心理学概论第三章感知觉

合集下载

心理学课件:3 第三章 感知觉

心理学课件:3 第三章 感知觉

基本的听觉现象
• 听觉的适应与疲劳 听觉适应所需时间很短,恢复也很快。 听觉适应有选择性 如果声音较长时间(如数小时)连续作用,引起听觉感受性的显著 降低,便称作听觉疲劳。 只是对小部分频率的声音丧失听觉,叫做音隙。若对较大一部分 声音丧失听觉叫做音岛,再严重就会完全失聪。
基本的听觉现象
·声音的混合与掩蔽 两个声音强度相差不大,频率也很接近,则会昕到以两个声
大 小 恒 常
形状恒常性
颜色恒常性
2.几种主要的知觉类型
深度知觉 时间知觉 运动知觉
真动知觉 似动知觉
动景运动 自主运动 诱动知觉
2.几种主要的知觉类型 深度知觉
深度知觉
运用三维方式观察世界和感知世界的能力,判 断物体远近距离的知觉。
视崖实验:
深度知觉:出生六个月左右(甚至更早些) 的婴儿,尽管母亲向他(她)招手呼唤,诱 导其爬向母亲,但均被拒绝。这说明他们已
视 白——黑(白后像) 觉 负 红——绿(红后像) 后 像 黄——蓝(黄后像)
美学家的建议: ·皮肤偏黑的人:适合咖啡、淡褐色,不宜采
用娇嫩的颜色; ·皮肤偏黄的人:搭配酒红、淡紫等颜色会令
面容更白暂; ·皮肤偏红的人:更适合暖色调,不宜选择绿
色。
感觉对比
● 感觉对比是指同一感受器接受不同的刺激而使感 受性发生变化的现象。
认知觉的对象是什么。
二、感觉的一般规律
● 1.感觉的分类 ● 2.感受性与感觉阈限 ● 3.常见的感觉现象
1.感觉的分类
远距离 感觉
视觉、听觉
近距离 感觉
味觉、嗅觉和皮肤 觉(包括触觉、温 度觉和痛觉)
运动感觉、平衡 觉和内脏感觉
内部 感觉
视觉

心理学-第三章感知觉

心理学-第三章感知觉

心理学-第三章感知觉第三章感知觉一、感觉的含义(一)感觉的概念1、感觉是个体对直接作用于感觉器官的刺激的觉察。

感觉是一种直接反映,它要求客观事物直接作用于人的感官。

感觉所反映的是客观事物的个别属性,而不是事物整体和全貌。

感觉是客观世界的主观映象。

2、感觉的作用感觉是认识的开端;感觉是一切心理活动的基础;有助于生存。

如:感觉剥夺实验。

3、感觉的测量感受性是对刺激物的感觉能力,也就是人对刺激的感觉灵敏程度。

每个人对刺激物的感觉能力(即感受性)是不同的。

感觉能力是通过感觉阈限来测量的。

感觉能力和感觉阈限成反比,感觉阈限越大,感觉能力越差。

(二)感觉的种类感觉可以分为外部感觉和内部感觉两大类。

外部感觉是个体对外部刺激的觉察,主要包括视觉、听觉、嗅觉、味觉、皮肤觉。

内部感觉是个体对内部刺激的觉察,主要包括机体觉、平衡觉和运动觉。

其中视觉和听觉是最重要的感觉。

1、视觉视觉是个体对光波刺激的觉察。

是个体辨别外界事物的明暗、颜色等特性的感觉。

视觉是人类最重要的感觉。

研究证明,在人类认识世界的过程中有80%左右的信息是靠视觉获取的。

(1)视觉的适宜刺激时波称为380~780毫微米的光波(电磁波)。

(2)颜色视觉①颜色的基本特性颜色是光波作用于人眼所引起的视觉经验。

颜色具有色调、明度、饱和度三种特性。

这些特性是由光波的物理特性决定的。

②色觉异常:色觉异常主要包括色弱和色盲两类。

2、听觉听觉是个体对声音刺激的觉察。

(1)听觉是适宜刺激是频率为16~20000HZ的声波,人耳最敏感的声波频率是1000~4000HZ。

(2)听觉的基本特性人类的听觉具有音调、音响、音高三种特性。

3、嗅觉嗅觉是由有气味的气体物质引起的。

4、味觉味觉的适宜刺激是溶于水的化学物质。

5、皮肤觉刺激作用于皮肤引起各种各样的感觉,叫皮肤觉(肤觉)。

皮肤感觉可以分为触觉、冷觉、温觉、痛觉等。

6、动觉动觉也叫运动感觉,它反应身体各部分的位置、运动以及肌肉的紧张程度,是内部感觉的一种重要形态。

2010教师心理学第三章感知觉

2010教师心理学第三章感知觉

(二)知觉的特性

2、知觉的选择性

人在知觉事物时,总是 从中选择出一些事物作 为知觉的对象,对它们 感知得特别清晰,而其 他事物则作为知觉的背 景,只能模糊地知觉到。 这种在知觉过程中,把 知觉对象从背景中优先 区分出来的特征,就叫 知觉的选择性。

在知觉的选择中,对 象和背景的关系不是 固定不变的。


人们对自己理解和熟悉的东西,容易当成一个整体 来感知。相反,在不理解的情况下,知觉的整体性 常受到破坏。在观看某些不完整的图形时,正是理 解帮助人们把缺少的部分补充起来。 例如,熟悉英语词汇知识的人,在读到字母“WOR…” 后,会预期出现D、K、M、N等字母。

理解还能产生知觉期待和预测。

(二)知觉的特性


韦伯定律:能够被有机体感觉到的刺激强度变化 与原刺激强度之比是一个常数。


K=⊿I/I
其中K为韦伯常数, I为原刺激强度,⊿I为可辨别的差值。 韦伯定律只有在中等刺激强度下才适用。
资料窗:中等感觉强度下不同感觉的韦伯常数
感觉名称 视觉(对亮度差异的辨别) 动觉(对重量差异的辨别)
韦伯常数 1/60 1/50
(二)知觉的特性

1、知觉的整体性 人们把由不同部分组 成的知觉对象知觉成 一个统一的整体的,常 常表现为知觉的实 际经验超越了部分 刺激相加的总和。
知觉的整体性提高了人们知觉事物的能力。 例如,用速示器快速呈现一熟悉的汉字或 组成这个汉字的个别笔划,那么辨认整体 汉字的时间几乎和辨认个别笔划的时间相 同。 另方面,由于知觉的整体性,人们 有时会忽略部分或细节的特征。这就是由 于整体知觉抑制了个别成分的知觉。
第三章 感知觉

大学心理学课件第三章感知觉

大学心理学课件第三章感知觉
认知发展
感知觉是认知发展的重要基础,通过感知觉的不 断发展,个体的认知能力和智力水平也会得到提 升。
心理健康
感知觉的正常发展对于个体的心理健康也有重要 影响,一些感知觉障碍或异常可能引发心理问题 或情绪障碍。
感知觉的生理机制
感觉器官
人类的感觉器官包括视觉、听觉、 嗅觉、味觉和触觉等,这些器官 负责接收外界信息。
要影响。
04
04 感知觉与心理活动
感知觉与记忆
感知觉在记忆过程中的作用
感知觉是记忆的基础,通过感知觉获取的信息被编码并存储在记 忆中,以便在需要时提取。
感知觉对记忆的影响
感知觉的敏锐度和准确性直接影响记忆的质量和持久性。感知觉信 息越丰富、准确,记忆就越深刻、持久。
记忆对感知觉的影响
记忆中的信息也会影响感知觉,有时我们会根据过去的经验来解释 和感知当前的信息。
时间知觉对于人类的生活、工作和学习具有重要的意义, 能够帮助人们更好地安排时间和管理任务。
运动知觉
01 运动知觉是人对物体运动状态的感知,包 括运动方向、速度和加速度等。
02
运动知觉可以通过视觉、听觉和触觉等多 种感觉通道来获取信息。
03
运动知觉对于人类适应环境、进行体育运 动和操作技能等方面具有重要意义。
04
运动知觉的准确性对于人类的工作和运动 技能的发展也有重要影响。
深度知觉
01
深度知觉是人对物体远近、前后 关系的感知。
02
深度知觉主要依赖于双眼视觉线 索,如双眼视差、透视线索等。
深度知觉对于人类适应环境、进 行日常生活和生产活动具有重要 意义。
03
深度知觉的准确性对于驾驶、操 作机器和体育运动等方面也有重
人类主要通过视觉、听觉和 触觉等感觉通道来获取物体 的空间信息。

心理学(教师证考试教程)第三章 感觉与知觉

心理学(教师证考试教程)第三章 感觉与知觉

第五节 社会知觉
一、社会知觉的一般概念
社会知觉: 社会知觉:个人在社会环境中对他人(某个个体或某个群体)的心理
状态、行为动机和意向(社会特征和社会现象)做出推测与判断的过程。 社会知觉包括三个方面的内容: 社会知觉包括三个方面的内容: 1、对人的知觉(包括对他人和自我的知觉); 2、对社会事件因果关系的知觉; 3、 对人际关系的知觉。
第三章
感觉与知觉
第三章主要内容
感觉概述 视觉 听觉 知觉——感觉的整合 社会知觉
第一节 感觉概述 感觉
感觉是人们从外部世界,同时也可以从身体内部获取信息 的第一步。感觉是人们的感官对各种不同刺激能量的觉察,并 将它们转换成神经冲动传往大脑而产生的。
感觉的分类
远距离感觉(视觉、听觉); 近距离柑橘(味觉、嗅觉和皮肤觉); 内部感觉(饥、渴、胃痛)。
感觉的生理机制
第一步:收集信息。 辅助组织,例如外耳的耳廓和眼睛的水晶体。 第二部:转换。把进入的能量转换为神经冲动。 感受器。 第三部:将感受器传出的神经冲动经过传入神经的传导,将信息传到大 脑皮层,并在复杂的神经网络的传递过程中,对传入的信息 进行有选择的加工。
感受性和感觉阈限
感受性、 感受性、感觉阈限
第二节 视觉刺激
视觉
光是一种被称作电磁辐射的能量。但作为人类视觉刺激的只是电磁辐 射的一部分,称可见光,其波长在将近400-750毫微米之间。
基本视觉现象
1、视觉适应:刺激物持续作用下感受性发生的变化。明适应和暗适应。 2、色觉:在一定强度下,一种波长的光引起一种特定的颜色感觉。 色调、饱和度和亮度。
频率匹配学说
不同频率的声音刺激基地膜,引起不同频率的神经细胞冲动并传至大脑。
知觉—— ——感觉的整合 第四节 知觉——感觉的整合

认知心理学第三章 感知觉

认知心理学第三章 感知觉

支持模板匹配理论的实验证据:
• • • • 菲利普斯(Phillis,1974)的实验 Warren(1974)的实验 Person的实验 模板匹配理论比较容易在计算机上加以 实现
模板匹配理论没有明确的问题:
• 对刺激的加工是从局部特征开始的还是 从整体特征开始的? • 模板的编码形式是怎样的? • 刺激与记忆中的各种模板的比较是同时 进行的(平行加工),还是一个个相继 进行的(系列加工)?
• • • • Posner(1967)的实验 Franks和Bransford(1971)的实验 Reed(1972)的实验 Solso 和 Carthy(1981)的实验
Reed(1972)的实验
(三)特征分析说或特征匹配理论
• 模式或事物是由若干元素或特征按照一定的关系组 合在一起构成的,因此要识别事物或模式,就可以 分析它们的基本属性或基本特征。 • 模式识别是由一个特征觉察系统提供的信息来建造 一个模式的过程 • 在模式识别过程中,首先要对刺激的特征进行分析, 也就是抽取刺激的有关特征,然后将这些抽取的特 征加以合并,再与长时记忆中的各种刺激的特征进 行比较,一旦获得最佳的匹配,外部刺激就被识别 了(一般的特征分析模型)
第三节 模式识别 一、模式识别概述
• 模式:指由若干元素或成分按一定关系 集合而成的某种刺激结构或刺激的组合 • 模式识别:指人把输入刺激(模式)的 信息与长果记忆中的信息进行匹配,并 辨认出该刺激属于什么范畴的过程 • 对物体、图像、语音、符号或人脸的识 别过程,都属于模式识别
二、模式识别过程
一、字词优势效应
1.什么是字词优势效应 • 识别一个词中的字母的正确率要高于识别一个单独的同一 个字母,这个现象叫做字词优势效应。 • 里彻尔的实验 2.对字词优势效应的不同解释 • 里彻尔认为字词优势效应的出现是由于字词具有意义 • Rumelhart和Spile(1974)用借助上下文而进行推理来 解释字词优势效应 • Meicher(1973)认为字词优势效应是因为对字词和字母的 编码不同 • 还可从整体加工和局部加工来说明字词优势效应

幼儿心理学第三章第一节感知觉的认识第一课时课件

幼儿心理学第三章第一节感知觉的认识第一课时课件
幼儿心理学第三章第一节 感知觉的认识第一课时课 件
• 感知觉概述 • 感知觉的发展阶段 • 感知觉与幼儿教育 • 感知觉在日常生活中的应用 • 总结与展望
01
感知觉概述
感知觉的定义
感知觉
个体通过感觉器官接收外部刺激, 并将其转化为内在的心理体验的 过程。
感觉
个体通过特定感觉器官(如视觉、 听觉、触觉等)接收外部刺激,并 将其转化为神经冲动的过程。
幼儿教育中的感知觉培养
提供多样化的感知刺激
01
在幼儿教育中,教师可以通过提供多样化的感知刺激,如音乐、
绘画、玩具等,激发幼儿的感知兴趣和创造力。
促进知觉整合
02
教师可以通过组织多种感官活动,如听故事、做手工、唱歌等,
促进幼儿知觉整合,提高其认知能力。
培养观察力
03
教师可以通过引导幼儿观察周围环境,培养其观察力,促进其
感知觉有助于提高语言学习的效果,如通过模仿语音和语调来练习发音,通过观察 口型和面部表情来理解词汇的含义。
以上内容仅供参考,具体课件内容需要根据实际的教学需求和目标受众进行设计和 制作。
05
总结与展望
总结
01
感知觉在幼儿心理发展中的重要性
感知觉是幼儿认识世界的基础,通过感知觉,幼儿能够获取外界信息,
理解周围环境,促进认知和语言发展。
02
感知觉与幼儿行为的关系
感知觉的发展状况直接影响幼儿的行为表现。例如,幼儿通过听觉和视
觉来认识事物,如果听觉或视觉受损,则会影响幼儿的认知和语言发展。
03
教学方法的改进
为了更好地促进幼儿感知觉的发展,教师需要采用多种教学方法,如游
戏、观察、实验等,以激发幼儿的兴趣和积极性。

心理学课件:3 第三章 感知觉

心理学课件:3 第三章 感知觉
音频率的差数为频率的声音起伏现象,叫做拍音。 如果两个声音强度相差较大,则只能感受到其中的一个较
强的声音,这种现象叫做声音的掩蔽。 声音的掩蔽受频率和强度的影响。
2.感受性与感觉阈限
咖啡中加多少糖才能感觉到甜?
感受性是指人对适宜刺激的感觉能力。 感觉阈限是恰好能引起某种感觉,并持续一定 时间的刺激量。
音强
音高
音色
音强指声音的大小,由 声波的物理特性振幅, 即振动的大小所决定。 音强的单位称分贝,缩 写为db。0分贝指正常 听觉下可觉察的最小的 声音大小。
音高指声音的高低, 由声波的频率,即每 秒振动次数决定,常 人昕觉的音高范围很 广,可以由最低20赫 兹到20000赫兹。
混合音的复合程序 与组成形式构成声 音的质量特征,称 音色。音色是人能 够区分发自不同声 源的同一个音高的 主要依据。
志愿者每天躺在床 上睡觉,并有每天20美 元的酬劳。他们可以自 己决定何时退出实验。
空气调节装置
扬声器
记录生理 数据的导线
护目镜 耳机 麦克风 手铐
感觉剥夺实验
实验结果 实验过程
大多数被试在实验开始后 24—36小时内要求退出,几
乎没有人坚持72小时以上。
睡觉
厌倦、不安
制造刺激
唱歌 吹口哨 自言自语
为前提,也是感觉的深入与发展。
知觉并不是感觉的简单相加。
感觉
客观事物 个别属性 感官
形状
颜色

大小
滋味

气味

质地
重量
皮肤
温度
整体属性

肤觉 嗅觉
味觉
视觉
知觉
感觉与知觉的区别:
● 内容不同:感觉是对事物个别属性的反映;知觉 是对事物整体的反映。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 3 Sensation and Perception第三章感知觉There are four modules in this chapter. Module 8 tells us the concept of sense; module 9 introduces vision of human and how do we see the world; module 10 tells us how can we hear and feel the world; at last, we can learn from module 11 that how do we construct our view of the world—perception.MODULE 8 SENSING THE WORLD AROUND USIn all sensory processes, some form of energy stimulates a receptor cell in one of the sense organs. The receptor cell converts that energy into a neural signal, which is further coded as it travels along sensory nerves. By the time it reaches the brain, the message is quite precise.Sensation is the experience of sensory stimulation. Perception is the process of creating meaningful patterns from raw sensory information. Stimuli are the energy that produces a response in a sense organ.Sensory ThresholdsThe energy reaching a receptor must be sufficiently intense to produce a noticeable effect. The least amount of energy needed to generate any sensation at all in a person 50 percent of the time is called the absolute threshold. The difference threshold or the just noticeable difference (jnd) is the smallest change in stimulation that is detectable 50 percent of the time. Generally speaking, the stronger the stimulation, the bigger the change must be to be sensed. According to Weber's law, the jnd for a given sense is a constant fraction of the original stimulus. In most cases, our senses adjust to the level of stimulation they are experiencing, a process known as adaptation.MODULE 9 VISIONUnlike most animals, humans rely most heavily on their sense of vision to perceive the world.The Visual SystemIn the process leading to vision, light enters the eye through the cornea, then passes through the pupil(in the center of the iris) and the lens, which focuses it onto the retina. The lens changes its shape to allow light to be focused sharply on the retina. Directly behind the lens and on the retina is a depressed spot called the fovea, which lies at the center of the visual field. The retina of each eye contains the two kinds of receptor cells responsible for vision: rods and cones. Rods, chiefly responsible fornight vision, respond to varying degrees of light and dark but not to color. Cones respond to light and dark as well as to color or different wavelengths of light, and operate mainly in daytime. Only cones are present in the fovea.Rods and cones connect to nerve cells, called bipolar cells, leading to the brain. In the fovea, a single cone generally connects with one bipolar cell. Rods, on the other hand, share bipolar cells. The one-to-one connection between cones and bipolar cells in the fovea allows for maximum visual acuity, the ability to distinguish fine details. Vision is thus sharpest whenever the image of an object falls directly on the fovea; outside the fovea, acuity drops dramatically. The sensitivity of rods and cones changes according to the amount of available light. Light adaptation helps our eyes adjust to bright light; dark adaptation allows us to see, at least partially, in conditions of darkness. An afterimage can appear until the retina adapts after a visual stimulus has been removed.Neural messages originating in the retina must eventually reach the brain for a visual sensation to occur. The bipolar cells connect to ganglion cells, whose axons converge to form the optic nerve that carries messages to the brain. The place on the retina where the axons of the ganglion cells join to leave the eye is the blind spot.At the base of the brain is the optic chiasm, where some of the optic nerve fibers cross to the other side of the brain.Color VisionThe human vision system allows us to see an extensive range of colors. Hue, saturation, and brightness are three separate aspects of our experience of color. Hue refers to colors (red, green, blue, etc.), saturation indicates the vividness or richness of the hues, and brightness signals the intensity of the hues. Humans can distinguish only about 150 hues but, through gradations of saturation and brightness, we can perceive about 300,000 colors. Theories of color vision attempt to explain how the cones, which number only about 150,000 in the fovea, are able to distinguish some 300,000 different colors. One clue lies in color mixing: Additive color mixing is the process of mixing only a few lights of different wavelengths to create many new colors; subtractive color mixing refers to mixing a few pigments to come up with a whole palette of new colors.Based on the principles of additive color mixing, the trichromatic theory of color vision holds that the eye contains three kinds of color receptors that are most responsive to either red, green, or blue light. By combining signals from these three basic receptors, the brain can detect any color and even subtle differences among nearly identical colors. This theory accounts for some kinds of colorblindness. People referred to as dichromats have a deficiency in either red-green or blue-yellow vision; monochromats see no color at all. People with normal color vision are referred to as trichromats. By contrast, the opponent-process theory maintains that receptors are specialized to respond to either member of the three basic color pairs: red-green, yellow-blue, and black-white (dark and light).Drawing on elements of the two theories, current knowledge holds that while there are three kinds of receptors for colors in the retina (for violet-blue, green, and yellow light), the messages they transmit are coded by other neurons in the visual system into opponent-process form.MODULE 10 HEARING AND OTHER SENCESSounds we hear are psychological experiences created by the brain in response to stimulation.The physical stimuli for the sense of hearing are sound waves, which produce vibration in the eardrum. Frequency is the number of cycles per second in a wave, expressed in a unit called hertz. Frequency is the primary determinant of pitch—how high or low the tone seems to be. Amplitude is the magnitude of a wave; it largely determines the loudness of a sound. Loudness is measured in decibels. The complex pattern of overtones determines the timbre of a sound.The EarHearing begins when sound waves strike the eardrum and cause it to vibrate. This vibration, in turn, makes three bones in the middle ear—the hammer, the anvil, and the stirrup—vibrate in sequence. These vibrations are magnified in their passage through the middle ear deep into the inner ear. The oval window, which is attached to the stirrup, and the round window are membranes between the middle and inner ear. In the inner ear, the vibrations cause the fluid inside the cochlea to vibrate, pushing the basilar membrane and the organ of Corti up and down.Inside the organ of Corti are tiny hair cells that act as sensory receptors for hearing. Stimulation of these receptors produces auditory signals that are transmitted to the brain through the auditory nerve. The brain pools the information from thousands of these cells to create the perception of sounds.Theories of HearingThere are two basic views that explain how different sound-wave patterns are coded into neural messages. Place theory states that the brain determines pitch by noting the place on the basilar membrane where the message is strongest. Frequency theory holds that the frequency of vibrations of the basilar membrane as a whole is translated into an equivalent frequency of nerve impulses. Neurons, however, cannot fire as rapidly as the frequency of the highest-pitched sound. This suggests a volley principle, whereby nerve cells fire in sequence to send a rapid series of impulses to the brain.THE OTHER SENSESSmellThe sense of smell is activated by substances carried by airborne molecules intothe nasal cavities, where the substances activate highly specialized receptors for smell, located in the olfactory epithelium. From there messages are carried directly to the olfactory bulb in the brain, where they are sent to the brain's temporal lobe, resulting in our awareness of smells. Pheromones are sensed by receptors in the vomeronasal organ (VNO), which sends messages to a specialized olfactory bulb.TasteThe receptor cells for the sense of taste are housed in the taste buds on the tongue, which, in turn, are found in the papillae, the small bumps on the surface of the tongue. Each taste bud contains a cluster of taste receptors, or taste cells, that cause their adjacent neurons to fire when they become activated by the chemical substances in food, sending a nerve impulse to the brain.We experience only four primary taste qualities: sweet, sour, salty, and bitter. All other tastes derive from combinations of these four. Flavor is a complex blend of taste and smell.Sensations of MotionThe vestibular organs are also responsible for motion sickness, which triggers strong reactions in some people. Motion sickness may be caused by discrepancies between visual information and vestibular sensation.The Skin SensesThe skin is the largest sense organ, with numerous nerve receptors distributed in varying concentrations throughout its surface. The nerve fibers from these receptors travel to the brain. Skin receptors give rise to what are known as the cutaneous sensations of pressure, temperature, and pain. Research has not established a simple connection between the various types of receptors and these separate sensations. Because the brain uses complex information about the patterns of activity on many different receptors to detect and discriminate among skin sensations, a direct connection between receptors and sensations has so far eluded researchers.PainPeople have varying degrees of sensitivity to pain. The most commonly accepted explanation of pain is the gate control theory, which holds that a "neurological gate" in the spinal cord controls the transmission of pain impulses to the brain. Studies of pain relief suggest the existence of the placebo effect, which occurs when a pain sufferer feels relief from pain when given a chemically neutral pill but told that it is an effective pain reliever.MODULE 11 PERCEPTIONThere are several ways in which the brain interprets the complex flow of information from the various senses and creates perceptual experiences that go far beyond what issensed directly.Perceptual OrganizationOne important way our perceptual processes work is through distinguishing figures from the ground against which they appear. The figure-ground distinction, first noted by Gestalt psychologists, pertains to all our senses, not just vision. For instance, a violin solo stands out against the "ground" of a symphony orchestra. When we use sensory information to create perceptions, we fill in the missing information, group various objects together, see whole objects, and hear meaningful sounds. Visual information in the brain is coded by cells called feature detectors, which respond to particular elements of the visual field.Perceptual ConstanciesPerceptual constancy is our tendency to perceive objects as unchanging in the face of changes in sensory stimulation. Once we have formed a stable perception of an object, we can recognize it from almost any angle. Thus, size, shape, brightness, and color constancies help us understand and relate to the world better. Memory and experience play an important part in perceptual constancy, compensating for confusing stimuli.Perceiving Distance and DepthWe can perceive distance and depth through monocular cues, from one eye, or binocular cues, which depend on the interaction of both eyes.Superposition is a monocular distance cue in which one object, by partly blocking a second, appears closer. Linear perspective is another monocular cue to distance and depth based on the fact that two parallel lines seem to come together at the horizon. Other monocular cues include aerial perspective, elevation, texture gradient, shadowing, and motion parallax.With binocular cues, the stereoscopic vision derived from combining the two retinal images makes perceptions of depth and distance clearer. Retinal disparity accounts for the different images each eye receives. Convergence is another binocular cue. Humans, apes, and some predatory animals with the ability to use binocular cues have a distinct advantage over animals whose vision is limited to monocular cues.Perceiving MovementPerception of movement is a complicated process involving both the visual messages from the retina and messages from the muscles around the eyes as they shift to follow a moving object. At times our perceptual processes trick us into believing that an object is moving when, in fact, it is stationary. Thus, there is a difference between real movement and apparent movement.Autokinetic illusion, the perceived motion created by a single stationary object, stroboscopic motion, resulting from the flashing of a series of still pictures in rapid succession, and the phi phenomenon, which occurs when lights flashed in sequenceare perceived as moving, are all examples of apparent movement.Visual IllusionsVisual illusions occur when we use a variety of sensory cues to create perceptual experiences that do not actually exist. More easily understood are physical illusions, an example of which is the bent appearance of a stick when placed in water. Perceptual illusions depend primarily on our own perceptual processes and occur because the stimulus contains misleading cues.Subliminal PerceptionSubliminal messages are messages that fall below the threshold of conscious perception and are therefore assumed to be perceived subconsciously. Some studies have indicated that, in a controlled laboratory setting, people can be influenced briefly by sensory messages that are outside their conscious awareness. No scientific studies support the claims, however, that subliminal messages in advertising influence consumer choices or that subliminal phrases in self-help tapes significantly change a person's behavior.。

相关文档
最新文档