指数函数与对数函数的关系(反函数)

合集下载

对数函数与指数函数

对数函数与指数函数

对数函数与指数函数对数函数与指数函数是高中数学中的两个重要概念,它们在数学和实际问题中具有广泛的应用。

本文将对对数函数与指数函数的定义、性质以及它们之间的关系进行探讨。

一、对数函数的定义与性质对数函数是指以某个正数为底数,使指数为某一给定数的幂等于一个给定数的函数。

通常表示为“log”。

1.1 对数函数的定义以正数a(a≠1)为底数,正数x为真数,表示为logₐ(x)。

其中,a为底数,x为真数,log为对数。

1.2 对数函数的基本性质(1)logₐ(xy) = logₐx + logₐy(2)logₐ(x/y) = logₐx - logₐy(3)logₐ(x^p) = p·logₐx(4)logₐa = 1(5)logₐ1 = 0以上是对数函数的一些基本性质,对数函数还具有域、值域以及单调性等性质,但由于篇幅限制无法一一讨论。

二、指数函数的定义与性质指数函数是以某个正数为底数,幂为自变量,函数值为因变量的函数。

通常表示为“a^x”。

2.1 指数函数的定义以正数a(a≠1)为底数,实数x为幂,表示为a^x。

其中,a为底数,x为幂。

2.2 指数函数的基本性质(1)a^x · a^y = a^(x+y)(2)a^x / a^y = a^(x-y)(3)(a^x)^y = a^(xy)(4)a^0 = 1(5)a^1 = a以上是指数函数的一些基本性质,指数函数还具有增减性、奇偶性以及图像特点等性质,但同样由于篇幅限制无法一一展开。

三、对数函数与指数函数的关系对数函数与指数函数是互为反函数的关系,可以相互转化。

3.1 对数函数与指数函数的转化关系设y = logₐx,则x = a^y。

对数函数与指数函数之间的转化关系可以通过这个等式得到。

3.2 对数函数与指数函数的图像关系由于对数函数与指数函数之间是互为反函数的关系,它们在直角坐标系中的图像关系也是互为镜像。

对数函数的图像是指数函数图像关于直线y = x的镜像。

高中数学指数函数与对数函数

高中数学指数函数与对数函数

高中数学指数函数与对数函数在高中数学的学习中,指数函数与对数函数是非常重要的两个部分。

它们不仅在数学理论中有着重要的地位,还在实际生活中的许多领域有着广泛的应用。

首先,让我们来认识一下指数函数。

指数函数的一般形式为 y =a^x (a > 0 且a ≠ 1)。

其中,a 被称为底数,x 是指数。

当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。

比如说,y = 2^x 就是一个底数为 2 的指数函数。

当 x 逐渐增大时,y 的值增长得非常快。

而 y =(1/2)^x ,由于底数 1/2 小于 1,所以当 x 增大时,y 的值会越来越小。

指数函数有很多有趣的性质。

指数函数的图像总是经过点(0, 1),因为任何非零数的 0 次幂都等于 1。

而且,指数函数的定义域是全体实数,值域是(0, +∞)。

接下来,我们再看看对数函数。

对数函数是指数函数的反函数,一般形式为 y =logₐx (a > 0 且a ≠ 1)。

如果 y = a^x ,那么 x =logₐy 。

以 y = log₂x 为例,它表示 2 的多少次方等于 x 。

对数函数的定义域是(0, +∞),值域是全体实数。

对数函数也有自己独特的性质。

比如,logₐ1 = 0 ,因为任何非零数的 0 次方都等于 1 。

还有logₐa = 1 ,因为 a 的 1 次方就是 a 本身。

指数函数和对数函数之间有着密切的关系。

它们的图像关于直线 y= x 对称。

通过这种对称关系,我们可以利用一个函数的性质来推导出另一个函数的性质。

在实际应用中,指数函数和对数函数的用处可不少。

比如在金融领域,计算利息的复利问题就会用到指数函数。

假设你在银行存了一笔钱,年利率为 r ,如果按照复利计算,经过 t 年后,你的存款总额就可以用指数函数来表示。

在科学研究中,比如研究细菌的繁殖、放射性物质的衰变等,也常常会用到指数函数。

而对数函数在测量声音的强度、地震的震级等方面发挥着重要作用。

指数函数和对数函数的转化

指数函数和对数函数的转化

指数函数和对数函数的转化
指数和对数的转换公式表示为x=ay。

1、指数函数的定义域为R,这里的前提是a大于0且不等于1,对于a不大于0的情况则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑,指数函数的值域为(0,+),函数图形都是上凹的。

2、对数函数的一般形式为y=logax,它实际上就是指数函数的反函数(图像关于直线y=x对称的两函数互为反函数)可表示为x=ay,因此指数函数里对于a存在规定a>0且a≠1,对于不同大小a会形成不同的函数图形关于X轴对称、当a>1时a越大,图像越靠近x轴、当0<a<1时a越小,图像越靠近x轴。

高一数学指数函数与对数函数的关系

高一数学指数函数与对数函数的关系
3.2.3 指数函数与 对数函数的关系
自学提纲
• 阅读教材P104-P105 • 1、理解指数函数与对数函数之间的关系, • 2、理解互为反函数的两个函数之间的关系。
反函数:
当一个函数是一一映射时,可以把这个函数 的因变量作为一个新的函数的自变量,而把这个 函数的自变量作为新的函数的因变量,我们称这 两个函数互为反函数。
互为反函数的函数图象间的关系: 函数 y f x 的图象与它的反函数的图象关于直线
y x 对称
1、求下列函数的反函数:
x y log6 x( x 0) y 3 ( x R) (2) (1)
答案:ቤተ መጻሕፍቲ ባይዱ
y log3 x( x 0)
y 6 ( x R)
x
解题步骤:
(1)求 y f ( x)的值域;
1 解出 x f ( y) (2)由y f ( x) 1 y (3)将 x 与 互换,得到 y f ( x) 并写明定义域
2、求下列函数的反函数:
(1)
x
y
(2)
1
3
2
5
3
7
4
9
x
y
0
0
1
1
2
4
3
9
答案:
x y 3 1 5 2 7 3 9 4 x y 0 0 1 1 4 2 9 3
f (2x) 2x ( x R) f (2 x) ln x ln 2( x 0)
2
答案: D.
; / 聚星娱乐 mqx93jop 有眼啊!”尚武说:“我爹娘就常对我和哥哥姐姐说,老天是最公平的了,好人必有好报;即使有的时候看到不是这样,那也 只是因为时辰未到;只要时辰一到,好报必然就到了!”耿老爹和郭氏都点点头,说:“是这样的!”看到尚武不急着进屋, 郭氏就对耿兰说:“兰儿,天儿很暖和呢,你和三哥在院儿里转转看看哇,俺和你爹先进屋去了!”于是,耿兰就陪着尚武在 院子各处走走看看。尚武看到南房与西房之间的那棵高大的白杨树上飘落下来很多褐色的毛穗穗,就像小孩子一样高兴地捡拾 起来几个,说:“兰妹妹,这多像毛毛虫啊!”耿兰说:“岂只是像毛毛虫,它们还有其它用场呢!”说着也捡拾起来四个, 并将它们分别塞到自己的耳朵眼儿和鼻孔眼儿里,学着老头子的声音说:“小娃娃,你看老夫多大年纪了?”滑稽的模样逗得 尚武哈哈大笑,说:“老爷爷您八十岁了!快拿掉哇,你把鼻子眼儿堵住了,怎么出气啊!”耿兰拿掉了塞在鼻孔眼儿里的毛 穗穗,但两边耳朵眼儿里塞着的还在晃荡着。尚武替她把这两个也拿掉,说:“刚才我听见那个什么,二狗和大头,都叫咱爹 老爹叔?”耿兰说:“是啊,他们都叫咱爹老爹叔了。怎么着啊?”尚武自言自语地说:“还有这么叫的!”耿兰说:“这算 什么啊,还有管咱爹叫老爹伯、老爹爷、甚至老爹老爷爷的呢!”见尚武皱起了眉头,耿兰忽然明白了,说:“哦,三哥,俺 知道你的疑问了!是这样,人们都将‘老爹’当成了咱爹的名字了,再加上叔叔、伯伯、爷爷什么的称呼,不就成了老爹叔、 老爹伯、老爹爷了嘛!”尚武笑了,说:“原来是这样啊!我知道了。好了,咱们也回屋里去!”俩人进了堂屋一看,耿英已 经把上午大家喝的残茶、杯子,碗什么的,都收拾得差不离儿了。耿兰赶快说:“姐姐你歇着哇,这些由俺来收拾就行了!” 耿英说:“姐不累,这些年都是你帮着娘了,以后就让姐多做一些哇!”郭氏进两边厢房里转一圈出来,问耿英:“小直子 呢?”耿英说:“他呀,从这个屋子出来,又进了那个屋子,正在到处看呢!”郭氏说:“这个傻小子,咱家里什么也没有变 哇!”说着话,耿直进堂屋里来了,接着娘的话说:“是什么也没有变!俺和哥哥住的东耳房里还是原来的样子呢!俺已经把 炕上放的那几个大包袱挪开了,俺们兄弟三个晚上还住那屋子!”又对尚武说:“三弟你放心,那屋里的土炕宽大的很,只要 烧热了,睡觉舒服着呢!更好的是,灶台上还装了一个好大的铁锅,顺便烧的热水洗澡都用不完!”郭氏却说:“今儿个上午 咱们光顾说话了,没有早点儿烧上炕。现在再烧有点儿晚了,现烧家是不适合住的。你们和爹今儿晚上就在爹娘住的那边睡哇, 娘到你们姐姐妹妹那边去。明儿个一早,咱就烧上东耳房的炕,晚上

初中数学指数函数与对数函数的性质知识点总结

初中数学指数函数与对数函数的性质知识点总结

初中数学指数函数与对数函数的性质知识点总结一、指数函数的性质:1. 定义:指数函数是以指数为自变量,底数固定的函数。

形如f(x) = a^x,其中a是正实数,且a≠1。

2. 指数函数的图像特点:a) 当0<a<1时,函数图像在y轴上方逐渐逼近x轴正半轴;b) 当a>1时,函数图像在y轴下方逐渐逼近x轴正半轴;c) a=1时,指数函数为常数函数,图像为y = 1。

3. 指数函数的性质:a) 当x∈R时,指数函数f(x) > 0,即指数函数的值始终大于0;b) 指数函数的增减性:当x1 < x2时,若a > 1,则a^x1 < a^x2;若0 < a < 1,则a^x1 > a^x2。

4. 指数函数的特殊性质:a) a^0 = 1,任何数的0次方等于1;b) a^m * a^n = a^(m+n),指数的乘法法则;c) (a^m)^n = a^(m*n),幂的乘方法则;d) a^(-n) = 1/(a^n),负指数的倒数性质。

二、对数函数的性质:1. 定义:对数函数是以对数为自变量的函数。

形如f(x) = loga(x),其中a是正实数且不等于1,x为大于0的实数。

2. 对数函数的图像特点:a) 在a>1时,函数的图像在y轴右侧逐渐逼近x轴正半轴;b) 在0<a<1时,函数的图像在y轴左侧逐渐逼近x轴正半轴;c) a=1时,对数函数为常数函数,图像为y = 0。

3. 对数函数的性质:a) 当x∈(0,+∞)时,对数函数f(x) > 0,即对数函数的值始终大于0;b) 对数函数的增减性:当x1 < x2时,若a > 1,则loga(x1) <loga(x2);若0 < a < 1,则loga(x1) > loga(x2)。

4. 对数函数的特殊性质:a) loga(a) = 1,任何数以自身为底的对数等于1;b) loga(1) = 0,任何底数为正数的对数以1为真数的对数等于0;c) loga(M*N) = loga(M) + loga(N),对数的乘法法则;d) loga(M/N) = loga(M) - loga(N),对数的除法法则;e) loga(M^n) = n * loga(M),对数的乘方法则;f) loga(c) = 1/logc(a),对数的换底公式。

高中数学(人教B版)必修第一册:指数函数与对数函数的关系【精品课件】

高中数学(人教B版)必修第一册:指数函数与对数函数的关系【精品课件】

例1. 已知函数f( x)= x2-1(x≤-2),则f -1(4)= 5 .
互为反函数的两个函数y=f( x)与y=f -1( x)中的x,y
值是互换的关系.
令x2-1=4,解得: x 5. 又 x 2, x 5.
例2. 分别判断下列函数是否存在反函数,如果不存在,请说明理 由;如果存在,请写出反函数.
x -2 -1 0 1 5
g-1(x) 4 1 2 3 5
例3. 判断f( x)= 2x+2的反函数是否存在,如果不存在,说明理 由;如果存在,写出反函数f -1( x)的解析式,并在同一平面直角 坐标系中作出f( x)与f -1( x)函数图像.
对于函数y =f( x ),给定值域中任意一个y的值,有唯一的x与 之对应,则称函数y =f( x )存在反函数.
布置作业:
1.读课本P30-P31; 2.完成课后P32:习题4-3A④⑤;4-3B⑤;4-3C②(1).
谢谢.
(1) x 1 2 3 4 5 (2) x 1 2 3 4 5
f(x) 0 0 1 3 5
g(x) -1 0 1 -2 5
对于函数y =f( x ),给定值域中任意一个y的值,有唯一的x与之对 应,则称函数y =f( x )存在反函数.
解:(1)因为f( x )=0时,x=1或x=2, 即对应的x不唯一, 因此f( x )的反函数不存在.
解:因为f( x)= 2x+2的是增函数,因此任意给定值域 中的一个y值,只有唯一的x与之对应, 所以函数f( x)= 2x+2存在反函数.
求反函数的一般步骤: (1)对调y =f( x )中的x、y,得到 x=f(y ); (2)从 x=f( y )中解出y,得到y =f -1( x ); (3)检查是否需要补充y =f -1( x )的定义域.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结指数函数和对数函数是高中数学中的重要概念,它们在数学、物理、化学等科学中都有广泛的应用。

下面是关于指数函数和对数函数的知识点总结。

一、指数函数:1.含义:指数函数是以一个常数为底数的数的乘方的函数。

2.表达形式:指数函数可以表示为f(x)=a^x,其中a是底数,x是指数,a>0且a≠13.特点:-当x为正时,指数函数是递增的,在x轴右侧上升。

-当x为负时,指数函数是递减的,在x轴左侧下降。

-当x=0时,指数函数的值恒为1,即f(0)=1-当底数a>1时,指数函数是增长趋势的,图像像“开口向上”的U 形。

-当0<a<1时,指数函数是衰减趋势的,图像像“开口向下”的倒U 形。

-当a=1时,指数函数退化为常函数,即f(x)=14.常见指数函数:-自然指数函数:f(x)=e^x,其中e是自然对数的底数,约等于2.718-正常数指数函数:f(x)=a^x,a>0且a≠1-指数递减函数:f(x)=a^(-x),a>0且a≠1- 指数增长函数:f(x) = e^(kx),其中k为常数。

- 指数衰减函数:f(x) = e^(-kx),其中k为常数。

二、对数函数:1.含义:对数函数是指数函数的逆运算。

2. 表达形式:对数函数可以表示为f(x) = log<sub>a</sub>(x),其中a是底数,x是正实数,a>0且a≠13.特点:-对数函数的定义域是(0,+∞),值域是(-∞,+∞)。

-对数函数的图像是递增的,在x轴右侧上升。

-当x=a^y时,有f(a^y)=y。

-当底数a>1时,对数函数是递增的,在x轴右侧上升。

-当0<a<1时,对数函数是递减的,在x轴右侧下降。

-当a=1时,对数函数是常函数,即f(x)=0。

4.常见对数函数:- 自然对数函数:f(x) = ln(x),其中ln表示以e为底的对数。

指数函数与对数函数的性质

指数函数与对数函数的性质

指数函数与对数函数的性质指数函数和对数函数是数学中重要的函数之一,它们在各个领域有广泛的应用。

这篇文章将讨论指数函数和对数函数的性质,并探讨它们之间的关系。

一、指数函数的性质指数函数的一般形式是f(x) = a^x,其中a是一个正实数且不等于1。

指数函数具有以下性质:1. 指数函数的定义域是实数集R,值域是正数集(0, +∞)。

2. 当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。

3. 当a>1时,指数函数的图像在y轴的正半轴上逐渐增大;当0<a<1时,指数函数的图像在y轴的正半轴上逐渐减小。

4. 当x趋于正无穷时,指数函数趋于正无穷;当x趋于负无穷时,指数函数趋于0。

5. 指数函数的反函数是对数函数,即y=a^x和y=logₐ(x)互为反函数。

二、对数函数的性质对数函数的一般形式是f(x) = logₐ(x),其中a是一个大于0且不等于1的实数。

对数函数具有以下性质:1. 对数函数的定义域是正数集(0, +∞),值域是实数集R。

2. 当0<a<1时,对数函数是递增函数;当a>1时,对数函数是递减函数。

3. 对数函数的图像经过点(1, 0),并且随着x的增大(或减小),函数值趋于正负无穷。

4. 对数函数的反函数是指数函数,即y=logₐ(x)和y=a^x互为反函数。

三、指数函数和对数函数的关系指数函数和对数函数是互为反函数的关系,它们之间具有以下性质:1. 对于任意实数x,有logₐ(a^x) = x和a^(logₐx) = x。

这表明指数函数和对数函数是互为反函数。

2. 指数函数和对数函数可以相互转换。

例如,对于指数函数y=a^x,可以通过取对数来转换为对数函数,即logₐy = x;对于对数函数y=logₐx,可以通过求幂来转换为指数函数,即a^y = x。

3. 指数函数和对数函数可以互相用来解决指数和对数方程。

例如,通过对数函数可以解决指数方程a^x = b,通过指数函数可以解决对数方程logₐx = b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
x轴成轴对称
指数函数y=ax (a>0,a≠1)
图 y=ax
y y=ax
象 (0<a<1)
(a>1)
1
o
x
(1)定义域:R
性 (2)值域:(0,+∞)
(3)过点(0,1), 即x=0 时, y=1
对数函数y=log a x (a>0, a≠1)
y o1
y=logax (a>1)
x
y=logax (0<a<1)
指数函数与对数函数 的关系
问题1: 指数函数y=ax与对数函数y=loga x(a>0,a≠1) 有什么关系?
指数换对数
y=ax
x=loga y
对应法则互逆
交换x,y
y=loga x
指数函数y=ax与对数函数x=loga y(a>0,a≠1) 有什么关系?
函 数 自变量 因变量 定义域 值 域
y=ax
y
y=3x-2
0
y=x
x
y=x+2 3
想一想:函数y=3x-2的图象和它的反函数 y=x+2 的图象之间有什么关系?
3
求函数反函数的步骤: 1 反解 2 x与y互换 3 求原函数的值域
4 写出反函数及它的定义域
y y=2x
结论:
Q(a,b) (0,1)
O (1,0)
y=x P(b,a) y=log2x
互为反函数
定义域和值域互换 对应法则互逆
图像关于直线y=x对称
作业
课本第106页练习 A组B组
对称性:
(1) y ax与y log a x的图象关于 y x成轴对称 (2) y a x与y ( 1 )x的图象关于
a y轴成轴对称
(3) y log a x与y log 1 x的图象关于
(1)y=log2.5x; (2)y=logπx; 3 y log x.
1
(1)y=2.5x
(2)y=πx
3y


1
x

3
3
3.写出下列指数函数的反函数:
(1)y=4x; (2)y=1.4x;
3y x.
2
(1)y=log4x (2)y=log1.4x 3y log x 2
(2)指数函数
y 2 x 3
,它的底数是 2 ,
3
它的反函数是对数函数 y log 2 x
3
练习
1.说出下列各组函数之间的关系:
(1)y=10x和y=lgx;
互为反函数,
(2)y=2x和y=log2x;
定义域和值域互换, 对应法则互逆
(3)y=ex和y=lnx.
练习
2.写出下列对数函数的反函数:
函数y=log2x的图像与 函数y=2x的图像关于 直线y=x对称
y y=2x Q(a,b) y=x
函数y=f(x)的图像和
(0,1) O
它的反函数的图像
(1,0)
P(a,b) y=log2x x
关于直线y=x对称
• 1.当一个函数是一一映射时,可以把这个 函数的因变量作为一个新的函数的自变量, 而把这个函数的自变量作为新的函数的因变 量,我们称这两个函数互为反函数。
例3 求函数y=3x-2(x∈R)反函数,并在同 一直角坐标系中作出函数及其反函数的图象。 解:由y=3x-2(x∈R )得x=y+2
3 所以y=2x-1(x∈R)的反函数是
y=x+2 (x∈R )
3
y=3x-2 经过两点(0,-2), (2/3,0)
y=x+2 经过两点(-2,0), (0 ,2/3 ) 3
0<a<1时,在R上是减函数 0<a<1时,在(0,+∞)是减函数
y x
x
y log 1 x
2
y 10x
y
y 2x y x
y log2 x
y log10 x0Biblioteka xy ( 1 )x
y y

(
1
)
10
x
2
0
y x
xy log 1 x
10
y log 1 x
2
观察在同一坐标系内函数y=log2x与函数y=2x的 图像,分析它们之间的关系.
b=f(a)
点(b,a)在反函数y=f-1(x) 的图像上 a=f-1(b)
理论迁移
例4 已知函数 f (x) log2 (1 2x ) . (1)求函数f(x)的定义域和值域; (2)求证函数y=f(x)的图象关于直线
y=x对称.
小结
反函数的概念
指数函数y=ax(a>0,a≠1)与 对数函数y=logax(a>0,a≠1)
• 2.对数函数y=loga x与指数函数y=ax互为反 函数,图象关于直线y=x对称。
• 3 .函数y=f(x)的反函数通常用y=f-1(x) 表 示。
注意:y=f -1(x) 读作:“f逆x”
表示反函数,不是-1次幂(倒数) 的意思
例1 写出下列对数函数的反函数:
(1)y =lgx; 2y log 1 x.
x
y
R
(0,+∞)
x=loga y
y
x
(0,+∞)
R
对应法则互逆
称这两个函数互为反函数
指数函数y=ax是对数函数 x=loga y(a>0,a≠1)的反函数
指数函数y=ax(a>0,a≠1)
反 函 数
对数函数y=logax(a>0,a≠1)
y
y 2x y x
y log2 x
0
x
y y ( 1 )x 2 0
3
解 (1)对数函数y=lgx,它的底数是 10 它的反函数是指数函数 y=10x
(2)对数函数 y log 1 x, 它的底数是 1
3
它的反函数是指数函数
y 1 x.
3
3
例2 写出下列指数函数的反函数:
(1)y=5x
2y


2
x
.
3
解(1)指数函数y=5x,它的底数是5 它的反函数是对数函数 y=log5x;
点(a,b)在函数y=f(x)的图像上
b=f(a)
点(b,a)在反函数y=f-1(x) 的图像上 a=f-1(b)
例5:已知函数( f x) x2 (1 x 2) 求出f (1 4)的值。
解:令 x2 1 4,解之得:x 5 又Q x 2, x 5.
点(a,b)在函数y=f(x)的图像上
x
点(a,b)在函数y=f(x)的图像上
b=f(a)
点(b,a)在反函数y=f-1(x) 的图像上 a=f-1(b)
[例4]函数f(x)=loga (x-1)(a>0且a≠1)的反函数的图象
经过点(1, 4),求a的值.
解:依题意,得 1 log a (4 1)
即 : log a 3 1,a 3.
(1)定义域: (0,+∞)
(2)值域:R (3)过点(1,0), 即x=1 时, y=0
(4) a>1时, a越大图像越靠近y轴 (4) a>1时, a越大图像越靠近x轴

0<a<1时, a越小图像越靠近y轴 0<a<1时, a越大图像越靠近x轴 (5) a>1时, 在R上是增函数; (5) a>1时,在(0,+∞)是增函数;
相关文档
最新文档