多元统计分析简介讲解学习共66页文档
《多元统计分析》课件

采用L1正则化,通过惩罚项来选择最重要 的自变量,实现特征选择和模型简化。
比较
应用场景
岭回归适用于所有自变量都对因变量有影 响的情况,而套索回归更适用于特征选择 和模型压缩。
适用于数据集较大、自变量之间存在多重 共线性的情况,如生物信息学数据分析、 市场细分等。
主成分回归与偏最小二乘回归
主成分回归
适用于自变量之间存在多重 共线性的情况,同时要求高 预测精度,如金融市场预测 、化学计量学等。
06 多元数据的典型相关分析
典型相关分析的基本思想
01
典型相关分析是一种研究多个 随机变量之间相关性的多元统 计分析方法。
02
它通过寻找一对或多个线性组 合,使得这些线性组合之间的 相关性达到最大或最小,从而 揭示多个变量之间的关系。
原理
基于最小二乘法原理,通过最小化预 测值与实际值之间的平方误差来估计 回归系数。
应用场景
适用于因变量与自变量之间存在线性 关系的情况,如预测房价、股票价格 等。
注意事项
需对自变量进行筛选和多重共线性诊 断,以避免模型的不稳定性和误差。
岭回归与套索回归
岭回归
套索回归
是一种用于解决多重共线性的回归方法, 通过引入一个小的正则化项来稳定系数估 计。
层次聚类
01
步骤
02
1. 将每个数据点视为一个独立的集群。
2. 计算任意两个集群之间的距离或相似度。
03
层次聚类
01 3. 将最相近的两个集群合并为一个新的集群。 02 4. 重复步骤2和3,直到满足终止条件(如达到预
设的集群数量或最大距离阈值)。
03 应用:适用于探索性数据分析,帮助研究者了解 数据的分布和结构。
多元统计分析 第1章 多元分析概述

多元统计分析的应用举例
反映城镇居民消费水平的八项指标:
➢人均粮食支出、人均副食支出、 ➢人均烟酒茶支出、人均衣着商品支出、 ➢人均日用品支出、人均燃料支出、 ➢人均非商品支出、人均出行支出
为什么要多元、多指标? 指标归并聚类分析
多元统计分析的应用
第一章 多元统计分析概述
多元统计分析--ቤተ መጻሕፍቲ ባይዱ言
多元统计分析是运用数理统计方法来研究 解决多指标问题的理论和方法。
一元(单变量)到多变量? 大数据时代的需要 多变量带来的问题?
多元统计分析--历史
1928年Wishart发表论文《多元正态总体样 本协差阵的精确分布》
R. A. Fisher 、H. Hotelling、S. N. Roy、许 宝騄……
上世纪50年代中期,随着电子计算机的出 现和发展,使多元分析方法得到广泛应用
多元统计分析—核心内容
基于多元正态总体
➢参数估计 ➢假设检验 ➢判别分析 ➢聚类分析 ➢主成分分析 ➢因子分析 ➢对应分析 ➢典型相关分析 ➢多维标度法等
应用背景
统计学的生命力在于应用 多元统计分析方法的应用
Application Driven (Data Driven)
评价企业经济效益
➢百元固定资产原值实现产值、 ➢百元固定资产原值实现利税、 ➢百元资金实现利税、 ➢……
指标太多、错综复杂主成分分析或因子 分析
多元统计分析的应用
考察两个部门工作效率是否有显著差异
➢多元正态总体均值向量和协差阵的假设检验
有100种酒,品尝家可以对每两种酒进行品 尝对比,给出一种相近程度的得分以分析 这100种酒之间的结构关系
多元统计分析的重点和内容和方法

一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。
❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。
二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。
(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。
(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。
(2)判别分析:判别样本应属何种类型的统计方法。
例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。
考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。
(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。
反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。
❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。
这种原假设也称为零假设( null hypothesis ),记为 H 0 。
多元统计分析

聚类分析根据对象的特征和距离度量将相似的对象归为一类 。常见的聚类方法包括层次聚类、K均值聚类和密度聚类等。 聚类分析有助于发现数据的内在结构,用于分类、模式识别 和决策支持。
判别分析
总结词
判别分析是一种有监督学习方法,通过已知分类的数据建立判别函数,用于预 测新数据的分类。
详细描述
判别分析利用已知分类的数据建立判别函数,用于预测新数据的分类。常见的 判别分析方法包括线性判别分析和二次判别分析等。判别分析广泛应用于分类、 模式识别和决策支持等领域。
市场研究的定义和过程
市场研究定义
市场研究是一种系统的方法,用于收 集和分析关于消费者、市场和竞争对 手的数据,以帮助企业了解市场趋势、 消费者需求和竞争态势,从而做出更 好的商业决策。
市场研究过程
市场研究过程包括确定研究目标、设 计研究方案、收集数据、分析数据和 报告结果等步骤。
多元统计分析在市场研究中的应用实例
多元统计分析
目录
• 引言 • 多元统计分析的基本方法 • 多元统计分析在数据挖掘中的应用 • 多元统计分析在市场研究中的应用 • 多元统计分析的未来发展 • 结论
01 引言
多元统计分析的定义
多元统计分析是研究多个随机变量之 间关系的统计方法。它通过使用各种 技术和模型来分析多个变量之间的关 系,以揭示数据中的模式和结构。
对应分析
总结词
对应分析是一种多元统计方法,用于研 究变量间的关系和分类。
VS
详细描述
对应分析通过降维技术将多个变量的分类 数据转换为低维空间的点,并利用点间的 距离度量变量间的关系。对应分析能够揭 示变量间的潜在联系和分类结构,广泛应 用于市场研究、社会科学和医学等领域。
多元统计分析讲义(第一章)

Equation Chapter 1 Section 1 Array《多元统计分析》Multivariate Statistical Analysis主讲:统计学院许启发(******************)统计学院应用统计学教研室School of Statistics2004年9月第一章绪论【教学目的】1.让学生了解什么是多元统计分析?它的发展与现状;2.让学生了解多元统计分析的主要范畴、功能;3.回顾相关的矩阵理论和多元正态分布理论;4.阐述多元数据的表示方法。
【教学重点】1.从一元到多元的过度;2.多元正态理论及其相关命题。
§1 引言一、什么是多元统计分析在实践中,常会碰到需要同时观测若干指标的问题。
例如衡量一个地区的经济发展水平:总产值、利润、效益、劳动生产率等;在医学诊断中,有病还是无病,需做多项检测:血压、体温、心跳、白血球等①。
提出问题:如何同时对多个随机变量的观测数据进行有效的分析和处理?有两种做法:分开研究;同时研究。
但前者会损失一定的信息量。
多元统计分析就是研究多个随机变量之间相互依赖关系以及内在统计规律的一门学科,利用其中的不同方法可对研究对象进行分类和简化。
二、多元统计分析的产生和发展1.1928年Wishert发表论文《多元正态总体样本协方差阵的精确分布》,是多元统计分析的开端;2.20世纪30年代,Fisher, Hotelling, 许宝碌等奠定了多元统计分析的理论基础;3.20世纪40年代,在心理学、教育学、生物学等方面有不少应用,但由于计算量大,发展受到限制;4.20世纪50年代中期,随着计算机的出现和发展,使多元分析方法在地质、气象、医学和社会学方面得到广泛应用;5.20世纪60年代,通过应用和实践又完善和发展了理论,使得它的应用范围更广;6.20世纪70年代初期,才在我国受到各个领域的极大关注,近30多年在理论上和应用上都取得了若干新进展。
三、多元统计分析的主要范畴(研究内容)在对社会、经济、技术系统的认识过程中,都需要收集和分析大量表现系统特征和运行状态的数据信息。
数学实验04-多元统计基本概念

2.随机向量的数字特征
(1)数学期望
其中,
X1
X
X2
X p
EX1 1
EX
EX2
X 1
X
i2
X
2
X
p
n i1 X ip
(2) 样本离差阵
n
S p p X i X X i X sij p p
i 1
n
X i X X i X
(2)协方差矩阵
设 X ( X1, X 2 ,, X p ),Y (Y1,Y2 ,,Yq ) 称
DX
EX
EX X
EX
11 12 1p
21
22
2p
ij
p p
p1 p2 pp
为X的协差阵。 其中 ij Cov( X i , X j )
若X的协差阵存在,且每个分量的方差大于0,则称
随机变量X的相关阵为 R
rij
,其中
p p
rij
Cov X i , X j
VarXi Var X j
ij ;i, j 1,2,, p ii jj
)
分布密度函数应满足的两个条件?
《实用多元统计分析》课件

常用的求解方法有主成分法、最大似然法、最小二 乘法等。
03
这些方法通过迭代计算,可以求得因子载荷的值, 进而得到公共因子。
因子分析的应用实例
01
因子分析在市场调研中广泛应 用于品牌形象、消费者行为等 方面的研究。
02
通过分析消费者的调查数据, 可以提取出影响消费者行为的 公共因子,进而了解消费者的 需求和偏好。
《实用多元统计分析 》ppt课件
目录
CONTENTS
• 多元统计分析概述 • 多元数据的描述性分析 • 多元数据的可视化分析 • 多元线性回归分析 • 主成分分析 • 因子分析
01 多元统计分析概述
多元统计分析的定义
多元统计分析
在统计学中,对多个随机变量进行统 计分析的方法和理论。它研究多个变 量之间的关系,以及如何利用这些变 量进行预测和推断。
便地比较不同对象在多个变量上的表现,有助于发现数据的规律和异常。
星型图和脸谱图
要点一
总结词
星型图和脸谱图可以用于表示分类数据,通过颜色的变化 展示不同类别的数据分布情况。
要点二
详细描述
星型图是一种将分类数据可视化为星星形状的图形,每个 星星的各个部分表示不同类别的数据。脸谱图则是在星型 图的基础上进行改进,将星星的各个部分表示为不同颜色 的区域,更加直观地展示不同类别的数据分布情况。通过 观察星型图和脸谱图,可以快速了解数据的分类情况和各 类别的数据分布情况,有助于发现数据的规律和异常。
通过比较实际数据与理论分布来评估 数据是否符合某种分布。
03 多元数据的可视化分析
散点图矩阵
总结词
通过散点图矩阵,可以同时展示多个变量之间的关系,有助于发现变量之间的潜在关联。
多元统计分析 第一章 多元正态分布

1、城镇居民消费水平通常用八项指标来描述,如人均粮食支出、人均副食 支出、人均烟酒茶支出、人均衣着商品支出、人均日用品支出、人均燃 料支出、人均非商品支出。这八项指标存在一定的线性关系。为了研究 城镇居民的消费结构,需要将相关强的指标归并到一起,这实际就是对 指标进行聚类分析。(经济学)
2、在企业经济效益的评价中,涉及到的指标往往很多,如百元固定资产原 值实现产值、百元固定资产原值实现利税、百元资金实现利税、百元工 业总产值实现利税、百元销售收入实现利税、每吨标准煤实现工业产值、 每千瓦时电力实现工业产值、全员劳动生产率、百元流动资金实现产值。 如何将这些具有错综复杂关系的指标综合成几个较少的因子,既有利于 对问题进行分析和解释,又能便于抓住主要矛盾做出科学的评价。可用 主成分分析和因子分析法。
3、某一产品是用两种不同原料生产的,试问此两种原料生产的产品寿命有 无显著差异?又比如,若考察某商业行业今年和去年的经营状况,这时 需要看这两年经营指标的平均水平是否有显著差异以及经营指标之间的 波动是否有显著差异。可用多元正态总体均值向量和协差阵的假设检验。
4、按现行统计报表制度,农村家庭纯收入是指农村常住居民家庭总收入中 扣除从事生产和非生产经营用支出、税款和上交承包集体任务金额以后 剩余的、可直接用于进行生产的、非生产性建设投资、生产性消费的那 一部分收入。如果我们收集某年各个省、自治区、直辖市农民家庭人均 纯收入的数据,可以用相应分析,揭示全国农民人均纯收入的特征以及 各省、自治区、直辖市与各收入指标的关系。
预备知识
线性代数方面的知识——向量和矩阵是研究多元数据 的重要工具;(要掌握矩阵逆、矩阵特征值、特征向量的 求解)
初等数理统计的知识——多元分析是建立在一元统计 分析基础上的,其许多理论可由一元统计直接推广过来;