预测变量之间的关系,E(Y)为响应变量的期望,X_1,X_2,…,X_p为解释变量(predictor)或协变量(covariate),β_0, β_1, …, β_p是模型的系数或参数。

GLM假定响应变量Y服从指数分布族中的某一个分布,如正态分布、二项分布、泊松分布等。

三、模型构建方法1. 选择联接函数和分布族:不同的响应变量应选用不同的分布族。

例如,连续性响应变量可选用正态分布,二元响应变量可选用二项分布,而计数型响应变量可选用泊松分布等。

2. 选择解释变量:可使用变量选择算法,如前向选择法、向后选择法、逐步回归等,在给定样本内拟合出最佳模型。

3. 选择估计方法:由于某些非正态分布族无法使用最小二乘法拟合,可以使用极大似然估计法或广义估计方程法。

对于大样本,一般使用广义线性混合模型等。

4. 模型比较与选择:模型拟合后,需要进行模型检验和模型诊断,主要包括残差分析、Q-Q图检验、$R^2$值、F检验、AIC/BIC值等指标的分析。

四、模型应用GLM的应用非常广泛,特别是在医学、生态、社会科学、金融等领域。

下面以某市2019年全年医疗保险数据为例,运用GLM模型进行分析。

1. 数据描述健康保险数据包含了每个缴费人的性别、年龄、缴费金额、报销金额等信息。

广义线性回归模型(三)

广义线性回归模型(三)

⼴义线性回归模型(三)假设你想要建⽴⼀个模型,根据某特征x,例如商品促销活动,近期⼴告,天⽓等来预测给定时间内顾客到达商场的数量y,我们知道泊松分布可以很好的描述这个问题。

那么我们怎样来建⽴这个问题的回归模型呢?幸运的是泊松分布是指数族分布,所以我们可以使⽤⼴义线性回归模型(GLM),本⽂将介绍⼴义线性模型来解决这个问题。

更⼀般的,在考虑回归和分类问题,我们需要考虑在特征x下y的值,为了导出GLM模型,我们将会给出3个假设:1. y|x;\theta \sim ExponentialFamily(η),给出定\theta,y|x服从指数族分布,并以\eta为参数2. 给定x,我们的⽬标是预测T(y)的期望值,在⼤多数例⼦⾥,我们有T(y)=y,这就意味着我们学习的输出h(x)=E[y|x]。

例如在逻辑回归中,我们有h_\theta(x)=p(y=0|x) \cdot 0+p(y=1|x) \cdot 1=E[y|x;\theta].3. 参数\eta与输⼊x是线性关系\eta = \theta^Tx(如果\eta是⼀个向量,则\eta_i=\theta^Tx).上⾯第三条不像⼀个假设,更像⼀个约定,可以认为是“设计的假设”。

这三个假设能让我们推出GLM模型,具这个模型有许多不错的特性,例如易于学习等。

我们很快会发现,逻辑回归和最⼩⼆乘模型都可以作为GLM推导出来。

⼀、指数分布族介绍指数分布族是指可以表⽰为指数形式的概率分布。

指数分布的形式如下:p(y;\eta)=b(y)\exp\{\eta^TT(y)-a(\eta)\}其中\eta是⾃然参数(natrue parameter),T(y)是充分统计量,⼀般情况下T(y)=y,当a,b,T确定时,上式就定义了⼀个以\eta为参数的函数族。

下⾯讨论将伯努⼒分布和⾼斯分布化为指数分布形式。

伯努⼒分布是对0,1问题进⾏建模的,设y \sim Bernoulli(\phi),即p(y=1;\phi)=\phi \quad\quad\\ p(y=0;\phi)=1-\phi我们可以得到p(y;\phi)=\phi^y(1-\phi)^{1-y}=\exp\{y\;ln\phi+(1-y)ln(1-\phi)\}\\ =exp\{ y\ln(\frac{\phi}{1-\phi}) +ln(1-\phi)\}其中T(y)=y \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\\ \eta =ln(\frac{\phi}{1-\phi}) \Longrightarrow \phi=\frac{1}{1+e^{-\eta}}\\ a=-ln(1-\phi) =ln(1+e^{\eta})\quad\quad这说明伯努⼒分布是指数分布族的⼀种,\phi的形式与逻辑回归中的logitisc函数⼀样,因为逻辑回归对问题的潜质概率分布其实就是伯努⼒分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年收入 (万元)
是否有车
年收入 (万元)
是否有车
年收入 (万元)
是否有车
15
1
25
1
12
0
20
1
12
0
15
1
10
0
10
0
9
0
12
1
15
1
8
0
8
0
7
0
10
0
30
1
22
1
22
1
6
0
7
0
24
1
16
1
16
1
9
0
22
1
18
1
10
0
36
1
211181707
0
30
1
24
1
9
0
6
0
6
0
6
0
13
0
11
0
20
1
23
1
18
.
8
2. 正态线性回归模型
• 只要取联结函数为 m (i) i x iT (i 1 , ,n ),则正
态线性回归模型满足广义线性模型的定义.
• 类似的,容易验证,二项分布和泊松分布都属 于指数分布族.
• 下面介绍实际中应用广泛的两种广义线性
模型:Logistic模型和对数线性模型.
2020/8/5
1
16
1
10
0
2020/8/5
.
11
2. 模型的参数估计和检验
• 采用R软件中的广义线性模型过程glm( )可以完成 回归系数的估计,以及模型回归系数的显著性检验. 程序如下:
#eg3.1广义线性模型:Logistic模型 #打开数据文件eg3.1.xls,选取A1:B46区域,然后复制 data3.1<-read.table("clipboard",header=T) #将eg3.1.xls数据读入到data3.1中 glm.logit<-glm(y~x,family=binomial,data=data3.1) #建立y关于x的logistic回归#模型,数据为data3.1 summary(glm.logit) #模型汇总,给出模型回归系数的估计 和显著性检验等 yp<-predict(glm.logit,data.frame(x=15)) p.fit<-exp(yp)/(1+exp(yp));p.fit #估计x=15时y=1的概率
f(yi,,2) 212exp 2 12(yi)2 exp yi 22/21 2[yi2 2ln(22)]
(3.3)
与(3.1)对照可知
, 2 ,a i() 2 ,b () 2 2 , c i( y i,) 1 2 [ y i 2 2 l n ( 22 ) ]
2020/8/5
2020/8/5
.
12
运行以上程序可得如下结果:
Call:
glm(formula = y ~ x, family = binomial, data = data3.1)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.21054 -0.05498 0.00000 0.00433 1.87356
.
9
3.2 Logistic模型
• 1.模型定义 设yi服从参数为pi的二项分布,则μi =E(yi)=pi
采用逻辑联结函数,即
m ( i)logit(pi)log1 pipi xiT
这个广义线性模型称为Logistic模型.
2020/8/5
.
10
例3.1(数据文件为eg3.1)
表3.1 某地区45个家庭的调查数据
主编:费宇 中国人民大学出版社
2020/8/5
.
1
第3章 广义线性模型
• 3.1 广义线性模型概述 • 3.2 Logistic模型 • 3.3 对数线性模型
2020/8/5
.
2
3.1 广义线性模型概述
• 第2章我们研究了多元线性模型,该模型的一 个重要假定是因变量是连续型的变量(通常 假定服从正态分布),但在许多情况下,这种假 定并不合理,例如下面这两种情况.
m (i) x i T ( i 1 , ,n ) ( 3 .2 )
• 其中 xiT(1,xi1, ,xik)是协变量, (0,1, ,k)T是未 知参数向量.
2020/8/5
.
6
• 正态分布 • 二项分布 • 泊松分布
指数分布族
2020/8/5
.
7
2.正态线性回归模型
• 正态分布属于指数分布族,其密度函数为
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 62.3610 on 44 degrees of freedom
Residual deviance: 6.1486 on 43 degrees of freedom
• (1)结果变量可能是类型变量.二值分类变量 和多分类变量.(比如:是/否,差/一般/良好/优 秀等)显然都不是连续型变量.
2020/8/5
.
3
3.1 广义线性模型概述
• (2) 结果变量可能是计数型变量(比如:一周交通事 故的数目)这类变量都是非负的有限值,而且它们的 均值和方差通常是相关的(一般线性模型假定因变 量是正态变量,而且相互独立).
• 普通线性回归模型(2.3)假定因变量y服从正态分布, 其均值满足关系式:μ=Xβ,这表明因变量的条件均 值是自变量的线性组合.
• 本章介绍两种常见的广义线性模型:Logistic模型与 对数线性模型.
2020/8/5
.
4
3.1 广义线性模型概述
1.广义线性模型的定义:
(1)随机成分:设y1,y2,…,yn是来自于指数分布族
AIC: 10.149
Number of Fisher Scoring iterations: 9
2020/8/5
.
13
2. 模型的参数估计和检验
> yp<-predict(glm.logit,data.frame(x=15)) > p.fit<-exp(yp)/(1+exp(yp));p.fit #估计x=15时y=1的概率
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -21.2802 10.5203 -2.023 0.0431 *
x
1.6429 0.8331 1.972 0.0486 *
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
的随机样本,即yi的密度函数为
f(y i,i,) e x p iy a ii (b ) () c i(y i,)
(3 .1 )
• 其中ai(.) ,b(.),ci(.) 是已知函数,参数αi是典则
参数,ϕ是散度参数.
2020/8/5
.
5
1.广义线性模型的定义:
• (2)联结函数:设yi的均值为μi而函数m(.)是单 调可微的联接函数,使得
相关文档
最新文档