平面向量数量积及运算规律

合集下载

2.4.1平面向量的数量积及运算律(3)

2.4.1平面向量的数量积及运算律(3)
硬背“在复合句中,修饰某一名词或代词的从句叫做定语从句”这个概念。
3.这个步骤可以使用思维导图或流程图,可以更好加深自己的理解哦~
费曼学习法--
实操
第三步 没有任何参考的情况下,仅靠大脑,复述你所获得的主要内容
(三) 仅 靠 大 脑 复 述
1.与上一步不同的是,这一步不能有任何参考, 合上你的书本、笔记等,看看此时你的大脑里还剩下了什么; 2.仅凭记忆,如果可以复述很多,说明掌握状况还可以; 3.如果一合上书,就连关系词有哪些都想不起来了, 说明还 没有掌握,需要继续回顾。
2. 求证:直径 所对的圆周角为 直角.
13
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆 规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因 为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之 内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比 如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3 组就可以了,记忆效率也会大大提高。

平面向量的数量积及运算律

平面向量的数量积及运算律

平面向量的数量积及运算律学校上南中学 姓名欧阳民教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用教学过程:一、复习引入:1.复习两个非零向量夹角的概念。

2.问题探索:利用物理学中的做功问题,来引入平面向量数量积(内积)的定义: θcos b a b a =⋅3.“投影”的概念:定义:|b |cos θ叫做向量b 在a 方向上的投影。

4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积。

例1.若45==b a ,,当a 与b 的夹角为0120时,求b a ⋅。

变式1 若45==b a ,,当b a ⊥,求b a ⋅;变式2 若45==b a ,,当b a //,求b a ⋅,a a ⋅;变式3 若45==b a ,,当210=⋅b a ,求a 与b 的夹角;变式4 若45==b a ,,当a 与b 的夹角为060时,求b a ⋅。

练一练,比一比:1.已知68==q p ,,p 与q 的夹角为060,求q p ⋅。

2.设912==b a ,,254-=⋅b a ,求a 与b 的夹角。

3.已知ABC ∆中,,,b AC a AB ==当00=⋅<⋅b a b a ,时,ABC ∆各是什么三角形?0>⋅b a 呢?二、平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )3.分配律:(a + b )⋅c = a ⋅c + b ⋅c证明(略)三、两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量。

(1) e ⋅a = a ⋅e =|a |cos θ;(2) a ⊥b ⇔ a ⋅b = 0(3) 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |。

平面向量的运算规则

平面向量的运算规则

平面向量的运算规则平面向量是研究平面上有大小和方向的量,常用于解决几何问题和物理问题。

为了对平面向量进行运算,我们需要了解平面向量的运算规则。

本文将介绍平面向量的加法、减法、数乘和数量积的运算规则,以及向量的共线性和平行性。

一、平面向量的加法规则对于平面上的两个向量A和A,它们的加法规则如下:A + A = A + A即向量的加法满足交换律。

二、平面向量的减法规则对于平面上的两个向量A和A,它们的减法规则如下:A - A≠ A - A向量的减法不满足交换律。

减法运算可以通过将减法转化为加法进行计算:A - A = A + (-A)其中,-A表示向量A的反向向量,即大小相等,方向相反。

三、平面向量的数乘规则对于平面上的向量A和一个实数A,它们的数乘规则如下:AA = AA即数乘满足交换律。

数乘后的向量与原向量大小相等,方向与原向量平行或反向。

四、平面向量的数量积规则平面向量的数量积又称为点积或内积。

对于平面上的两个向量A和A,它们的数量积规则如下:A·A = AA cosθ其中,A·A表示向量A和A的数量积,AA为A和A的模的乘积,θ为A和A之间的夹角。

根据数量积的定义,我们可以得到以下结论:1. 若A·A = 0,则A与A垂直,即A和A互相垂直。

2. 若A·A > 0,则A与A夹角为锐角。

3. 若A·A < 0,则A与A夹角为钝角。

五、平面向量的共线性和平行性对于平面上的两个向量A和A,它们的共线性和平行性判断规则如下:1. 共线性判断:若存在一个实数A,使得A = AA,则A与A共线,且方向相同或相反。

2. 平行性判断:若A与A共线且方向相同或相反,则A与A平行。

总结:平面向量的运算规则包括加法、减法、数乘和数量积。

其中,加法满足交换律,减法不满足交换律,数乘满足交换律。

数量积可以判断向量的垂直性和夹角的锐钝性。

同时,共线性和平行性的判断也是平面向量运算中的重要内容。

平面向量的数量积及应用

平面向量的数量积及应用

平面向量的数量积及应用复习一、知识要点: 1.向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π时,a ,b 垂直。

2.平面向量的数量积:定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ 叫作a 与b的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0. 3.向量的数量积的性质:①设两个非零向量a ,b ,其夹角为θ,则: 0a b a b ⊥⇔•=; ②当a ,b 同向时,a •b =a b ,特别地,222,a a a a a a =•==; 当a 与b 反向时,a •b =-a b ;当θ为锐角时,a •b >0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,a •b <0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件;③非零向量a ,b 夹角θ的计算公式:cos a b a bθ•=;④||||||a b a b •≤。

⑤e ·a =a ·e =︱a ︱cos θ (e 为单位向量); 4.平面向量数量积的坐标表示:设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角.(1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (2)模:|a |=2a =x 21+y 21.(3)夹角:cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0. (5)| a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.5.平面向量数量积的运算律:(1) a ·b =b ·a (交换律). (2)λa ·b =λ(a b b )=a ·(λb )(结合律). (3)( a +b )·c =a ·c +b ·c (分配律). 6.重要结论:①向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别地()()AB AC AB AC ABACABAC+⊥-。

§5.3 平面向量的数量积

§5.3 平面向量的数量积

§5.3 平面向量的数量积考情考向分析 主要考查利用数量积的定义解决数量积的运算、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模以及判断两个平面向量的平行与垂直关系.一般以填空题的形式考查,偶尔会在解答题中出现,属于中档题.1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积定义:设两个非零向量a ,b 的夹角为θ,则数量|a ||b |·cos θ叫做a 与b 的数量积,记作a ·b .3.平面向量数量积的性质设a ,b 都是非零向量,e 是单位向量,θ为a 与b (或e )的夹角.则 (1)e ·a =a ·e =|a |cos θ. (2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a ||b |; 当a 与b 反向时,a ·b =-|a ||b |. 特别地,a ·a =|a |2或|a |=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a ||b |.4.平面向量数量积满足的运算律 (1)a ·b =b ·a ;(2)(λa )·b =λ(a ·b )=a ·(λb )(λ为实数); (3)(a +b )·c =a ·c +b ·c .5.平面向量数量积有关性质的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,由此得到 (1)若a =(x ,y ),则|a |2=x 2+y 2或|a |=x 2+y 2.(2)设A (x 1,y 1),B (x 2,y 2),则A ,B 两点间的距离AB =|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.(4)若a ,b 都是非零向量,θ是a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 知识拓展1.两个向量a ,b 的夹角为锐角⇔a ·b >0且a ,b 不共线; 两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线.2.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2. (2)(a +b )2=a 2+2a ·b +b 2. (3)(a -b )2=a 2-2a ·b +b 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √ ) (2)由a ·b =0可得a =0或b =0.( × ) (3)(a ·b )c =a (b ·c ).( × )(4)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( × )(5)若a ·b >0,则a 和b 的夹角为锐角;若a ·b <0,则a 和b 的夹角为钝角.( × ) 题组二 教材改编2.[P90习题T18]已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =________. 答案 12解析 ∵2a -b =(4,2)-(-1,k )=(5,2-k ), 由a ·(2a -b )=0,得(2,1)·(5,2-k )=0, ∴10+2-k =0,解得k =12.3.[P90练习T19]设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值为________. 答案 -32解析 由已知得c =(1,2)+k (1,1)=(k +1,k +2), 因为b ⊥c ,所以b ·c =0, 因此k +1+k +2=0,解得k =-32.题组三 易错自纠4.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积是________. 答案 52解析 a +2b =(-1+2m,4),2a -b =(-2-m,3), 由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. 5.已知|a |=3,|b |=2,若a ·b =-3,则a 与b 的夹角的大小为________. 答案2π3解析 设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-33×2=-12.又0≤θ≤π,所以θ=2π3.6.已知△ABC 的三边长均为1,且AB →=c ,BC →=a ,CA →=b ,则a ·b +b ·c +a ·c =________. 答案 -32解析 ∵〈a ,b 〉=〈b ,c 〉=〈a ,c 〉=120°,|a |=|b |=|c |=1, ∴a ·b =b ·c =a ·c =1×1×cos 120°=-12,∴a ·b +b ·c +a ·c =-32.题型一 平面向量数量积的运算1.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=________. 答案 9解析 AM →=AB →+34AD →,NM →=CM →-CN →=-14AD →+13AB →,∴AM →·NM →=14(4AB →+3AD →)·112(4AB →-3AD →)=148(16AB →2-9AD →2)=148(16×62-9×42)=9. 2.在△ABC 中,AB =4,BC =6,∠ABC =π2,D 是AC 的中点,E 在BC 上,且AE ⊥BD ,则AE →·BC→=________. 答案 16解析 以B 为原点,BA ,BC 所在直线分别为x ,y 轴建立平面直角坐标系(图略),A (4,0),B (0,0),C (0,6),D (2,3),设E (0,t ),BD →·AE →=(2,3)·(-4,t )=-8+3t =0,t =83,即E ⎝ ⎛⎭⎪⎫0,83,AE →·BC →=⎝⎛⎭⎪⎫-4,83·(0,6)=16.思维升华 平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解.题型二 平面向量数量积的应用命题点1 求向量的模典例 (1)已知向量a ,b 的夹角为60°,|a |=2,|a -2b |=2,则|b |=________. 答案 1解析 由|a -2b |=2,得(a -2b )2=|a |2-4a ·b +4|b |2=4, 即|a |2-4|a||b |cos 60°+4|b |2=4, 则|b |2-|b |=0,解得|b |=0(舍去)或|b |=1.(2)(2017·江苏沛县中学质检)已知AD 是△ABC 的中线,若∠A =120°,AB →·AC →=-2,则|AD →|的最小值是________. 答案 1解析 ∵AB →·AC →=-2=|AB →||AC →|cos A ,∠A =120°,∴|AB →||AC →|=4, ∵|AD →|=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-4)≥14(2|AB →||AC →|-4)=1, 当且仅当AB =AC =2时取等号,∴|AD →|min =1. 命题点2 求向量的夹角典例 (1)已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为______. 答案2π3解析 ∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6, 又|a |=2,|b |=1,∴a ·b =-1, ∴cos 〈a ,b 〉=a ·b |a||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.(2)已知单位向量e 1与e 2的夹角为π3,向量e 1+2e 2与2e 1+λe 2的夹角为2π3,则λ=________.答案 -3 解析 依题意可得|e 1+2e 2|=(e 1)2+4e 1·e 2+(2e 2)2=7, 同理,|2e 1+λe 2|=4+2λ+λ2, 而(e 1+2e 2)·(2e 1+λe 2)=4+52λ,又向量e 1+2e 2与2e 1+λe 2的夹角为2π3,可知(e 1+2e 2)·(2e 1+λe 2)|e 1+2e 2||2e 1+λe 2|=4+52λ7×4+2λ+λ2=-12, 由此解得λ=-23或-3,又4+52λ<0,∴λ=-3.思维升华 (1)求解平面向量模的方法①把几何图形放到适当的坐标系中,写出有关向量的坐标,求向量的长度.如若向量a =(x ,y ),求向量a 的模只需利用公式|a |=x 2+y 2即可.②当向量坐标无法表示时,利用向量的线性运算和向量的数量积公式进行求解,关键是会把向量a 的模进行如下转化:|a |=a 2. (2)求平面向量的夹角的方法①定义法:利用向量数量积的定义知,cos θ=a ·b|a||b |,其中两个向量的夹角θ的取值范围为[0,π],求解时应求出三个量:a ·b ,|a |,|b |或者找出这三个量之间的关系. ②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. ③解三角形法:可以把所求两向量的夹角放到三角形中,利用正、余弦定理和三角形的面积公式等进行求解.跟踪训练 (1)(2017·全国Ⅰ)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 3解析 方法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos 60°+4×12=12=2 3. 方法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.(2)(2017·山东)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 答案33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0,|3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2. 同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12, 解得λ=33. 题型三 平面向量与三角函数典例 (2017·江苏三市调研)如图,A 是单位圆与x 轴正半轴的交点,点B ,P 在单位圆上,且B ⎝ ⎛⎭⎪⎫-35,45,∠AOB =α,∠AOP =θ(0<θ<π),OQ →=OA →+OP →,四边形OAQP 的面积为S .(1)求cos α+sin α;(2)求OA →·OQ →+S 的最大值及此时θ的值θ0.解 (1)∵B ⎝ ⎛⎭⎪⎫-35,45,∠AOB =α, ∴cos α=-35,sin α=45,∴cos α+sin α=15.(2)由已知得,A (1,0),P (cos θ,sin θ), ∴OQ →=(1+cos θ,sin θ), OA →·OQ →=1+cos θ, 又S =sin θ,∴OA →·OQ →+S =sin θ+cos θ+1=2sin ⎝ ⎛⎭⎪⎫θ+π4+1, 又0<θ<π,∴π4<θ+π4<5π4,∴-22<sin ⎝⎛⎭⎪⎫θ+π4≤1, 则OA →·OQ →+S 的最大值为2+1, 此时θ0=π2-π4=π4.思维升华 平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. 跟踪训练 在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12,所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.利用数量积求向量夹角典例 已知直线y =2x 上一点P 的横坐标为a ,直线外有两个点A (-1,1),B (3,3).求使向量PA →与PB →夹角为钝角的充要条件. 错解展示:现场纠错解 错解中,cos θ<0包含了θ=π, 即PA →,PB →反向的情况,此时a =1,故PA →,PB →夹角为钝角的充要条件是0<a <2且a ≠1.纠错心得 利用数量积的符号判断两向量夹角的范围时,不要忽视两向量共线的情况.1.(2017·江苏天星湖中学月考)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =________. 答案 1解析 由|a +b |=10得a 2+b 2+2a ·b =10,① 由|a -b |=6得a 2+b 2-2a ·b =6,② ①-②得4a ·b =4,∴a ·b =1.2.已知向量a =(2,1),b =(1,3),则向量2a -b 与a 的夹角为________. 答案 45°解析 由题意可得2a -b =2(2,1)-(1,3)=(3,-1), 则|2a -b |=32+(-1)2=10, |a |=22+12=5,且(2a -b )·a =(3,-1)·(2,1)=6-1=5, 设所求向量的夹角为θ,由题意可得cos θ=(2a -b )·a |2a -b ||a |=510×5=22,则向量2a -b 与a 的夹角为45°.3.已知向量a =(m,2),b =(2,-1),且a ⊥b ,则|2a -b |a ·(a +b )=________.答案 1解析 ∵a ⊥b ,∴2m -2=0,∴m =1,则2a -b =(0,5),a +b =(3,1),∴a ·(a +b )=1×3+2×1=5,|2a -b |=5,∴|2a -b |a ·(a +b )=55=1.4.在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →=________. 答案 32解析 在△ABC 中,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =9+4-102×3×2=14,∴AB →·AC →=|AB →||AC →|cos ∠BAC =3×2×14=32.5.在△ABC 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=____. 答案109解析 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,它们的长不可能为0,所以AB 与AC 垂直,所以△ABC 为直角三角形.以A 为原点,以AC 所在直线为x 轴,以AB 所在直线为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0).不妨令E 为BC 的靠近C 的三等分点,则E ⎝ ⎛⎭⎪⎫23,23,F ⎝ ⎛⎭⎪⎫13,43, 所以AE →=⎝ ⎛⎭⎪⎫23,23,AF →=⎝ ⎛⎭⎪⎫13,43,所以AE →·AF →=23×13+23×43=109.6.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为________三角形.答案 等腰解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0,即CB →·(AB →+AC →)=0,因为AB →-AC →=CB →,所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形.7.(2017·全国Ⅰ)已知向量a =(-1,2),b =(m,1).若向量a +b 与a 垂直,则m =________. 答案 7解析 ∵a =(-1,2),b =(m,1),∴a +b =(-1+m,2+1)=(m -1,3).又a +b 与a 垂直,∴(a +b )·a =0,即(m -1)×(-1)+3×2=0,解得m =7.8.(2017·江苏泰州中学期中)向量a =(cos 10°,sin 10°),b =(cos 70°,sin 70°),则|a -2b |=________.答案 3解析 a ·b =cos 70°cos 10°+sin 70°sin 10°=cos 60°=12,|a |=|b |=1,所以|a -2b |=a 2+4b 2-4a ·b =1+4-2= 3.9.已知平面内三个不共线向量a ,b ,c 两两夹角相等,且|a |=|b |=1,|c |=3,则|a +b +c |=________.答案 2解析 因为平面内三个不共线向量a ,b ,c 两两夹角相等,所以由题意可知,a ,b ,c 的夹角为120°,又|a |=|b |=1,|c |=3,所以a ·b =-12,a ·c =b ·c =-32,|a +b +c |= 1+1+9+2×⎝ ⎛⎭⎪⎫-12+2×⎝ ⎛⎭⎪⎫-32+2×⎝ ⎛⎭⎪⎫-32=2. 10.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是______________.答案 ⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞ 解析 a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧ 3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞. 11.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)因为(2a -3b )·(2a +b )=61,所以4|a |2-4a ·b -3|b |2=61.又|a |=4,|b |=3,所以64-4a ·b -27=61,所以a ·b =-6,所以cos θ=a ·b |a||b |=-64×3=-12. 又0≤θ≤π,所以θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,所以|a +b |=13.(3)因为AB →与BC →的夹角θ=2π3, 所以∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|·sin ∠ABC =12×4×3×32=3 3. 12.(2017·江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b ,所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0.于是tan x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x=23cos ⎝⎛⎭⎪⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6, 从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32, 于是,当x +π6=π6,即x =0时,f (x )取得最大值3; 当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.13.(2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA→=4,BF →·CF →=-1,则BE →·CE →的值是________.答案 78解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b , AF →=23AD →=13a +13b . AE →=13AD →=16a +16b , BF →=BA →+AF →=-a +13a +13b =-23a +13b , CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝ ⎛⎭⎪⎫-23a +13b ⎝ ⎛⎭⎪⎫13a -23b = -29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292. 又BE →=BA →+AE →=-a +16a +16b =-56a +16b . CE →=CA →+AE →=-b +16a +16b =16a -56b , 则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ⎝ ⎛⎭⎪⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78. 14.在等腰直角△ABC 中,∠ABC =90°,AB =BC =2,M ,N 为AC 边上的两个动点(M ,N 不与A ,C 重合),且满足|MN →|=2,则BM →·BN →的取值范围为________. 答案 ⎣⎢⎡⎭⎪⎫32,2 解析 不妨设点M 靠近点A ,点N 靠近点C ,以等腰直角三角形ABC 的直角边所在直线为坐标轴建立平面直角坐标系,如图所示,则B (0,0),A (0,2),C (2,0),线段AC 的方程为x +y -2=0(0≤x ≤2).设M (a,2-a ),N (a +1,1-a )(由题意可知0<a <1),∴BM →=(a,2-a ),BN →=(a +1,1-a ),∴BM →·BN →=a (a +1)+(2-a )(1-a )=2a 2-2a +2=2⎝ ⎛⎭⎪⎫a -122+32, ∵0<a <1,∴由二次函数的知识可得BM →·BN →∈⎣⎢⎡⎭⎪⎫32,2.15.设a ,b 为单位向量,且a ⊥b ,若向量c 满足|c -(a +b )|=|a -b |,则|c |的最大值是________.答案 2 2解析 由题意结合a ⊥b ,可设a =(1,0),b =(0,1),c =(x ,y ),则由|c -(a +b )|=|a -b |,得|(x ,y )-(1,1)|=|(1,-1)|,由此可得(x -1)2+(y -1)2=2,即c 对应的点的轨迹在以(1,1)为圆心的圆上,如图所示,∵圆过原点,∴|c |的最大值为圆的直径2 2.16.已知在△ABC 所在平面内有两点P ,Q ,满足PA →+PC →=0,QA →+QB →+QC →=BC →,若|AB →|=4,|AC →|=2,S △APQ =23,则AB →·AC →的值为________. 答案 ±4 3解析 由PA →+PC →=0知,P 是AC 的中点,由QA →+QB →+QC →=BC →,可得QA →+QB →=BC →-QC →,即QA →+QB →=BQ →,即QA →=2BQ →,∴Q 是AB 边靠近B 的三等分点,∴S △APQ =23×12×S △ABC =13S △ABC , ∴S △ABC =3S △APQ =3×23=2. ∵S △ABC =12|AB →||AC →|sin A =12×4×2×sin A =2, ∴sin A =12,∴cos A =±32, ∴AB →·AC →=|AB →||AC →|·cos A =±4 3.。

平面向量的数量积及运算律

平面向量的数量积及运算律

平面向量的数量积及运算律【基础知识精讲】1.平面向量的数量积的定义及几何意义(1)两平面向量和的夹角:,是两非零向量,过点O作=、=,则∠AOB=θ(0°≤θ≤180°)就称为向量和的夹角,很显然,当且仅当两非零向量、同方向时θ=0°;当且仅,反方向时,θ=180°,当θ=90°,称与垂直,记作⊥.(2)两平面向是和的数量积:、是两非零向量,它们的夹角为θ,则数量||·||cosθ叫做向量与的数量积(或内积),记作·,即·=||·||·cosθ.因此当⊥时,θ=90°,cosθ=0,这时·=0特别规定,零向量与任一向量的数量积均为0.综上所述,·=0是⊥或,中至少一个为的充要条件两向量与的数量积是一个实数,不是一个向量,其值可以为正(当≠,≠,0°≤θ<90°时,也可以为负(当≠,≠,90°<θ≤180°时,还可以为0(当=或=或θ=90°时).(3)一个向量在另一向量方向上的投影:设θ是向量与的夹角,则||cosθ,称为向量在的方向上的投影:而||cosθ,称为向量在的方向上的投影.一个向量在另一个向量方向上的投影也是一个数,不是向量,当0°≤θ<90°时,它为正值:当θ=90°时,它为0;当90°<θ≤180°时,它为负值.特别地,当θ=0°,它就等于||;而当θ=180°时,它等于-||.我们可以将向量与的数量积看成是向量的模||与||在的方向上投影||cosθ的乘积.2.向量数量积的性质:设、是两非零向量,是单位向量,θ是与的夹角,于是我们有下列数量积的性质:(1) ·=·=||cosθ(2) ⊥·=0(3) 、同向·=||·||; ,反向·=-||||;特别地·=2=||2或||=.(4)cosθ= (θ为,的夹角)(5)|·|≤||·||3.平面向量的数量积的运算律(1)交换律:·=·(2)数乘向量与数量积的结合律:λ(·)=(λ)·=·(λ);(λ∈R)(3)分配律: (+)· =·+·【重点难点解析】两向量的数量积是两向量之间的一种乘法运算,它与两数之间的乘法有本质的区别:(1)两向量的数量积是个数量,而不是向量,其值为两向量的模与两向量夹角的余弦的乘弦的乘积.(2)当≠时,不能由·=0,推出=,因可能不为,但可能与垂直.(3)非零实数a,b,c满足消去律,即ab=bc a=c,但对向量积则不成立,即·=·=).(4)对实数的积应满足结合律,即a(bc)=(ab)c,但对向量的积则不满足结合律,即·(·)≠(·)·,因·(·)表示一个与共线的向量,而(·)·表示一个与共线的向量,而两向量不一定共线.例1已知、、是三个非零向量,则下列命题中真命题的个数(1)|·|=||·||∥(2) ,反向·=-||·|| (3)⊥|+|=|-| (4)||=|||·|=|·| A.1 B.2 C.3 D.4分析:需对以上四个命题逐一判断,依据有两条,一仍是向量数量积的定义;二是向量加法与减法的平行四边形法则.解:(1)∵·=||·||cosθ∴由|·|=||·||及、为非零向量可得|cosθ|=1∴θ=0或π,∴∥且以上各步均可逆,故命题(1)是真命题.(2)若,反向,则、的夹有为π,∴·=||·||cosπ=-||·||且以上各步可逆,故命题(2)是真命题.(3)当⊥时,将向量,的起点确定在同一点,则以向量,为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|+|=|-|.反过来,若|+|=|-|,则以,为邻边的四边形为矩形,所以有⊥,因此命题(3)是真命题.(4)当||=||但与的夹角和与的夹角不等时,就有|·|≠|·|,反过来由|·||=|·|也推不出||=||.故命题(4)是假命题.综上所述,在四个命题中,前3个是真命题,而第4个是假命题,应选择(C).说明:(1)两向量同向时,夹角为0(或0°);而反向时,夹角为π(或180°);两向量垂直时,夹角为90°,因此当两向量共线时,夹角为0或π,反过来若两向量的夹角为0或π,则两向量共线.(2)对于命题(4)我们可以改进为:||=||是|·|=|·|的既不充分也不必要条件.例2已知向量+3垂直于向量7-5,向量-4垂直于向量7-2,求向量与的夹角.分析:要求与的夹角,首先要求出与的夹角的余弦值,即要求出||及||、·,而本题中很难求出||、||及·,但由公式cosθ=可知,若能把·,||及||中的两个用另一个表示出来,即可求出余弦值,从而可求得与的夹角θ.解:设与的夹角为θ.∵+3垂直于向量7-5,-4垂直于7-2,解之得 2=2·2=2·∴2=2∴||=||∴cosθ===∴θ=因此,a与b的夹角为.例3已知++=,||=3,||=1,||=4,试计算·+·+·.分析:利用||2=2,||2= 2,||2=2.解:∵++=∴(++)2=0从而||2+||2+||2+2·+2·+2·=0又||=3,||=1,||=4∴·+·+·=-(||2+||2+||2) =-(32+12+42) =-13例4已知:向量=-2-4,其中、、是两两垂直的单位向量,求与同向的单位向量.分析:与同向的单位向量为:·解:∵、、是两两垂直的单位向量∴2=2=2=1, ·=·=·=0∴2=(-2-4)(-2-4)=2+42+162-4· -8·+16·=21从而||=∴与同向的单位向量是·= (-2-4)=--例5求证:直径上的圆周角为直角.已知:如图,AC为⊙O的直径,∠ABC是直径AC上的圆周角.求证:∠ABC=90°分析:欲证∠ABC=90°,须证⊥,因此可用平面向量的数量积证·=0证明:设=,=,有=∵=+, =-且||=||∴·=(+)( -)=||2-||2=0∴⊥∴∠ABC=90°【难题巧解点拔】例1如图,设四边形P1P2P3P4是圆O的内接正方形,P是圆O上的任意点.求证:||2+||2+||+||2为定值.分析:由于要证:||2+||2+||+||2为定值,所以需将(i=1,2,3,4)代换成已知向量或长为定值的向量的和(或差),才能使问题证,而这里的半径、、、、等可供我们选择.证明:由于=+=- (i=1,2,3,4).∴有||2=(-)2=()2-2(·)+()2设⊙O的半径为r,则||2=2r2-2(·)∴||2+||2+||+||2=8r2-2(+++)·=8r2-2··=8r2(定值).例2设AC是□ABCD的长对角线,从C引AB、AD的垂线CE,CF,垂足分别为E,F,如图,试用向量方法求证:AB·AE+AD·AF=AC2分析:由向量的数量积的定义可知:两向量,的数量积·=||·||·cosθ(其中θ是,的夹角),它可以看成||与||在的方向上的投影||·cosθ之积,因此要证明的等式可转化成:·+·=,而对该等式我们采用向量方法不难得证:证明:在Rt△AEC中||=||cos∠BAC在Rt△AFC中||=||cos∠DAC∴||·||=||·||·cos∠BAC=·||·||=||·||cos∠DAC=·∴||·||+||·||=·+·=(+)·又∵在□ABCD中,+=∴原等式左边=(+)·=·=||2=右边例3在△ABC中,AD是BC边上的中线,采用向量法求证:|AD|2= (|AB|2+|AC|2-|BC|2)分析:利用|a|2=a·a及=+,=+,通过计算证明证明:依题意及三角形法则,可得:=+=-=+=+则||2=(-)(-)=||2+||2-·||2=(+)(+)=||2+||2+·所以||2+||2=2||2+||2移项得:||2= (||2+||2-||2)例4若(+)⊥(2-),( -2)⊥(2+),试求,的夹角的余弦值.分析:欲求cosθ的值,根据cosθ=,只须计算即可解:由(+)⊥(2-),( -2)⊥(2+)①×3+②得:2=2∴||2=||2③由①得:·=2-22=||2-2×||2=-||2④由③、④可得:cosθ= ==-∴,的夹角的余弦值为-.【典型热点考题】例1设、、是任意的非零平面向量,且它们相互不共线,下列命题①(·)·-(·)·)=;②||-||<|-|;③(·)·-(·)·不与垂直;④(3+2)·(3-2)=9||2-4||2.其中正确的有( )A.①②B.②③C.③④D.②④解:选D.②正确,因、不共线,在||-||≤|-|中不能取等号;④正确是明显的,①错误,因向量的数量积不满足结合律;③错误,因[(·)·-(·)·]·=(·)·(·)-(·)·(·)=0,则(·)·-(·)·与垂直.例2已知+=2-8,-=-8+16,其中,是x轴、y轴方向的单位向量,那么·= .=-3+4, =5-12∴·=(-3+4j)·(5-12)=-152+56·-482∵⊥,||=||=1,∴·=0∴·=-15||2-48||2=-63解法2:· =[(+)2-(-)2]=[4(-4)2-64(-2)2]=2-8·+16j2-16(2-4·+42) =-152+56·-482=-63解法3:在解法1中求得=-3+4,即向量的坐标是(-3,4),同理=(5,-12).∴·=-3×5+4×(-12)=63例3设、是平面直角坐标系中x轴、y轴方向上的单位向量,且=(m+1) -3,=+(m-1) ,如果(+)⊥(-),则m= .解法1:∵(+)⊥(-)∴(+)·(-)=0,即2-2=0∴[(m+1) -3]2-[+(m-1) ]2=0∴[(m+1) -3]||2-[6(m+1)+2(m-1)]·+[9-(m-1)2]·2=0∵||=||=1, ·=0,∴(m+1)2-(m-1)2+8=0,则m=-2.解法2:向量的坐标是(m+1,-3),的坐标是(1,m-1).由(+)·(-)=0,得||2=||2.解得m=-2评析:向量的运算性质与实数相近,但又有许多差异.尤其是向量的数量积的运算与实数的乘法运算,两者似是而非,极易混淆,是近年来平面向量在高考中考查的重点,应予以重视.例4在△ABC中,若=, =, =,且·=·=·,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等边三角形 D.A、B、C均不正确解:因为++=++=则有+=-,( +)2=2①同理:2+2+2·=2②①-②,有2-2+2(·-·)=2-2由于·=·所以2=2即是||=||同理||=||所以||=||=||△ABC为正三角形.∴应选C.。

平面向量的运算法则

平面向量的运算法则

平面向量的运算法则平面向量是二维的有方向和大小的量,通常用箭头表示。

在平面上,我们可以进行平面向量的加法、减法、数乘、点乘和叉乘等运算,下面将详细介绍这些运算法则。

1.平面向量的加法:设有平面向量A和B,表示为⃗A和⃗B,其加法运算为:⃗A+⃗B=⃗C,其中C是由A和B的箭头所形成的三角形的对角线的向量。

加法满足以下性质:-交换律:⃗A+⃗B=⃗B+⃗A-结合律:(⃗A+⃗B)+⃗C=⃗A+(⃗B+⃗C)2.平面向量的减法:设有平面向量A和B,表示为⃗A和⃗B,其减法运算为:⃗A-⃗⃗B=⃗C,其中C是由A的箭头指向B的箭头所形成的三角形的对角线的向量。

3.平面向量的数乘:设有平面向量A和实数k,表示为⃗A和k,其数乘运算为:k⃗A=⃗B,其中B的大小等于A的大小乘以k,方向与A相同(若k>0),或相反(若k<0)。

数乘满足以下性质:- 结合律:k(l⃗A) = (kl)⃗A-分配律:(k+l)⃗A=k⃗A+l⃗A4.平面向量的点乘(数量积):设有平面向量A和B,表示为⃗A和⃗B,其点乘运算为:⃗A · ⃗B = ABcosθ,其中A和B的夹角θ的余弦值等于点乘结果与两个向量大小的乘积的商。

点乘满足以下性质:-交换律:⃗A·⃗B=⃗B·⃗A-结合律:(⃗A+⃗B)·⃗C=⃗A·⃗C+⃗B·⃗C-数乘结合律:(k⃗A)·⃗B=k(⃗A·⃗B)特殊情况下:-若⃗A与⃗B垂直,即⃗A·⃗B=0,则称⃗A与⃗B是正交的或垂直的。

-若⃗A和⃗B非零,且⃗A·⃗B>0,则夹角θ为锐角。

-若⃗A和⃗B非零,且⃗A·⃗B=0,则夹角θ为直角。

-若⃗A和⃗B非零,且⃗A·⃗B<0,则夹角θ为钝角。

5.平面向量的叉乘(向量积):设有平面向量A和B,表示为⃗A和⃗B,其叉乘运算为⃗A × ⃗B = nABsinθ⃗n,其中n为垂直于A和B所在平面的单位向量,θ为A和B 的夹角。

高中数学基础之平面向量的数量积及应用

高中数学基础之平面向量的数量积及应用

高中数学基础之平面向量的数量积及应用平面向量的数量积定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为0.平面向量数量积的几何意义:设a ,b 是两个非零向量,AB→=a ,CD →=b ,它们的夹角是θ,e 是与b 方向相同的单位向量,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影,A 1B 1→叫做向量a 在向量b 上的投影向量.记为|a |cos θ e . 一、平面向量数量积的运算例1 已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则BC→·AF →的值为( ) A .-58 B .18 C .14 D .118答案 B解析 如图,由条件可知BC→=AC →-AB →,AF →=AD →+DF →=12AB →+32DE →=12AB →+34AC →,所以BC →·AF →=(AC →-AB →)·⎝ ⎛⎭⎪⎫12AB →+34AC →=34AC →2-14AB →·AC →-12AB →2.因为△ABC 是边长为1的等边三角形,所以|AC→|=|AB →|=1,∠BAC =60°,所以BC →·AF →=34-18-12=18.例2 在梯形ABCD 中,AB ∥CD ,CD =2,∠BAD =π4,若AB →·AC →=2AB →·AD →,则AD →·AC →=________.答案 12解析 如图,建立平面直角坐标系xAy .依题意,可设点D (m ,m ),C (m +2,m ),B (n,0),其中m >0,n >0,则由AB→·AC →=2AB →·AD →,得(n,0)·(m +2,m )=2(n,0)·(m ,m ),所以n (m +2)=2nm ,化简得m =2.故AD→·AC →=(m ,m )·(m +2,m )=2m 2+2m =12.例3 在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE→=23BC →,DF →=16DC →,则AE →·AF →的值为________.答案 2918解析 在等腰梯形ABCD 中,AB ∥DC ,AB =2,BC =1,∠ABC =60°,∴CD =1,AE →=AB →+BE →=AB →+23BC →,AF →=AD →+DF →=AD →+16DC →,∴AE →·AF →=⎝ ⎛⎭⎪⎫AB →+23BC →·⎝ ⎛⎭⎪⎫AD →+16DC →=AB →·AD→+AB →·16DC →+23BC →·AD →+23BC →·16DC →=2×1×cos60°+2×16+23×12×cos60°+23×16×12×cos120°=2918.方法:解决涉及几何图形的向量的数量积运算常用两种方法:一是定义法,二是坐标法.定义法可先利用向量的加、减运算或数量积的运算律化简后再运算,但一定要注意向量的夹角与已知平面几何图形中的角的关系是相等还是互补;坐标法要建立合适的坐标系.(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos 〈a ,b 〉.(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.二、平面向量数量积的应用.例4 已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1B .12C .34D .32答案 D解析 ∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R ),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32.故选D.例5 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.答案223解析 因为a 2=(3e 1-2e 2)2=9-2×3×2×12×cos α+4=9,所以|a |=3,因为b 2=(3e 1-e 2)2=9-2×3×1×12×cos α+1=8,所以|b |=22,又a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8,所以cos β=a ·b |a ||b |=83×22=223.例6 若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3解析 ∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,∴4k -6-6<0,∴k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.例7 已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案 712解析 因为AP →⊥BC →,所以AP →·BC →=0.又AP →=λAB →+AC →,BC →=AC →-AB →,所以(λAB→+AC →)·(AC →-AB→)=0,即(λ-1)AC →·AB →-λAB →2+AC →2=0,所以(λ-1)|AC →||AB →|·cos120°-9λ+4=0,即(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12-9λ+4=0,解得λ=712.例8 已知平面向量a ,b 的夹角为π6,且|a |=3,|b |=2,在△ABC 中,AB →=2a +2b ,AC →=2a -6b ,D 为BC 的中点,则|AD→|等于( )A .2B .4C .6D .8答案 A解析 因为AD →=12(AB →+AC →)=12(2a +2b +2a -6b )=2a -2b ,所以|AD →|2=4(a -b )2=4(a 2-2a ·b +b 2)=4×⎝⎛⎭⎪⎫3-2×3×2×cos π6+4=4,则|AD →|=2.故选A. 例9 已知向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,若OA →与OB →的夹角为60°,且OC →⊥AB→,则实数m n的值为( ) A.16 B .14 C .6 D .4答案 A解析 因为向量|OA →|=3,|OB →|=2,OC →=mOA →+nOB →,OA →与OB →的夹角为60°,所以OA →·OB →=3×2×cos60°=3,所以AB→·OC →=(OB →-OA →)·(mOA →+nOB →)=(m -n )OA →·OB →-m |OA →|2+n |OB →|2=3(m -n )-9m +4n =-6m +n =0,所以m n =16.故选A.例10 已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB→|的最小值为________.答案 5解析 建立平面直角坐标系如图所示,则A (2,0),设P (0,y ),C (0,b ),则B (1,b ),则P A →+3PB →=(2,-y )+3(1,b -y )=(5,3b -4y ).所以|P A →+3PB →|=25+(3b -4y )2(0≤y ≤b ).当y =34b 时,|P A →+3PB →|min=5.例11 设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b 等于( ) A .1 B .2 C .3 D .5答案 A解析 a ·b =14[(a +b )2-(a -b )2]=14×(10-6)=1.故选A.例12 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C .2D .22 答案 C解析 设OA→⊥OB →,且OA →=a ,OB →=b ,OC →=c ,D 为线段AB 的中点,因为|a |=|b |=1,所以AB =2,AD =22,(a -c )·(b -c )=CA →·CB →=|CD →|2-|DA →|2=|CD →|2-12=0,所以|CD→|=22,上式表明,DC→是有固定起点,固定模长的动向量,点C 的轨迹是以22为半径的圆,因此|c |的最大值就是该轨迹圆的直径 2.故选C.例13 如图所示,正方形ABCD 的边长为1,A ,D 分别在x 轴、y 轴的正半轴(含原点)上滑动,则OC→·OB →的最大值是________.答案 2解析 如图,取BC 的中点M ,AD 的中点N ,连接MN ,ON ,则OC→·OB →=OM →2-14.因为OM ≤ON +NM =12AD +AB =32,当且仅当O ,N ,M 三点共线时取等号,所以OC →·OB →的最大值为2.极化恒等式(1)极化恒等式:设a ,b 为两个平面向量,则a ·b =14[(a +b )2-(a -b )2].极化恒等式表示平面向量的数量积运算可以转化为平面向量线性运算的模,如果将平面向量换成实数,那么上述公式也叫“广义平方差”公式.(2) 极化恒等式的几何意义:平面向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14,即a ·b =14(|AC →|2-|BD →|2).(3) 极化恒等式的三角形模式:在△ABC 中,若M 是BC 的中点,则AB→·AC →=AM →2-14BC →2.可以利用极化恒等式来求数量积、求最值、求模长.平面向量有“数”与“形”双重身份,它沟通了代数与几何的关系,所以平面向量的应用非常广泛,主要体现在平面向量与平面几何、函数、不等式、三角函数、解析几何等方面,解决此类问题的关键是将其转化为向量的数量积、模、夹角等问题,进而利用向量方法求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规定:零向量与任意向量的数量积为0,即 a 0 0. (1)两向量的数量积是一个数量,而不是向量,符号由 夹角决定 (2)一种新的运算法则,以前所学的运算律、性质不适合. (3) a ·b不能写成a×b ,a×b 表示向量的另一种运算.
5.6 平面向量的数积及运算律
例题讲解
例1.已知向量a与b的夹角为 ,|a |=2,|b |=3,,求a · b.
平面向量的数量积及运算律

1.a ·b= b ·a 交换律 2. (λ· a) b= a ·(λ b)= λ(a ·b)= λ a ·b 3. (a+b) ·c= a ·c+ b ·c 分配律
思考: 结合律成立吗:
(a ·b) ·c=a ·(b ·c) ?
物理上力所做的功实际上是将力正交分解,只有在位移方
B
则 AOB
(0 180 )
b

O
叫做向量
和 b的夹角. a
b
a
a
A
注意:在两向量的夹角 定义中,两向量必须是 同起点的 B
a
O
a
O A B b 180 A
b

b B
O
a

0
90
A
a 与 b 同向
a 与 b 反向
a 与 b 垂直,
记作
ab
例1、如图,等边三角形中,求
一个物体在力F 的作用下产生的位移 s,且F与s的夹角为θ ,那么力F 所做的功应 当怎样计算?
F θ
s
W | F || s |cos
是F 与s 的夹角,而功是数量. 其中力F 和位移s 是向量,
数量
F s cos 叫做力F 与位移s的数量积
向量的夹角 两个非零向量
a 和 b ,作 OA a, OB b,
2 2 7.对任意向量 a 有 a | a | 8. 0 a 0a ×
√ × × × × √
6.若a · b = a · c ,则b≠c,当且仅当a= 0 时成立. ×
例2、如图,等边三角形中,求 (1)AB与AC的数量积; (2)AB与BC的数量积; (3) 的数量积.
AC与BC
C
A
B
θ为钝角时, | b | cosθ<0
θ为直角时, | b | cosθ=0
平面向量的数量积及运算律
b =|a | |b |cosθ 讨论总结性质: a ·
(0 180 )
(1)e · a=a · e=| a | cos
(2)a⊥b a · b=0 (判断两向量垂直的依据) (3)当a 与b 同向时,a · b =| a | · | b |,当a 与b 反向 时, a · b =—| a | · |b| .
向上的力做功.
作OA a, OB b ,过点B作 BB1 垂直于直线OA,垂足为 B1,则 OB1 | b | cosθ | b | cosθ叫向量b 在a 方向上的投影. B B B
F θ
s
b
b
b

O a

B1
A
B1
O
a A
O( B1 ) a
A
θ为锐角时, | b | cosθ>0
2 a a | a | 或 | a | a a 特别地
ab (4)cos | a || b |
(5)a · b ≤| a | · |b|
运算律
2 a a | a | 或 | a | a a 特别地
ab (4)cos | a || b |
(5)a · b ≤| a | · |b|
练习:
1.若a =0,则对任一向量b ,有a · b=0. 2.若a ≠0,则对任一非零向量b ,有a ·b≠0. 3.若a ≠0,a · b =0,则b=0 4.若a · b=0,则a · b中至少有一个为0. 5.若a≠0,a ·b= b ·c,则a=c
'
C
(1)AB与AC的夹角; (2)AB与BC的夹角。 C
120
A

通过平移 变成共起点!
60

B
5.6 平面向量的数量积及运算律
平面向量的数量积的定义 已知两个非零向量a 和b ,它们的夹角为 ,我们把数量 | a || b | cos 叫做a 与b 的数量积(或内积),记作a ·b ,即
a b | a || b | cos
学与教的目标
1.掌握平面向量的数量积及其几何意义 2.掌握平面向量数量积的重要性质及运算律 3.了解用平面向量的数量积可以处理有关长度, 角度和垂直的问题 4.了解向量垂直的条件
重点和难点 教学重点:平面向量数量积的定义 教学难点:平面数量积的定义及运算律的理解和 平面向量数量积的运用和推广。
问题
(1) 1350
(2)a ∥b
3a b
a· b =|a | |b |cosθ
平面向量的数量积
讨论总结性质:
(1)e · a=a · e=| a | cos
(2)a⊥b a · b=0 (判断两向量垂直的依据) (3)当a 与b 同向时,a · b =| a | · | b |,当a 与b 反向 时, a · b =-| a | · |b| .
相关文档
最新文档