一元二次函数的最值问题
二次函数问题

二次函数问题1.二次函数的最值问题定义域为R当a>0时有最小值y=2 44ac bac-(2)当a<0时有最大值y=2 44ac bac-实际上一般我们有关二次函数的最值问题并非如此简单。
常有以下几种,即定轴定区间,定轴动区间,动轴动区间;虽然变化多端,但是方法基本相同:解题时先要求出对称轴,再利用单调性,同时注意结合函数图形。
当含有参数时,要按对称轴相对于区间的位置进行讨论。
2.二次函数的根分布问题(1)一元二次方程实根分布的讨论的两种方法:利用函数的图象、性质;利用韦达定理、判别式。
(2)二次方程ax2+bx+c=0的根的情况:1.两根都大于m,则af(m)>0,m<2b a-,∆>=0. 2.一根大于m,另一根小于m,则af(m)<0 3.一根在(a,b),一根在(m,n)内,b<m;则af(a)>0, af(n)>0, af(b)<0, af(m)<04.两根都在(m,n)内,则af(m)>0 ,af(n)>0, m<2b a-<n,∆>=05.在区间(p,q)有且仅有一个根,则f(p)f(q)<0.3.恒成立问题1.(1)f(x)>a (a为常数)对于在区间A内任意的x恒成立等价于f(x)在区间A上的最小值大于a(2) f(x)<a(a为常数)对于在区间A内任意的x恒成立等价于f(x)在区间A上的最大值小于a2.二次函数f(x)=ax2+bx+c(1)在区间[m,n]上有f(x)<0恒成立则等价于f(m)<0,f(n)<0(2)在区间[m,n]上有f(x)>0恒成立则等价于f(x)在区间[m,n]上的最小值大于0.3.一次函数f(x)在区间[m,n]上有f(x)<0(或f(x)>0)恒成立等价于f(m)<0,f(n)<0(或f(m)>0,f(n)>0)二次函数的最值问题(1)y=x2-6x+5 x∈(-2,4](2)已知f(x)= x2-4x-4, x∈[t,t+1], t ∈R,求函数f(x)的最小值h(t)的解析式.(3)求f(x)=x2-2tx+1在区间[0,1]上的最大值g(t).小结:二次函数的最值分为:定轴定区间,定轴动区间,动轴动区间。
二次函数在各种区间上的最值

二次函数在各区间上的最值一、知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。
一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。
分析:将配方,得顶点为、对称轴为当时,它的图象是开口向上的抛物线,数形结合可得在[m,n]上的最值:(1)当时,的最小值是的最大值是中的较大者。
(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是当时,可类比得结论。
二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。
对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。
此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。
1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。
例1.函数在区间[0,3]上的最大值是_________,最小值是_______。
解:函数是定义在区间[0,3]上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。
函数的最大值为,最小值为。
图1练习. 已知,求函数的最值。
解:由已知,可得,即函数是定义在区间上的二次函数。
将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。
显然其顶点横坐标不在区间内,如图2所示。
函数的最小值为,最大值为。
图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。
例2. 如果函数定义在区间上,求的最小值。
解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。
如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。
图1如图2所示,若顶点横坐标在区间上时,有,即。
当时,函数取得最小值。
图2如图3所示,若顶点横坐标在区间右侧时,有,即。
二次函数求最值的六种考法(含答案)

二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。
二次函数的应用最值问题

二次函数的应用最值问题二次函数是一个在数学中广泛应用的函数模型。
在实际问题和生产生活中,二次函数的最值问题也经常出现。
本文将介绍二次函数的最值问题,包括实际问题中的二次函数最值、生产生活中的二次函数最值、利用配方法求二次函数的最值、利用导数求解二次函数的最值、利用作图法求解二次函数的最值、利用公式法求解二次函数的最值和利用对称轴求解二次函数的最值等方面。
一、实际问题中的二次函数最值在实际问题中,二次函数最值通常出现在诸如最大利润、最小成本、最高产量等问题中。
例如,一个工厂生产一种产品,该产品的成本包括固定成本和可变成本。
固定成本是不随产量变化的成本,而可变成本是随产量变化的成本。
因此,总成本函数是一个开口向下的二次函数。
为了使总成本最低,需要找到自变量的取值,使得总成本函数的导数为零,并判断导数是否为零,从而确定最值是否存在。
二、生产生活中的二次函数最值在生产生活中,二次函数最值也经常出现。
例如,一个公司投资一个项目,该项目的收益随投资额变化,且收益函数是一个开口向下的二次函数。
为了使收益最大,需要找到投资额的最优解。
最优解可以通过求解收益函数的导数并令其为零得到。
三、利用配方法求二次函数的最值配方法是求二次函数最值的一种常用方法。
该方法的基本思想是将二次函数转化为一个完全平方项和一个常数项之和的形式,然后利用平方的非负性求出最值。
具体步骤如下:(1)将二次函数配方为一个完全平方项和一个常数项之和的形式;(2)根据平方的非负性,求出这个完全平方项的取值;(3)将这个完全平方项的取值代入配方后的二次函数中,求出最值。
四、利用导数求解二次函数的最值利用导数求解二次函数的最值是一种比较简单的方法。
该方法的基本思想是先求出二次函数的导数,然后令导数为零,解出此时的自变量取值,最后比较所有自变量取值对应的函数值,找出最大(或最小)的一个即可。
五、利用作图法求解二次函数的最值作图法是一种直观地求解二次函数最值的方法。
高中一元二次函数总结

1.二次函数的解析式的三种形式: (1)一般式:f(x)=ax 2+bx+c(a ≠0)。
(2)顶点式(配方式):f(x)=a(x-h)2+k 其中(h,k)是抛物线的顶点坐标。
(3)两点式(因式分解):f(x)=a(x-x 1)(x-x 2),其中x 1,x 2是抛物线与x 轴两交点的坐标。
2.二次函数f(x)=ax 2+bx+c(a ≠0)的图象是一条抛物线,对称轴ab x 2-=,顶点坐标)44,2(2ab ac a b --(1)a>0时,抛物线开口向上,函数在]2,(ab --∞上单调递减,在),2[+∞-ab上单调递增,abx 2-=时,a b ac x f 44)(2min -=;(2)a<0时,抛物线开口向下,函数在]2,(ab--∞上单调递增,在),2[+∞-ab上单调递减,abx 2-=时,a b ac x f 44)(2max -=。
3.二次函数f(x)=ax 2+bx+c(a ≠0)当042>-=∆ac b 时图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0)ax x x x x x M M ∆=-+=-=2122121214)(。
4. 根分布问题: 一般地对于含有字母的一元二次方程ax 2+bx+c=0 的实根分布问题,用图象求解,有如下结论:令f(x)=ax 2+bx+c (a>0) ,(1)x 1<α,x 2<α ,则⎪⎩⎪⎨⎧><-≥∆0)()2/(0ααaf a b ;(2)x 1>α,x 2>α,则⎪⎩⎪⎨⎧>>-≥∆0)()2/(0ααaf a b(3)α<x 1<β,α<x 2<β,则⎪⎪⎩⎪⎪⎨⎧<-<>>≥∆βαβα)2/(0)(0)(0a b f f (4)x 1<α,x 2>β (α<β),则⎪⎩⎪⎨⎧<<≥∆0)(0)(0βαf f(5)若f(x)=0在区间(α,β)内只有一个实根,则有0))(<(βαf f5 最值问题:二次函数f(x)=ax 2+bx+c 在区间[α,β]上的最值一般分为三种情况讨论,即:(1)对称轴-b/(2a)在区间左边,函数在此区间上具有单调性;;(2)对称轴-b/(2a)在区间之内;(3)对称轴在区间右边要注意系数a 的符号对抛物线开口的影响6 二次函数、一元二次方程及一元二次不等式之间的关系:①0∆<⇔f(x)=ax 2+bx+c 的图像与x 轴无交点⇔ax 2+bx+c=0无实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;②0∆=⇔f(x)=ax 2+bx+c 的图像与x 轴相切⇔ax 2+bx+c=0有两个相等的实根⇔ax 2+bx+c>0(<0)的解集为∅或者是R;③0∆>⇔f(x)=ax 2+bx+c 的图像与x 轴有两个不同的交点⇔ax 2+bx+c=0有两个不等的实根⇔ax 2+bx+c>0(<0)的解集为(,)αβ()αβ<或者是(,)(,αβ-∞+∞(二)考点分析考点1.求二次函数的解析式例1.已知二次函数f(x)满足f(2)= -1,f(-1)= -1且f(x)的最大值是8,试确定此二次函数。
一元二次不等式

一元二次不等式一元二次不等式是数学中常见的一种形式,它可以描述一个二次函数与一个常数之间的关系。
本文将探讨一元二次不等式的基本概念、解法以及一些相关的应用。
一、基本概念一元二次不等式是形如 ax^2 + bx + c > 0 (或 < 0 或≥ 0 或≤ 0)的不等式,其中 a、b、c 是实数(a ≠ 0)。
在解一元二次不等式之前,我们需要了解一些基本概念。
1. 判别式对于一元二次不等式 ax^2 + bx + c > 0,判别式Δ = b^2 - 4ac 是一个重要的指标。
当Δ > 0时,方程有两个不等的实数解;当Δ = 0 时,方程有一个实数解;而当Δ < 0 时,方程无实数解。
2. 开区间与闭区间在解一元二次不等式时,我们需要用到开区间和闭区间的概念。
开区间 (a, b) 表示实数 x 的取值范围为 a < x < b;闭区间 [a, b] 表示实数 x 的取值范围为a ≤ x ≤ b。
在计算中,根据具体问题选择合适的区间。
二、解一元二次不等式为了解一元二次不等式,我们分为三种情况进行讨论:开口向上的情形、开口向下的情形和特殊情形。
1. 开口向上的情形考虑不等式 ax^2 + bx + c > 0,其中 a > 0。
为了求解此类不等式,首先我们需要求出二次函数的零点,即求解方程 ax^2 + bx + c = 0。
当方程有实数解时,我们可以得到两个实数根 x1 和 x2。
然后,我们在这两个实数根的左右两侧进行讨论,确定不等式的解集。
2. 开口向下的情形考虑不等式 ax^2 + bx + c < 0,其中 a < 0。
与开口向上的情形类似,我们也需要先求解二次函数的零点,并在零点的左右两侧进行讨论。
3. 特殊情形特殊情况指的是不等式的判别式Δ = 0 或Δ < 0。
当Δ = 0 时,不等式有一个实数解,解集为该实数解所在的点;当Δ < 0 时,不等式无实数解,解集为空集。
一元二次函数定点式-解释说明

一元二次函数定点式-概述说明以及解释1.引言1.1 概述一元二次函数是数学中常见且重要的函数类型之一,其定义为y = ax^2 + bx + c,其中a、b、c 是实数常数且a 不等于零。
一元二次函数的图像呈现出特定的形状,通常为一个开口朝上或朝下的抛物线。
在本文中,我们将重点研究一元二次函数的定点式及其含义。
定点式是一种表示函数图像上顶点坐标的方式,它提供了关于函数最高或最低点的关键信息。
通过研究函数的定点式,我们可以更深入地理解一元二次函数的性质和变化规律。
本文旨在通过对一元二次函数定点式的探讨,让读者对这一函数类型有更全面的了解,并认识到定点式在函数分析和解题过程中的重要性。
同时,我们还将展望定点式的应用领域,探索更多与一元二次函数定点式相关的实际问题,并寻找使用定点式解决这些问题的可能性。
在下一节中,我们将首先介绍一元二次函数的定义,为后续讨论奠定基础。
1.2文章结构文章结构是指文章的组织结构和框架,它决定了文章内容的组织方式和展示顺序。
一个良好的文章结构能够帮助读者更好地理解文章主题,并且使文章更加连贯和有条理。
下面将介绍关于一元二次函数定点式的文章结构打算。
在本文中,文章的结构主要分为三个部分:引言、正文和结论。
引言部分(Chapter 1)是文章的开篇,目的是引导读者进入主题,并介绍文章的背景和意义。
具体包括以下几个方面的内容:1.1 概述:介绍一元二次函数的基本概念和定义,简要说明一元二次函数在数学中的重要性。
1.2 文章结构:详细说明本文的组织结构和框架,引导读者了解文章的整体布局和内容安排。
1.3 目的:明确本文的写作目的和研究问题,阐述对一元二次函数定点式的探索和分析。
1.4 总结:对引言部分进行总结,承接下文,为读者带来连贯的阅读体验。
正文部分(Chapter 2)是文章的核心部分,通过对一元二次函数定点式的定义、图像特点和含义进行详细解析,以展现该主题的全面性和深度。
具体包括以下几个方面的内容:2.1 一元二次函数的定义:介绍一元二次函数的基本形式和表达式,解释其在数学中的重要性和应用。
一元二次求最大值公式

一元二次求最大值公式全文共四篇示例,供读者参考第一篇示例:一元二次求最大值公式是数学中的一个重要概念,常常用于解决最优化问题和寻找峰值等情况。
在数学上,一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为实数且a≠0。
而一元二次方程的最大值,则是指二次函数在其定义域内的最大值,通常通过求导来找到最大值点。
在一元二次方程中,我们通过计算二次项系数a来判断开口向上还是向下。
若a>0,则开口向上,此时二次函数的最小值即为顶点;若a<0,则开口向下,此时二次函数的最大值即为顶点。
要求一元二次方程的最大值,只需将二次项系数a取负号,即转化为-a来求解。
一元二次方程的最大值可以通过求导的方法来求解。
假设给定一个一元二次方程y = ax^2 + bx + c,首先求导得到y' = 2ax + b。
接着令y' = 0,得到x = -b/2a,即得到最大值点的横坐标。
将x代入原方程即可求得最大值。
对于一些特殊的一元二次方程,我们可以直接通过顶点公式求出最大值。
一元二次函数y = ax^2 + bx + c的最大值为c - b^2/4a。
这个公式通过二次函数的完全平方式得到,直接用于求解二次函数的最大值点,更加简洁。
在现实生活中,一元二次求最大值公式常常用于解决一些实际问题。
比如工程问题中需要求解最大承重,经济学中的最大利润,以及物理学中的最大速度等等,都可以通过一元二次求最大值公式来解决。
一元二次求最大值公式是数学中一个重要的概念,可以帮助我们解决各种实际问题。
通过求导或者顶点公式,我们可以找到一元二次函数的最大值点,从而得到最优解。
希望大家能够掌握这个公式,应用到实际生活中,解决一些实际问题。
第二篇示例:一元二次求最大值公式是求解二次函数在定义域内取得最大值的方法。
在数学上,一元二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次函数的最值问题
一元二次函数的最值问题是高一知识中的一个重点、热点,也是同学们在学习过程中普遍感到困惑的一个难点,它考查了函数的单调性,以及数形结合、分类讨论等数学思想和方法。
下面对这一知识点进行简单总结。
一、一元二次函数在[m,n]上的最值
1. 设函数
(1)求函数f(x)在区间[m,n]上的最小值。
①当。
②当。
③当。
(2)求函数f(x)在区间[m,n]上的最大值。
①当
②当。
2. 设函数
(1)求函数f(x)在区间[m,n]上的最大值。
①当
②当
③当
(2)求函数f(x)在区间[m,n]上的最小值。
①当。
②当。
二、典型例题
1. 确定所给区间的单调性
例1 已知二次函数f(x)满足,且f(0)=0,f(1)=1,且在区间[m,n]上的值域是[m,n],求实数m,n的值。
解:∵二次函数f(x)满足
∴函数的对称轴为x=1
又因为,可设。
把f(0)=0代入得到a=-1,即
由题意知函数值域为
因此,函数在区间[m,n]上单调递增
∴或1,n=0或1
综合题意可得m=0,n=1
2. 已知二次函数图象开口方向,需要讨论函数对称轴。
例2 已知函数在区间[-1,2]上的最大值为4,求a的值。
解:函数,对称轴为x=-a。
①当时,
②当,即时,
综上所述,
3. 二次函数的解析式确定,但所给区间需要讨论。
例3 设函数的定义域为[t-2,t-1],,求函数的最小值的解析式。
解:(1)
①当
②当[t-2,t-1],即。
③,即3<t<4< span="">时,</t<4<>
4. 二次项系数的讨论。
例4 已知函数上的最大值为1,求a的值。
解:(1)当a=0时,,函数在区间上单调递减,
,不符合题意,所以舍去。
(2)当a>0时,
①当,符合题意。
②当(舍去)。
(3)当a<0时,。
①矛盾。
②时,
=(舍去)
③当(舍去)或。
综上所述可得。