2009年北京高考数学试题含答案(理)
2009年高考北京数学(理科)试题及参考答案

绝密★启用前 试卷类型:B2009年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签宇笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式13V sh =,其中S是锥体的底面积,h 是锥体的高一、 选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.巳知全集U R =,集合{212}M x x =-≤-≤和{21,1,2,}N x x k k ==-= 的关系的韦恩(Venn )图如图1所示,则阴影部分所示的集合的元素共有A .3个 B.2个 C.1个 D.无穷个 1.解:}31|{≤≤-=x x M ,},5,3,1{ =N ,所以 }3,1{=N M 故,选B2.设z 是复数,()a z 表示满足1n z =的最小正整数n ,则对虚数单位i ,()a i =A.8 B.6 C.4 D.22. 解:因为12-=i ,i i -=3, 14=i ,所以满足1=n i 的最小正整数n 的值是4。
故,选C3.若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像经过点)a ,则()f x =A.2log x B.12log x C.12xD.2x3.解:由函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,可知x x f a log )(=,又其图像经过点)a ,即a a a=log,所以a=21, xx f 21log)(=。
2009年全国统一高考数学试卷(理科)(全国卷ⅱ)及答案

2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i2.(5分)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)3.(5分)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.4.(5分)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=05.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.6.(5分)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.257.(5分)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a8.(5分)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.9.(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F 为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.10.(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种11.(5分)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.12.(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下二、填空题(共4小题,每小题5分,满分20分)13.(5分)(x﹣y)4的展开式中x3y3的系数为.14.(5分)设等差数列{a n}的前n项和为S n,若a5=5a3,则=.15.(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于.16.(5分)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.18.(12分)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E分别为AA1、B1C 的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21.(12分)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22.(12分)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.2009年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•全国卷Ⅱ)=()A.﹣2+4i B.﹣2﹣4i C.2+4i D.2﹣4i【分析】首先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母进行乘法运算,整理成最简形式,得到结果.【解答】解:原式=,故选A2.(5分)(2009•全国卷Ⅱ)设集合A={x||x|>3},B={x|<0},则A∩B=()A.φB.(3,4) C.(﹣2,1)D.(4,+∞)【分析】先化简集合A和B,再根据两个集合的交集的意义求解.【解答】解:A={x||x|>3}⇒{x|x>3或x<﹣3},B={x|<0}={x|1<x<4},∴A∩B=(3,4),故选B.3.(5分)(2009•黑龙江)已知△ABC中,cotA=﹣,则cosA=()A.B.C.D.【分析】利用同角三角函数的基本关系cosA转化成正弦和余弦,求得sinA和cosA 的关系式,进而与sin2A+cos2A=1联立方程求得cosA的值.【解答】解:∵cotA=∴A为钝角,cosA<0排除A和B,再由cotA==,和sin2A+cos2A=1求得cosA=,故选D.4.(5分)(2009•全国卷Ⅱ)函数在点(1,1)处的切线方程为()A.x﹣y﹣2=0 B.x+y﹣2=0 C.x+4y﹣5=0 D.x﹣4y+3=0【分析】欲求切线方程,只须求出其斜率即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:依题意得y′=,因此曲线在点(1,1)处的切线的斜率等于﹣1,相应的切线方程是y﹣1=﹣1×(x﹣1),即x+y﹣2=0,故选B.5.(5分)(2009•黑龙江)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=2,E为AA1中点,则异面直线BE与CD1所成角的余弦值为()A.B.C.D.【分析】求异面直线所成的角,一般有两种方法,一种是几何法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求.还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解.本题采用几何法较为简单:连接A1B,则有A1B∥CD1,则∠A1BE就是异面直线BE与CD1所成角,由余弦定理可知cos ∠A1BE的大小.【解答】解:如图连接A1B,则有A1B∥CD1,∠A1BE就是异面直线BE与CD1所成角,设AB=1,则A1E=AE=1,∴BE=,A1B=.由余弦定理可知:cos∠A1BE=.故选C.6.(5分)(2009•黑龙江)已知向量=(2,1),=10,|+|=,则||=()A.B. C.5 D.25【分析】根据所给的向量的数量积和模长,对|a+b|=两边平方,变化为有模长和数量积的形式,代入所给的条件,等式变为关于要求向量的模长的方程,解方程即可.【解答】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.7.(5分)(2009•全国卷Ⅱ)设a=log3π,b=log2,c=log3,则()A.a>b>c B.a>c>b C.b>a>c D.b>c>a【分析】利用对数函数y=log a x的单调性进行求解.当a>1时函数为增函数当0<a<1时函数为减函数,如果底a不相同时可利用1做为中介值.【解答】解:∵∵,故选A8.(5分)(2009•黑龙江)若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.【分析】根据图象的平移求出平移后的函数解析式,与函数y=tan(ωx+)的图象重合,比较系数,求出ω=6k+(k∈Z),然后求出ω的最小值.【解答】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan (ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.9.(5分)(2009•黑龙江)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B 的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D10.(5分)(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种C.24种D.30种【分析】根据题意,分两步,①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,进而由事件间的相互关系,分析可得答案.【解答】解:根据题意,分两步,①由题意可得,所有两人各选修2门的种数C42C42=36,②两人所选两门都相同的有为C42=6种,都不同的种数为C42=6,故只恰好有1门相同的选法有36﹣6﹣6=24种.11.(5分)(2009•全国卷Ⅱ)已知双曲线的右焦点为F,过F且斜率为的直线交C于A、B两点,若=4,则C的离心率为()A.B.C.D.【分析】设双曲线的有准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD ⊥AM于D,由直线AB的斜率可知直线AB的倾斜角,进而推,由双曲线的第二定义|AM|﹣|BN|=|AD|,进而根据,求得离心率.【解答】解:设双曲线的右准线为l,过A、B分别作AM⊥l于M,BN⊥l于N,BD⊥AM于D,由直线AB的斜率为,知直线AB的倾斜角为60°∴∠BAD=60°,由双曲线的第二定义有:=∴,∴故选A.12.(5分)(2009•黑龙江)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标“△”的面的方位()A.南B.北C.西D.下【分析】本题考查多面体展开图;正方体的展开图有多种形式,结合题目,首先满足上和东所在正方体的方位,“△”的面就好确定.【解答】解:如图所示.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•黑龙江)(x﹣y)4的展开式中x3y3的系数为6.【分析】先化简代数式,再利用二项展开式的通项公式求出第r+1项,令x,y 的指数都为1求出x3y3的系数【解答】解:,只需求展开式中的含xy项的系数.∵的展开式的通项为令得r=2∴展开式中x3y3的系数为C42=6故答案为6.14.(5分)(2009•全国卷Ⅱ)设等差数列{a n}的前n项和为S n,若a5=5a3,则=9.【分析】根据等差数列的等差中项的性质可知S9=9a5,S5=5a3,根据a5=5a3,进而可得则的值.【解答】解:∵{a n}为等差数列,S9=a1+a2+…+a9=9a5,S5=a1+a2+…+a5=5a3,∴故答案为915.(5分)(2009•黑龙江)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C.若圆C的面积等于,则球O的表面积等于8π.【分析】本题可以设出球和圆的半径,利用题目的关系,求解出具体的值,即可得到答案.【解答】解:设球半径为R,圆C的半径为r,.因为.由得R2=2故球O的表面积等于8π故答案为:8π,16.(5分)(2009•全国卷Ⅱ)求证:菱形各边中点在以对角线的交点为圆心的同一个圆上.【分析】如图,菱形ABCD的对角线AC和BD相交于点O,菱形ABCD各边中点分别为M、N、P、Q,根据菱形的性质得到AC⊥BD,垂足为O,且AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得到OM=ON=OP=OQ=AB,得到M、N、P、Q四点在以O为圆心OM为半径的圆上.【解答】已知:如图,菱形ABCD的对角线AC和BD相交于点O.求证:菱形ABCD各边中点M、N、P、Q在以O为圆心的同一个圆上.证明:∵四边形ABCD是菱形,∴AC⊥BD,垂足为O,且AB=BC=CD=DA,而M、N、P、Q分别是边AB、BC、CD、DA的中点,∴OM=ON=OP=OQ=AB,∴M、N、P、Q四点在以O为圆心OM为半径的圆上.所以菱形各边中点在以对角线的交点为圆心的同一个圆上.三、解答题(共6小题,满分70分)17.(10分)(2009•黑龙江)设△ABC的内角A、B、C的对边长分别为a、b、c,cos(A﹣C)+cosB=,b2=ac,求B.【分析】本题考查三角函数化简及解三角形的能力,关键是注意角的范围对角的三角函数值的制约,并利用正弦定理得到sinB=(负值舍掉),从而求出答案.【解答】解:由cos(A﹣C)+cosB=及B=π﹣(A+C)得cos(A﹣C)﹣cos(A+C)=,∴cosAcosC+sinAsinC﹣(cosAcosC﹣sinAsinC)=,∴sinAsinC=.又由b2=ac及正弦定理得sin2B=sinAsinC,故,∴或(舍去),于是B=或B=.又由b2=ac知b≤a或b≤c所以B=.18.(12分)(2009•黑龙江)如图,直三棱柱ABC﹣A1B1C1中,AB⊥AC,D、E 分别为AA1、B1C的中点,DE⊥平面BCC1.(Ⅰ)证明:AB=AC;(Ⅱ)设二面角A﹣BD﹣C为60°,求B1C与平面BCD所成的角的大小.【分析】(1)连接BE,可根据射影相等的两条斜线段相等证得BD=DC,再根据相等的斜线段的射影相等得到AB=AC;(2)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可,作AG⊥BD于G,连GC,∠AGC为二面角A﹣BD﹣C的平面角,在三角形AGC中求出GC即可.【解答】解:如图(I)连接BE,∵ABC﹣A1B1C1为直三棱柱,∴∠B1BC=90°,∵E为B1C的中点,∴BE=EC.又DE⊥平面BCC1,∴BD=DC(射影相等的两条斜线段相等)而DA⊥平面ABC,∴AB=AC(相等的斜线段的射影相等).(II)求B1C与平面BCD所成的线面角,只需求点B1到面BDC的距离即可.作AG⊥BD于G,连GC,∵AB⊥AC,∴GC⊥BD,∠AGC为二面角A﹣BD﹣C的平面角,∠AGC=60°不妨设,则AG=2,GC=4在RT△ABD中,由AD•AB=BD•AG,易得设点B1到面BDC的距离为h,B1C与平面BCD所成的角为α.利用,可求得h=,又可求得,∴α=30°.即B1C与平面BCD所成的角为30°.19.(12分)(2009•全国卷Ⅱ)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)20.(12分)(2009•全国卷Ⅱ)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.【分析】(Ⅰ)这一问较简单,关键是把握题意,理解分层抽样的原理即可.另外要注意此分层抽样与性别无关.(Ⅱ)在第一问的基础上,这一问处理起来也并不困难.直接在男工里面抽取一人,在女工里面抽取一人,除以在总的里面抽取2人的种数即可得到答案.(Ⅲ)求ξ的数学期望.因为ξ的可能取值为0,1,2,3.分别求出每个取值的概率,然后根据期望公式求得结果即可得到答案.【解答】解:(Ⅰ)因为甲组有10名工人,乙组有5名工人,从甲、乙两组中共抽取3名工人进行技术考核,根据分层抽样的原理可直接得到,在甲中抽取2名,乙中抽取1名.(Ⅱ)因为由上问求得;在甲中抽取2名工人,故从甲组抽取的工人中恰有1名女工人的概率(Ⅲ)ξ的可能取值为0,1,2,3,,,23ξ01P故Eξ==.21.(12分)(2009•黑龙江)已知椭圆的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l 的距离为,(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F 转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.【分析】(I)设F(c,0),则直线l的方程为x﹣y﹣c=0,由坐标原点O到l的距离求得c,进而根据离心率求得a和b.(II)由(I)可得椭圆的方程,设A(x1,y1)、B(x2,y2),l:x=my+1代入椭圆的方程中整理得方程△>0.由韦达定理可求得y1+y2和y1y2的表达式,假设存在点P ,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),代入椭圆方程;把A,B两点代入椭圆方程,最后联立方程求得c,进而求得P点坐标,求出m的值得出直线l的方程.【解答】解:(I)设F(c,0),直线l:x﹣y﹣c=0,由坐标原点O到l的距离为则,解得c=1又,∴(II)由(I)知椭圆的方程为设A(x1,y1)、B(x2,y2)由题意知l的斜率为一定不为0,故不妨设l:x=my+1代入椭圆的方程中整理得(2m2+3)y2+4my﹣4=0,显然△>0.由韦达定理有:,,①假设存在点P,使成立,则其充要条件为:点P的坐标为(x1+x2,y1+y2),点P在椭圆上,即.整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在椭圆上,即2x12+3y12=6,2x22+3y22=6、故2x1x2+3y1y2+3=0②将x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1及①代入②解得∴,x1+x2=,即当;当22.(12分)(2009•全国卷Ⅱ)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.【分析】(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.【解答】解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设h(x)=x2﹣(2x2+2x)ln(1+x),(﹣<x<0)则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.。
2009年高考全国卷1数学真题(理科数学)(附答案)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B •=•球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB 中的元素共有()(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ+=2+i,则复数z=() (A )-1+3i (B)1-3i (C)3+i (D)3-i (3) 不等式11X X +-<1的解集为( )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于()(A (B )2 (C (D(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )(A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为 ( )(A )2- (B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A )4 (B )4 (C )4 (D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为(A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为( )(A)1 (B)2 (C) -1 (D)-2(10)已知二面角l αβ--为60,动点P 、Q 分别在面α、β内,PQ 到α的距离为P 、Q 两点之间距离的最小值为( )(A) (B)2 (C) (11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )(A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数12.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =( )23第II 卷二、填空题:13. ()10x y -的展开式中,73x y 的系数与37x y 的系数之和等于 。
2009年高考数学(理)真题(Word版)——全国2卷(试题+答案解析)

2009年普通高等学校招生全国统一考试(全国Ⅱ卷)数学(理)试题一、选择题( 本大题共12 题, 共计60 分)1、(5分)=( )A.-2+4iB.-2-4iC.2+4iD.2-4i2、(5分)设集合A={x|x>3},B={x|},则A∩B=()A. B.(3,4) C.(-2,1) D.(4,+∞)3、(5分)已知△ABC中,,则cosA=( )A. B. C. D.4、(5分)曲线在点(1,1)处的切线方程为( )A.x-y-2=0B.x+y-2=0C.x+4y-5=0D.x-4y-5=05、(5分)已知正四棱柱ABCD—A1B1C1D1中,AA1=2AB,E为AA1中点,则异面直线BE与CD1所成角的余弦值为( )A. B. C. D.6、(5分)已知向量a=(2,1),a·b=10,|a+b|=,则|b|=( )A. B. C.5 D.257、(5分)设a=log3π,,,则( )A.a>b>cB.a>c>bC.b>a>cD.b>c>a8、(5分)若将函数y=tan()(ω>0)的图象向右平移个单位长度后,与函数y=tan()的图象重合,则ω的最小值为…()A. B. C. D.9、(5分)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )A. B. C. D.10、(5分)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6种B.12种C.30种D.36种11、(5分)已知双曲线C:(a>0,b>0)的右焦点为F,过F且斜率为的直线交C 于A、B两点.若,则C的离心率为( )A. B. C. D.12、(5分)纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“Δ”的面的方位是( )A.南B.北C.西D.下二、填空题( 本大题共4 题, 共计20 分)13、(5分) ()4的展开式中x3y3的系数为___________.14、(5分)设等差数列{a n}的前n项和为S n,若a5=5a3.则=___________.15、(5分)设OA是球O的半径,M是OA的中点,过M且与OA成45°角的平面截球O的表面得到圆C,若圆C的面积等于,则球O的表面积等于______________.16、(5分)已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD 的面积的最大值为_____________.三、解答题( 本大题共6 题, 共计70 分)17、(10分) 设△ABC的内角A,B,C的对边长分别为a,b,c,cos(A-C)+cosB=,b2=ac,求B.18、(12分)如图,直三棱柱ABC—A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1. (Ⅰ)证明:AB=AC;(Ⅱ)设二面角A-BD-C为60°,求B1C与平面BCD所成的角的大小.19、(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2.(Ⅰ)设b n=a n+1-2a n,证明数列{b n}是等比数列;(Ⅱ)求数列{a n}的通项公式.20、(12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核.(Ⅰ)求从甲、乙两组各抽取的人数;(Ⅱ)求从甲组抽取的工人中恰有1名女工人的概率;(Ⅲ)记ξ表示抽取的3名工人中男工人数,求ξ的分布列及数学期望.21、(12分)已知椭圆C:(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为.(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.22、(12分)设函数=x2+aln(1+x)有两个极值点x1,x2,且x1<x2.(Ⅰ)求a的取值范围,并讨论的单调性;(Ⅱ)证明: ()21224Inf x->.答案解析一、选择题( 本大题共12 题, 共计60 分)1、(5分) A解析:.故选A.2、(5分) B解析:∵(x-1)(x-4)<0,∴1<x<4,即B={x|1<x<4},∴A∩B=(3,4).故选B.3、(5分) D解析:∵,∴A为钝角.又∵,∴.代入sin2A+cos2A=1,求得.故选D.4、(5分) B解析:∵,∴y′|x=1=-1.∴切线的斜率k=-1.∴切线方程为y-1=-(x-1),即x+y-2=0.故选B.5、(5分) C解析:如图所示,连接A1B,因A1D1BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C,则异面直线BE与CD1所成的角即为BE与BA1所成的角. 不妨设AB=1,则AA1=2,设∠ABE=α,∠ABA1=β,则,,,.∴cos(β-α)=cosβcosα+sinβsinα=.故选C.6、(5分) C解析:设b=(x,y),由得解方程组得或则|b|=.故选C.7、(5分) A解析:∵a=log3π>log33=1,,.∴a>b>c.故选A.8、(5分) D解析:将函数y=tan()(ω>0)的图象向右平移个单位,得y=tan(),又因平移后函数的图象与y=tan()的图象重合, ∴(k∈Z),即,∴当k=0时,,即ω的最小值为.故选D.9、(5分) D解析:设A(x1,y1),B(x2,y2),由题意得k2x2+(4k2-8)x+4k2=0,Δ=16(k2-2)2-4k2·4k2>0.得-1<k<1,即0<k<1,,x1x2=4.又∵|FA|=2|FB|,由抛物线定义,知F(2,0),抛物线的准线方程为x=-2,∴|FA|=x1+2,|FB|=x2+2,∴x1+2=2x2+4,即x1=2x2+2.代入x1·x2=4,得x22+x2-2=0,∴x2=1,或x2=-2(舍去,因x2>0).∴x1=2×1+2=4.∴.∴.又0<k<1,∴.故选D.10、(5分) C解析:由题意知甲、乙所选的课程有一门相同的选法为种,甲、乙所选的课程都不相同的选法有种,所以甲、乙所选的课程中至少有一门不相同的选法共有24+6=30种.故选C.11、(5分) A解析:设A(x1,y1),B(x2,y2),F(c,0),由,得(c-x1,-y1)=4(x2-c,y2),∴y1=-4y2.设过F点斜率为的直线方程为,∴则有∴将y1=-4y2分别代入①②得化简得∴.化简得16c2=9(3a2-b2)=9(3a2-c2+a2).∴25c2=36a2.∴,即.12、(5分) B解析:如右图所示正方体,要展开成要求的平面图,必须剪开棱BC,剪开棱D1C1使正方形DCC1D1向北的方向展平.剪开棱A1B1,使正方形ABB1A1向南的方向展开,然后拉开展平,则标“Δ”的面的方位则为北.故选B.二、填空题( 本大题共4 题, 共计20 分)13、(5分) 6解析:设展开式中第r+1项为x3y3项,由展开式中的通项,得=.令,得r=2.∴系数为.14、(5分) 9解析:由a5=5a3,得,.15、(5分) 8π解析:如图所示,设球半径为R,球心O到截面圆的距离为d,在Rt△ONB中,d2=R2-BN2.①又∵π·BN2=,∴.在△ONM中,d=OM·sin45°=,②将②代入①得,∴R2=2.∴S球=4πR2=8π.16、(5分) 5解析:如图所示,设|ON|=d1,|OP|=d2,则d12+d22=|OM|2=12+()2=3.在△ONC中,d12=|OC|2-|CN|2=4-|CN|2,∴.同理在△OBP中,.S四边形=S△CAD+S△CAB====.当且仅当d1=d2时取等号,即d1=d2=时取等号.三、解答题( 本大题共6 题, 共计70 分)17、(10分) 解:由cos(A-C)+cosB=及B=π-(A+C)得cos(A-C)-cos(A+C)=,cosAcosC+sinAsinC-(cosAcosC-sinAsinC)=,.又由b2=ac及正弦定理得sin2B=sinAsinC.故,或(舍去),于是或.又由b2=ac知b≤a或b≤c,所以.18、(12分) 解法一:(Ⅰ)取BC的中点F,连接EF,则EF,从而EF DA.连接AF,则ADEF为平行四边形,从而AF∥DE.又DE⊥平面BCC1,故AF⊥平面BCC1,从而AF⊥BC,即AF为BC的垂直平分线,所以AB=AC,(Ⅱ)作AG⊥BD,垂足为G,连接CG.由三垂线定理知CG⊥BD,故∠AGC为二面角A-BD-C的平面角.由题设知∠AGC=60°.设AC=2,则.又AB=2,,故.由AB·AD=AG·BD得,解得,故AD=AF.又AD⊥AF,所以四边形ADEF为正方形.因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF.连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD.连接CH,则∠ECH为B1C与平面BCD所成的角.因ADEF为正方形,,故EH=1,又,所以∠ECH=30°,即B1C与平面BCD所成的角为30°.解法二:(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz,设B(1,0,0),C(0,b,0),D(0,0,c),则B1(1,0,2c),E(,,c).于是=(,,0),=(-1,b,0).由DE⊥平面BCC1知DE⊥BC,·=0,求得b=1,所以AB=AC.(Ⅱ)设平面BCD的法向量=(x,y,z),则·=0,·=0.又=(-1,1,0), =(-1,0,c).故令x=1,则y=1, , =(1,1,).又平面ABD的法向量=(0,1,0).由二面角A-BD-C为60°知,〈〉=60°,故·=||·||·cos60°,求得.于是=(1,1,), =(1,-1,),cos〈,〉=,〈,〉=60°,所以B1C与平面BCD所成的角为30°.19、(12分) 解:(Ⅰ)由已知有a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3,又a n+2=S n+2-S n+1=4a n+1+2-(4a n+2)=4a n+1-4a n;于是a n+2-2a n+1=2(a n+1-2a n),即b n+1=2b n.因此数列{b n}是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ)知等比数列{b n}中b1=3,公比q=2,所以a n+1-2a n=3×2n-1,于是,因此数列{}是首项为,公差为的等差数列,,所以a n=(3n-1)·2n-2.20、(12分) 解:(Ⅰ)由于甲组有10名工人,乙组有5名工人,根据分层抽样原理,若从甲、乙两组中共抽取3名工人进行技术考核,则从甲组抽取2名工人,乙组抽取1名工人.(Ⅱ)记A表示事件:从甲组抽取的工人中恰有1名女工人,则.(Ⅲ)ξ的可能取值为0,1,2,3.A i表示事件:从甲组抽取的2名工人中恰有i名男工人,i=0,1,2.B表示事件:从乙组抽取的是1名男工人.A i与B独立,i=0,1,2.P(ξ=0)=P(A0·)=P(A0)·P()=,P(ξ=1)=P(A0·B+A1·)=P(A0)·P(B)+P(A1)·P()=,P(ξ=3)=P(A2B)=P(A2)·P(B)=,P(ξ=2)=1-[P(ξ=0)+P(ξ=1)+P(ξ=3)]=.故ξ的分布列为ξ0 1 2 3PEξ=0×P(ξ=0)+1×P(ξ=1)+2×P(ξ=2)+3×P(ξ=3)=.21、(12分) 解:(Ⅰ)设F(c,0),当l的斜率为1时,其方程为x-y-c=0,O到l的距离为,故,c=1.由,得,.(Ⅱ)C上存在点P,使得当l绕F转到某一位置时,有成立,由(Ⅰ)知C的方程为2x2+3y2=6,设A(x1,y1),B(x2,y2),(ⅰ)当l不垂直于x轴时,设l的方程为y=k(x-1).C上的点P使成立的充要条件是P点的坐标为(x1+x2,y1+y2),且2(x1+x2)2+3(y1+y2)2=6,整理得2x12+3y12+2x22+3y22+4x1x2+6y1y2=6.又A、B在C上,即2x12+3y12=6,2x22+3y22=6.故2x1x2+3y1y2+3=0.①将y=k(x-1)代入2x2+3y2=6,并化简得(2+3k2)x2-6k2x+3k2-6=0,于是,,y1·y2=k2(x1-1)(x2-1)=.代入①解得k2=2,此时,于是y1+y2=k(x1+x2-2)=,即P(,).因此,当时,P(,),l的方程为;当时,P(,),l的方程为.(ⅱ)当l垂直于x轴时,由=(2,0)知,C上不存在点P使成立, 综上,C上存在点P(,)使成立,此时l的方程.22、(12分) 解:(Ⅰ)由题设知,函数的定义域是x>-1,,且f′(x)=0有两个不同的根x1,x2,故2x2+2x+a=0的判别式Δ=4-8a>0,即,且,.①又x1>-1,故a>0.因此a的取值范围是(0,).当x变化时,与f′(x)的变化情况如下表:x (-1,x1) x1(x1,x2) x2(x2,+∞)f′(x)+ 0 - 0 +极大值极小值因此在区间(-1,x1)和(x2,+∞)上是增函数,在区间(x1,x2)上是减函数.(Ⅱ)由题设和①知<x2<0,a=-2x2(1+x2),于是f(x2)=x22-2x2(1+x2)ln(1+x2).设函数g(t)=t2-2t(1+t)ln(1+t),则g′(t)=-2(1+2t)ln(1+t).当时,g′(t)=0;当t∈(,0)时,g′(t)>0,故g(t)在区间[,0)上是增函数.于是,当t∈(,0)时,. 因此.。
2009年北京高考数学真题及答案(理科)

2009北京高考数学真题(理科)第I 卷(选择题 共40分)一、本大题每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.在复平面内,复数(12)z i i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.已知向量,a b 不共线,(),c ka b k R d a b =+∈=-如果//c d ,那么 A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 3.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度4.若正四棱柱1111ABCD A B C D -的底面边长为1,1AB 与底面ABCD 成60°角,则11A C 到底面ABCD 的距离为 A .33B .1C .2D .3 5.“2()6k k Z παπ=+∈”是“1cos 22α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件6.若5(12)2(,a b a b +++为有理数),则a b +=A .45B .55C .70D .807.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 A .324 B .328 C .360 D .6488.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
2009年高考北京数学(理科)试题及参考答案

2009年高考数学北京理科试卷含详细解答一. 选择题(本大题共8小题,共0分)1. (2009北京理1)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案详解加入试题篮收藏题目有误回顶部2. (2009北京理2)已知向量a、b不共线,c a b R),d a b,如果c d,那么()A.且c与d同向B.且c与d反向C.且c与d同向D.且c与d反向答案详解加入试题篮收藏题目有误回顶部3. (2009北京理3)为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度答案详解加入试题篮收藏题目有误回顶部4. (2009北京理4)若正四棱柱的底面边长为1,与底面成60°角,则到底面的距离为()A.B.1C. D.答案详解加入试题篮收藏题目有误回顶部5. (2009北京理5)“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案详解加入试题篮收藏题目有误回顶部6. (2009北京理6)若为有理数),则()A.45 B.55 C.70 D.80答案详解加入试题篮收藏题目有误回顶部7. (2009北京理7)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648答案详解加入试题篮收藏题目有误回顶部8. (2009北京理8)点在直线上,若存在过的直线交抛物线于两点,且,则称点为“点”,那么下列结论中正确的是()A.直线上的所有点都是“点”B.直线上仅有有限个点是“点”C.直线上的所有点都不是“点”D.直线上有无穷多个点(点不是所有的点)是“点”答案详解加入试题篮收藏题目有误回顶部二. 填空题(本大题共12小题,共0分)9. (2009北京理9)._________.答案详解加入试题篮收藏题目有误回顶部10. (2009北京理10).若实数满足则的最小值为__________.答案详解加入试题篮收藏题目有误回顶部11. (2009北京理11)设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________.答案详解加入试题篮收藏题目有误回顶部12. (2009北京理12)椭圆的焦点为,点在椭圆上,若,则_________;的小大为__________.答案详解加入试题篮收藏题目有误回顶部13. (2009北京理13)若函数则不等式的解集为____________.答案详解加入试题篮收藏题目有误回顶部14. (2009北京理14)已知数列满足:则________;=_________.答案详解加入试题篮收藏题目有误回顶部15. (2009北京理15).在中,角的对边分别为,.(Ⅰ)求的值;(Ⅱ)求的面积.答案详解加入试题篮收藏题目有误回顶部16. (2009北京理16)如图,在三棱锥中,底面,点,分别在棱上,且(Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成的角的大小;(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.答案详解加入试题篮收藏题目有误回顶部17. (2009北京理17)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.18.设函数(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)若函数在区间内单调递增,求的取值范围.答案详解加入试题篮收藏题目有误回顶部19. (2009北京理19).已知双曲线的离心率为,右准线方程为(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值答案详解加入试题篮收藏题目有误回顶部20. (2009北京理20)已知数集。
2009年北京市高考数学试卷(理科)及答案
2009年北京市高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向 D.k=﹣1且c与d反向3.(5分)为了得到函数y=lg的图象,只需把函数y=lg x的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度4.(5分)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A.B.1 C.D.5.(5分)“α=+2kπ(k∈Z)”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若(1+)5=a+b(a,b为有理数),则a+b=()A.45 B.55 C.70 D.807.(5分)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.6488.(5分)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点”C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点”二、填空题(共6小题,每小题5分,满分30分)9.(5分)=.10.(5分)若实数x,y满足则s=y﹣x的最小值为.11.(5分)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为.12.(5分)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=,∠F1PF2的大小为.13.(5分)若函数则不等式的解集为.14.(5分){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=;a2014=.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.16.(14分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.17.(13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.18.(13分)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.19.(14分)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x=(I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.20.(13分)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.2009年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2009•北京)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,即可确定复数z所在象限.【解答】解:∵z=i(1+2i)=i+2i=﹣2+i,∴复数z所对应的点为(﹣2,1),故选B2.(5分)(2009•北京)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向 D.k=﹣1且c与d反向【分析】根据所给的选项特点,检验k=1是否满足条件,再检验k=﹣1是否满足条件,从而选出应选的选项.【解答】解:∵=(1,0),=(0,1),若k=1,则=+=(1,1),=﹣=(1,﹣1),显然,与不平行,排除A、B.若k=﹣1,则=﹣+=(﹣1,1),=﹣=(1,﹣1),即∥且与反向,排除C,故选D.3.(5分)(2009•北京)为了得到函数y=lg的图象,只需把函数y=lg x的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【分析】先根据对数函数的运算法则对函数进行化简,即可选出答案.【解答】解:∵,∴只需把函数y=lgx的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度故选C.4.(5分)(2009•北京)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A.B.1 C.D.【分析】画出图象,利用线段的关系,角的三角函数,求解即可.【解答】解:依题意,BB1的长度即A1C1到上面ABCD的距离,∠B1AB=60°,BB1=1×tan60°=,故选:D.5.(5分)(2009•北京)“α=+2kπ(k∈Z)”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断.属于基础知识、基本运算的考查.将a=+2kπ代入cos2a易得cos2a=成立,但cos2a=时,a=+2kπ(k∈Z)却不一定成立,根据充要条件的定义,即可得到结论.【解答】解:当a=+2kπ(k∈Z)时,cos2a=cos(4kπ+)=cos=反之,当cos2a=时,有2a=2kπ+⇒a=kπ+(k∈Z),或2a=2kπ﹣⇒a=kπ﹣(k∈Z),故选A.6.(5分)(2009•北京)若(1+)5=a+b(a,b为有理数),则a+b=()A.45 B.55 C.70 D.80【分析】利用二项式定理求出展开式,利用组合数公式求出各二项式系数,化简展开式求出a,b,求出a+b【解答】解析:由二项式定理得:(1+)5=1+C51+C52()2+C53()3+C54()4+C55•()5=1+5+20+20+20+4=41+29,∴a=41,b=29,a+b=70.故选C7.(5分)(2009•北京)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648【分析】本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,个位有8种,写出结果数,当尾数为0时,百位有9种选法,十位有8种结果,写出结果,根据分类计数原理得到共有的结果数.【解答】解:由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有8×8×4=256当尾数为0时,百位有9种选法,十位有8种结果,共有9×8×1=72根据分类计数原理知共有256+72=328故选B8.(5分)(2009•北京)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点”C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点”【分析】根据题设方程分别设出A,P的坐标,进而B的坐标可表示出,把A,B 的坐标代入抛物线方程联立消去y,求得判别式大于0恒成立,可推断出方程有解,进而可推断出直线l上的所有点都符合.【解答】解:设A(m,n),P(x,x﹣1)则,B(2m﹣x,2n﹣x+1)∵A,B在y=x2上∴n=m2,2n﹣x+1=(2m﹣x)2消去n,整理得关于x的方程x2﹣(4m﹣1 )x+2m2﹣1=0∵△=8m2﹣8m+5>0恒成立,∴方程恒有实数解,∴故选A.二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2009•北京)=.【分析】通过因式分解把原式转化为=,消除零因子后得到,由此能够得到的值.【解答】解:===.故答案为:.10.(5分)(2009•北京)若实数x,y满足则s=y﹣x的最小值为﹣6.【分析】①画可行域如图②目标函数s为该直线纵截距③平移目标函数可知直线过(4,﹣2)点时s有最小值.【解答】解:画可行域如图阴影部分,令s=0作直线l:y﹣x=0平移l过点A(4,﹣2)时s有最小值﹣6,故答案为﹣6.11.(5分)(2009•北京)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.【分析】偶函数关于y轴对称,结合图象,根据对称性即可解决本题.【解答】解;取f(x)=x2﹣1,如图,易得该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.故应填﹣1.12.(5分)(2009•北京)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=2,∠F1PF2的大小为120°.【分析】第一问用定义法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二问如图所示:角所在三角形三边已求得,用余弦定理求解.【解答】解:∵|PF1|+|PF2|=2a=6,∴|PF2|=6﹣|PF1|=2.在△F1PF2中,cos∠F1PF2===﹣,∴∠F1PF2=120°.故答案为:2;120°13.(5分)(2009•北京)若函数则不等式的解集为[﹣3,1] .【分析】先由分段函数的定义域选择解析式,构造不等式,再由分式不等式的解法和绝对值不等式的解法分别求解,最后两种结果取并集.【解答】解:①由.②由.∴不等式的解集为x|﹣3≤x≤1,故答案为:[﹣3,1].14.(5分)(2009•北京){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=1;a2014=0.=1,a4n﹣1=0,a2n=a n,知第一项是1,第二项是1,第三项是0,【分析】由a4n﹣3第2009项的2009可写为503×4﹣3,故第2009项是1,第2014项等于1007项,而1007=252×4﹣1,所以第2014项是0.【解答】解:∵2009=503×4﹣3,∴a2009=1,∵a2014=a1007,1007=252×4﹣1,∴a2014=0,故答案为:1,0.三、解答题(共6小题,满分80分)15.(13分)(2009•北京)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.【分析】(Ⅰ)由cosA=得到A为锐角且利用同角三角函数间的基本关系求出sinA的值,根据三角形的内角和定理得到C=π﹣﹣A,然后将C的值代入sinC,利用两角差的正弦函数公式化简后,将sinA和cosA代入即可求出值;(Ⅱ)要求三角形的面积,根据面积公式S=absinC和(Ⅰ)可知公式里边的a 不知道,所以利用正弦定理求出a即可.【解答】解:(Ⅰ)∵A、B、C为△ABC的内角,且>0,∴A为锐角,则sinA==∴∴sinC=sin(﹣A)=cosA+sinA=;(Ⅱ)由(Ⅰ)知sinA=,sinC=,又∵,∴在△ABC中,由正弦定理,得∴a==,∴△ABC的面积S=absinC=×××=.16.(14分)(2009•北京)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.【分析】(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件;(2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE中,求出AD与平面PAC所成角即可;(3)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A﹣DE﹣P的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A﹣DE﹣P是直二面角.【解答】解:(1)∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC.(2)∵D为PB的中点,DE∥BC,∴DE=BC.又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,∴∠DAE是AD与平面PAC所成的角.∵PA⊥底面ABC,∴PA⊥AB.又PA=AB,∴△ABP为等腰直角三角形,∴AD=AB.在Rt△ABC中,∠ABC=60°,∴BC=AB,∴在Rt△ADE中,sin∠DAE===,即AD与平面PAC所成角的正弦值为.(3)∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE⊂平面PAC,PE⊂平面PBC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A﹣DE﹣P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC.这时,∠AEP=90°,故存在点E使得二面角A﹣DE﹣P是直二面角.17.(13分)(2009•北京)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.【分析】(1)由题意知在各路口是否遇到红灯是相互独立的,所以这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯是相互独立事件同时发生的概率,根据公式得到结果.(2)由题意知变量的可能取值,根据所给的条件可知本题符合独立重复试验,根据独立重复试验公式得到变量的分布列,算出期望.【解答】解:(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,∵事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,∴事件A的概率为(Ⅱ)由题意可得ξ可能取的值为0,2,4,6,8(单位:min)事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),∴,∴即ξ的分布列是ξ02468P∴ξ的期望是18.(13分)(2009•北京)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.【分析】(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(II)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间即可;(III)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1时,函数f(x)(﹣1,1)内单调递增,由此即可求k的取值范围.【解答】解:(Ⅰ)f′(x)=(1+kx)e kx,f′(0)=1,f(0)=0,曲线y=f(x)在点(0,f(0))处的切线方程为y=x;(Ⅱ)由f′(x)=(1+kx)e kx=0,得x=﹣(k≠0),若k>0,则当x∈(﹣∞,﹣)时,f′(x)<0,函数f(x)单调递减,当x∈(﹣,+∞,)时,f′(x)>0,函数f(x)单调递增,若k<0,则当x∈(﹣∞,﹣)时,f′(x)>0,函数f(x)单调递增,当x∈(﹣,+∞,)时,f′(x)<0,函数f(x)单调递减;(Ⅲ)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1,即k≤1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1,即k≥﹣1时,函数f(x)(﹣1,1)内单调递增,综上可知,函数f(x)(﹣1,1)内单调递增时,k的取值范围是[﹣1,0)∪(0,1].19.(14分)(2009•北京)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x=(I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.【分析】(I)先利用条件列出关于a,c的方程解方程求出a,c,b;即可求出双曲线方程.(II)先求出圆的切线方程,再把切线与双曲线方程联立求出关于点A,B坐标之间的方程,再代入求出∠AOB的余弦值即可证明∠AOB的大小为定值.【解答】解:(Ⅰ)由题意,,解得a=1,c=,b2=c2﹣a2=2,∴所求双曲C的方程.(Ⅱ)设P(m,n)(mn≠0)在x2+y2=2上,圆在点P(m,n)处的切线方程为y﹣n=﹣(x﹣m),化简得mx+ny=2.以及m2+n2=2得(3m2﹣4)x2﹣4mx+8﹣2m2=0,∵切L与双曲线C交于不同的两点A、B,且0<m2<2,3m2﹣4≠0,且△=16m2﹣4(3m2﹣4)(8﹣2m2)>0,设A、B两点的坐标分别(x1,y1),(x2,y2),x1+x2=,x1x2=.∵,且=x1x2+[4﹣2m(x1+x2)+m2x1x2]=+[4﹣+]=﹣=0.∴∠AOB的大小为900.20.(13分)(2009•北京)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.【分析】(I)根据性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A,验证给的集合集{1,3,4}与{1,2,3,6}中的任何两个元素的积商是否为该集合中的元素;(Ⅱ)由性质P,知a n a n>a n,故a n a n∉A,从而1=∈A,a1=1.再验证又∵<<…<<,,,…,,从而++…++=a1+a2+…+a n,命题得证;(Ⅲ)跟据(Ⅱ),只要证明即可.【解答】解:(Ⅰ)由于3×与均不属于数集{1,3,4,∴该数集不具有性质P.由于1×2,1×3,1×6,2×3,,,,,,都属于数集{1,2,3,6,∴该数集具有性质P.(Ⅱ)∵A={a1,a2,…,a n}具有性质P,∴a n a n与中至少有一个属于A,由于1≤a1<a2<…<a n,∴a n a n>a n故a n a n∉A.从而1=∈A,a1=1.∵1=a1<a2<…a n,n≥2,∴a k a n>a n(k=2,3,4,…,n),故a k a n∉A(k=2,3,4,…,n).由A具有性质P可知∈A(k=2,3,4,…,n).又∵<<…<<,∴,,…,,从而++…++=a1+a2+…+a n,∴且;(Ⅲ)由(Ⅱ)知,当n=5时,有,,即a5=a2•a4=a32,∵1=a1<a2<…<a5,∴a3a4>a2a4=a5,∴a3a4∉A,由A具有性质P可知∈A.由a2•a4=a32,得∈A,且1<,∴,∴,即a1,a2,a3,a4,a5是首项为1,公比为a2等比数列.。
2009年高考北京数学(理科)试题及参考答案
2009年高考北京数学(理科)试题及参考答案教学工作总结2012年上学期一学期以来,我校的教学工作在区教研室的指导下,在中心学校的领导下,经过全体师生的共同努力,学校教学工作始终以全面推进素质教育和打造特色教育的精品为目标,以实施课程改革和提升教育质量为中心,深化教育科研,加强队伍建设,狠抓教育管理,开展了一系列教学活动,取得了一些成绩,现总结如下。
一、加强理论学习,转变教育观念。
开学以来,通过组织教师认真学习区局2012年教学工作会议精神,使教师深刻地理解了教学质量的内涵,形成了抓质量的共识,增强了抓质量的紧迫感和责任感,并切实认识到了课堂教学质量与课程改革是统一的,二者之间并不矛盾:首先,课程改革的根本目的就是为学生的终身发展服务,其次,随着课程改革的不断深入和命题方向的不断改进,试卷检测无疑仍然是衡量教学质量优劣的主要手段。
实践证明,综合素质好的学生往往科学文化素质也很好,在考试的时候也往往能考出较好的成绩,而综合素质差的学生则相反。
通过以上工作的开展。
使我校教师真正形成了质量意识,大家心往一处想,力往一处使,努力提高教学质量,目前已取得了初步成效。
二、加强教师培训、提高教师素质教师是文化的继承者和传播者,是课程改革的具体实施者,师资队伍的水平直接影响到教学质量的提高。
近年来,我校在确保抓好教师业务学习的同时,还切实加强了对教师的培训工作,积极选拔教师参加各级各类培训。
学校还建立了以校为本的教研制度,使教师更新了教育理念,充实了理论知识,激发了创新热情,提升了教育教学水平。
三、坚持质量立校,提高办学效益教学工作是学校的中心工作,教学质量的高低是衡量一所学校办学水平的重要标尺。
近年来,我校坚持以课改为中心,不断加大研讨力度和对教学工作的全程管理,以学会求知为目标,积极探索,大胆实践,努力构建精细化的管理模式,确保了管理行为的准确有效和管理效力的无处不在。
1、加强对备课的指导。
备好课是上好课的前提。
2009年北京市高考数学试卷(理科)(含解析版)
绝密★启用前2009年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题(共8小题,每小题5分,满分40分)1.(5分)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向D.k=﹣1且c与d反向3.(5分)为了得到函数y=lg的图象,只需把函数y=lg x的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度4.(5分)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A.B.1C.D.5.(5分)“α=+2kπ(k∈Z)”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若(1+)5=a+b(a,b为有理数),则a+b=()A.45B.55C.70D.807.(5分)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.6488.(5分)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B 两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点”C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点”二、填空题(共6小题,每小题5分,满分30分)9.(5分)=.10.(5分)若实数x,y满足则s=y﹣x的最小值为.11.(5分)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为.12.(5分)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=,∠F1PF2的大小为.13.(5分)若函数则不等式的解集为.14.(5分){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=;a2014=.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.16.(14分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.17.(13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.18.(13分)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.19.(14分)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x=(I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.20.(13分)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.2009年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)在复平面内,复数z=i(1+2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A1:虚数单位i、复数;A5:复数的运算.【专题】11:计算题.【分析】按多项式乘法运算法则展开,化简为a+bi(a,b∈R)的形式,即可确定复数z所在象限.【解答】解:∵z=i(1+2i)=i+2i=﹣2+i,∴复数z所对应的点为(﹣2,1),故选:B.【点评】本题主要考查复数在坐标系数内复数与点的对应关系.属于基础知识的考查.2.(5分)已知向量=(1,0),=(0,1),=k+(k∈R),=﹣,如果∥,那么()A.k=1且c与d同向B.k=1且c与d反向C.k=﹣1且c与d同向D.k=﹣1且c与d反向【考点】9K:平面向量共线(平行)的坐标表示.【专题】11:计算题.【分析】根据所给的选项特点,检验k=1是否满足条件,再检验k=﹣1是否满足条件,从而选出应选的选项.【解答】解:∵=(1,0),=(0,1),若k=1,则=+=(1,1),=﹣=(1,﹣1),显然,与不平行,排除A、B.若k=﹣1,则=﹣+=(﹣1,1),=﹣=(1,﹣1),即∥且与反向,排除C,故选:D.【点评】本题考查平行向量的坐标表示,当两个向量平行时,一个向量的坐标等于另一个向量坐标的若干倍.3.(5分)为了得到函数y=lg的图象,只需把函数y=lg x的图象上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【考点】3A:函数的图象与图象的变换.【分析】先根据对数函数的运算法则对函数进行化简,即可选出答案.【解答】解:∵,∴只需把函数y=lgx的图象上所有的点向左平移3个单位长度,再向下平移1个单位长度故选:C.【点评】本题主要考查函数图象的平移变换.属于基础知识、基本运算的考查.4.(5分)若正四棱柱ABCD﹣A1B1C1D1的底面边长为1,AB1与底面ABCD成60°角,则A1C1到底面ABCD的距离为()A.B.1C.D.【考点】LS:直线与平面平行.【专题】11:计算题;13:作图题;16:压轴题.【分析】画出图象,利用线段的关系,角的三角函数,求解即可.【解答】解:依题意,BB1的长度即A1C1到上面ABCD的距离,∠B1AB=60°,BB1=1×tan60°=,故选:D.【点评】本题主要考查正四棱柱的概念、直线与平面所成的角以及直线与平面的距离等概念,属于基础知识、基本运算的考查.5.(5分)“α=+2kπ(k∈Z)”是“cos2α=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件;G9:任意角的三角函数的定义;GS:二倍角的三角函数.【分析】本题主要考查三角函数的基本概念、简易逻辑中充要条件的判断.属于基础知识、基本运算的考查.将a=+2kπ代入cos2a易得cos2a=成立,但cos2a=时,a=+2kπ(k∈Z)却不一定成立,根据充要条件的定义,即可得到结论.【解答】解:当a=+2kπ(k∈Z)时,cos2a=cos(4kπ+)=cos=反之,当cos2a=时,有2a=2kπ+⇒a=kπ+(k∈Z),或2a=2kπ﹣⇒a=kπ﹣(k∈Z),故选:A.【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.6.(5分)若(1+)5=a+b(a,b为有理数),则a+b=()A.45B.55C.70D.80【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项式定理求出展开式,利用组合数公式求出各二项式系数,化简展开式求出a,b,求出a+b【解答】解析:由二项式定理得:(1+)5=1+C51+C52()2+C53()3+C54()4+C55•()5=1+5+20+20+20+4=41+29,∴a=41,b=29,a+b=70.故选:C.【点评】本题考查二项式定理求二项展开式、组合数公式求二项式系数.7.(5分)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324B.328C.360D.648【考点】D3:计数原理的应用.【专题】11:计算题;16:压轴题.【分析】本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,个位有8种,写出结果数,当尾数为0时,百位有9种选法,十位有8种结果,写出结果,根据分类计数原理得到共有的结果数.【解答】解:由题意知本题要分类来解,当尾数为2、4、6、8时,个位有4种选法,因百位不能为0,所以百位有8种,十位有8种,共有8×8×4=256当尾数为0时,百位有9种选法,十位有8种结果,共有9×8×1=72根据分类计数原理知共有256+72=328故选:B.【点评】数字问题是排列中的一大类问题,条件变换多样,把排列问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.8.(5分)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x2于A,B 两点,且|PA|=|AB|,则称点P为“点”,那么下列结论中正确的是()A.直线l上的所有点都是“点”B.直线l上仅有有限个点是“点”C.直线l上的所有点都不是“点”D.直线l上有无穷多个点(点不是所有的点)是“点”【考点】IR:两点间的距离公式.【专题】11:计算题;16:压轴题;2:创新题型.【分析】根据题设方程分别设出A,P的坐标,进而B的坐标可表示出,把A,B的坐标代入抛物线方程联立消去y,求得判别式大于0恒成立,可推断出方程有解,进而可推断出直线l上的所有点都符合.【解答】解:设A(m,n),P(x,x﹣1)则,B(2m﹣x,2n﹣x+1)∵A,B在y=x2上∴n=m2,2n﹣x+1=(2m﹣x)2消去n,整理得关于x的方程x2﹣(4m﹣1)x+2m2﹣1=0∵△=8m2﹣8m+5>0恒成立,∴方程恒有实数解,∴故选A.【点评】本题主要考查了直线与圆锥曲线的位置关系.一般是把直线与圆锥曲线方程联立,解决直线与圆锥曲线的交点个数时,利用判别式来判断.二、填空题(共6小题,每小题5分,满分30分)9.(5分)=.【考点】6F:极限及其运算.【专题】11:计算题.【分析】通过因式分解把原式转化为=,消除零因子后得到,由此能够得到的值.【解答】解:===.故答案为:.【点评】本题考查函数的极限,解题时要注意消除零因子.10.(5分)若实数x,y满足则s=y﹣x的最小值为﹣6.【考点】7C:简单线性规划.【分析】①画可行域如图②目标函数s为该直线纵截距③平移目标函数可知直线过(4,﹣2)点时s有最小值.【解答】解:画可行域如图阴影部分,令s=0作直线l:y﹣x=0平移l过点A(4,﹣2)时s有最小值﹣6,故答案为﹣6.【点评】本题考查线性规划问题:可行域画法目标函数几何意义11.(5分)设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.【考点】3I:奇函数、偶函数;62:导数及其几何意义.【分析】偶函数关于y轴对称,结合图象,根据对称性即可解决本题.【解答】解;取f(x)=x2﹣1,如图,易得该曲线在(﹣1,f(﹣1))处的切线的斜率为﹣1.故应填﹣1.【点评】函数性质的综合应用是函数问题的常见题型,在解决这一类问题是要注意培养数形结合的思想方法.12.(5分)椭圆+=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|= 2,∠F1PF2的大小为120°.【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】第一问用定义法,由|PF1|+|PF2|=6,且|PF1|=4,易得|PF2|;第二问如图所示:角所在三角形三边已求得,用余弦定理求解.【解答】解:∵|PF1|+|PF2|=2a=6,∴|PF2|=6﹣|PF1|=2.在△F1PF2中,cos∠F1PF2===﹣,∴∠F1PF2=120°.故答案为:2;120°【点评】本题主要考查椭圆定义的应用及焦点三角形问题,这类题是常考类型,难度不大,考查灵活,特别是对曲线的定义和性质考查的很到位.13.(5分)若函数则不等式的解集为[﹣3,1].【考点】7E:其他不等式的解法.【专题】11:计算题;16:压轴题;35:转化思想.【分析】先由分段函数的定义域选择解析式,构造不等式,再由分式不等式的解法和绝对值不等式的解法分别求解,最后两种结果取并集.【解答】解:①由.②由.∴不等式的解集为x|﹣3≤x≤1,故答案为:[﹣3,1].【点评】本题主要考查分段函数和简单绝对值不等式的解法.属于基础知识、基本运算.14.(5分){a n}满足:a4n﹣3=1,a4n﹣1=0,a2n=a n,n∈N*则a2009=1;a2014= 0.【考点】81:数列的概念及简单表示法.【专题】16:压轴题.=1,a4n﹣1=0,a2n=a n,知第一项是1,第二项是1,第三项是0,【分析】由a4n﹣3第2009项的2009可写为503×4﹣3,故第2009项是1,第2014项等于1007项,而1007=252×4﹣1,所以第2014项是0.【解答】解:∵2009=503×4﹣3,∴a2009=1,∵a2014=a1007,1007=252×4﹣1,∴a2014=0,故答案为:1,0.【点评】培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.三、解答题(共6小题,满分80分)15.(13分)在△ABC中,角A,B,C的对边分别为,.(Ⅰ)求sinC的值;(Ⅱ)求△ABC的面积.【考点】GG:同角三角函数间的基本关系;HP:正弦定理.【专题】11:计算题.(Ⅰ)由cosA=得到A为锐角且利用同角三角函数间的基本关系求出sinA 【分析】的值,根据三角形的内角和定理得到C=π﹣﹣A,然后将C的值代入sinC,利用两角差的正弦函数公式化简后,将sinA和cosA代入即可求出值;(Ⅱ)要求三角形的面积,根据面积公式S=absinC和(Ⅰ)可知公式里边的a 不知道,所以利用正弦定理求出a即可.【解答】解:(Ⅰ)∵A、B、C为△ABC的内角,且>0,∴A为锐角,则sinA==∴∴sinC=sin(﹣A)=cosA+sinA=;(Ⅱ)由(Ⅰ)知sinA=,sinC=,又∵,∴在△ABC中,由正弦定理,得∴a==,∴△ABC的面积S=absinC=×××=.【点评】考查学生灵活运用正弦定理、三角形的面积公式及同角三角函数间的基本关系化简求值.灵活运用两角和与差的正弦函数公式化简求值.16.(14分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC.(1)求证:BC⊥平面PAC;(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;(3)是否存在点E使得二面角A﹣DE﹣P为直二面角?并说明理由.【考点】MI:直线与平面所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;14:证明题.【分析】(1)欲证BC⊥平面PAC,根据直线与平面垂直的判定定理可知只需证BC与平面PAC内两相交直线垂直,根据线面垂直的性质可知PA⊥BC,而AC⊥BC,满足定理所需条件;(2)根据DE⊥平面PAC,垂足为点E,则∠DAE是AD与平面PAC所成的角.在Rt△ADE中,求出AD与平面PAC所成角即可;(3)根据DE⊥AE,DE⊥PE,由二面角的平面角的定义可知∠AEP为二面角A ﹣DE﹣P的平面角,而PA⊥AC,则在棱PC上存在一点E,使得AE⊥PC,从而存在点E使得二面角A﹣DE﹣P是直二面角.【解答】解:(1)∵PA⊥底面ABC,∴PA⊥BC.又∠BCA=90°,∴AC⊥BC,∴BC⊥平面PAC.(2)∵D为PB的中点,DE∥BC,∴DE=BC.又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,垂足为点E,∴∠DAE是AD与平面PAC所成的角.∵PA⊥底面ABC,∴PA⊥AB.又PA=AB,∴△ABP为等腰直角三角形,∴AD=AB.在Rt△ABC中,∠ABC=60°,∴BC=AB,∴在Rt△ADE中,sin∠DAE===,即AD与平面PAC所成角的正弦值为.(3)∵DE∥BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC.又∵AE⊂平面PAC,PE⊂平面PBC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A﹣DE﹣P的平面角.∵PA⊥底面ABC,∴PA⊥AC,∴∠PAC=90°,∴在棱PC上存在一点E,使得AE⊥PC.这时,∠AEP=90°,故存在点E使得二面角A﹣DE﹣P是直二面角.【点评】考查线面所成角、线面垂直的判定定理以及二面角的求法,涉及到的知识点比较多,知识性技巧性都很强.17.(13分)某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知在各路口是否遇到红灯是相互独立的,所以这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯是相互独立事件同时发生的概率,根据公式得到结果.(2)由题意知变量的可能取值,根据所给的条件可知本题符合独立重复试验,根据独立重复试验公式得到变量的分布列,算出期望.【解答】解:(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,∵事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,∴事件A的概率为(Ⅱ)由题意可得ξ可能取的值为0,2,4,6,8(单位:min)事件“ξ=2k”等价于事件“该学生在路上遇到k次红灯”(k=0,1,2,3,4),∴,∴即ξ的分布列是ξ02468P∴ξ的期望是【点评】考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.18.(13分)设函数f(x)=xe kx(k≠0).(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)在区间(﹣1,1)内单调递增,求k的取值范围.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】11:计算题;16:压轴题.【分析】(I)欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.(II)先求出f(x)的导数,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间即可;(III)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1时,函数f(x)(﹣1,1)内单调递增,由此即可求k的取值范围.【解答】解:(Ⅰ)f′(x)=(1+kx)e kx,f′(0)=1,f(0)=0,曲线y=f(x)在点(0,f(0))处的切线方程为y=x;(Ⅱ)由f′(x)=(1+kx)e kx=0,得x=﹣(k≠0),若k>0,则当x∈(﹣∞,﹣)时,f′(x)<0,函数f(x)单调递减,当x∈(﹣,+∞,)时,f′(x)>0,函数f(x)单调递增,若k<0,则当x∈(﹣∞,﹣)时,f′(x)>0,函数f(x)单调递增,当x∈(﹣,+∞,)时,f′(x)<0,函数f(x)单调递减;(Ⅲ)由(Ⅱ)知,若k>0,则当且仅当﹣≤﹣1,即k≤1时,函数f(x)(﹣1,1)内单调递增,若k<0,则当且仅当﹣≥1,即k≥﹣1时,函数f(x)(﹣1,1)内单调递增,综上可知,函数f(x)(﹣1,1)内单调递增时,k的取值范围是[﹣1,0)∪(0,1].【点评】本小题主要考查直线的斜率、利用导数研究函数的单调性、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力以及分类讨论思想.属于基础题.19.(14分)已知双曲线C:=1(a>0,b>0)的离心率为,右准线方程为x=(I)求双曲线C的方程;(Ⅱ)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,证明∠AOB的大小为定值.【考点】KJ:圆与圆锥曲线的综合.【专题】11:计算题;15:综合题;16:压轴题;35:转化思想.【分析】(I)先利用条件列出关于a,c的方程解方程求出a,c,b;即可求出双曲线方程.(II)先求出圆的切线方程,再把切线与双曲线方程联立求出关于点A,B坐标之间的方程,再代入求出∠AOB的余弦值即可证明∠AOB的大小为定值.【解答】解:(Ⅰ)由题意,,解得a=1,c=,b2=c2﹣a2=2,∴所求双曲C的方程.(Ⅱ)设P(m,n)(mn≠0)在x2+y2=2上,圆在点P(m,n)处的切线方程为y﹣n=﹣(x﹣m),化简得mx+ny=2.以及m2+n2=2得(3m2﹣4)x2﹣4mx+8﹣2m2=0,∵切L与双曲线C交于不同的两点A、B,且0<m2<2,3m2﹣4≠0,且△=16m2﹣4(3m2﹣4)(8﹣2m2)>0,设A、B两点的坐标分别(x1,y1),(x2,y2),x1+x2=,x1x2=.∵,且=x1x2+[4﹣2m(x1+x2)+m2x1x2]=+[4﹣+]=﹣=0.∴∠AOB的大小为900.【点评】本题主要考查双曲线的标准方程、圆的切线方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.20.(13分)已知数集A={a1,a2,…,a n}(1≤a1<a2<…a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A.(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(Ⅱ)证明:a1=1,且;(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.【考点】8B:数列的应用.【专题】14:证明题;15:综合题;16:压轴题;23:新定义;32:分类讨论.【分析】(I)根据性质P;对任意的i,j(1≤i≤j≤n),a i a j与两数中至少有一个属于A,验证给的集合集{1,3,4}与{1,2,3,6}中的任何两个元素的积商是否为该集合中的元素;(Ⅱ)由性质P,知a n a n>a n,故a n a n∉A,从而1=∈A,a1=1.再验证又∵<<…<<,,,…,,从而++…++=a1+a2+…+a n,命题得证;(Ⅲ)跟据(Ⅱ),只要证明即可.【解答】解:(Ⅰ)由于3×与均不属于数集{1,3,4,∴该数集不具有性质P.由于1×2,1×3,1×6,2×3,,,,,,都属于数集{1,2,3,6,∴该数集具有性质P.(Ⅱ)∵A={a1,a2,…,a n}具有性质P,∴a n a n与中至少有一个属于A,由于1≤a1<a2<…<a n,∴a n a n>a n故a n a n∉A.从而1=∈A,a1=1.∵1=a1<a2<…a n,n≥2,∴a k a n>a n(k=2,3,4,…,n),故a k a n∉A(k=2,3,4,…,n).由A具有性质P可知∈A(k=2,3,4,…,n).又∵<<…<<,∴,,…,,从而++…++=a1+a2+…+a n,∴且;(Ⅲ)由(Ⅱ)知,当n=5时,有,,即a5=a2•a4=a32,∵1=a1<a2<…<a5,∴a3a4>a2a4=a5,∴a3a4∉A,由A具有性质P可知∈A.由a2•a4=a32,得∈A,且1<,∴,∴,即a1,a2,a3,a4,a5是首项为1,公比为a2等比数列.【点评】本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分分类讨论等数学思想方法.此题能很好的考查学生的应用知识分析、解决问题的能力,侧重于对能力的考查,属于较难层次题.。
2009年全国高考数学试题——全国卷1(理科)含答案
2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ +=2+I,则复数z=(A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈 (C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y ab-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
(14).设等差数列 {an } 的前
n
项和为
Sn
.若
a5 =5a3
,则
S9 S5
=
.
(15).设 OA 是球 O 的半径, M 是 OA 的中点,过 M 且与 OA 成 45°角的平面截球 O 的表
7p
面得到圆 C .若圆 C 的面积等于 ,则球 O 的表面积等于
.
4
(16).已知 AC 、 BD 为圆 O : x2+ y2 =4 的两条相互垂直的弦,垂足为 M (1, 2) ,则四边
9
且当k 2时点P( 3 , 2 ),当k 2时,点P( 3 , 2 )
22
22
对应直线l的方程分别为y 2x 2 2, y 2x 2 2
②若直线l垂直于x轴,则点A(1, 2 3 ), B(1, 2 3 )
3
3
此时点P(2, 0)不在椭圆上,所以此种情况下满足条件的点p不存在
形 ABCD 的面积的最大值为
.
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤. (17).(本小题满分 10 分)
设 VABC 的内角 A 、 B 、 C 的对边长分别为 a 、 b 、 c , cos( A- C)+cos B= 3 , b2 =ac 2
,求 B .
22
a2 3
得a 3,b 2
(2)椭圆C的方程为 x2 3
y2 2
1,当斜率k存在时, 直线l的方程为y=k( x-1) 设点A(x1, y1 ), B(x2 , y2 ), uuur uuur uuur
① 若存在点P(x0 , y0 ) C, 则由OP=OA+OB,可得x0 x1 x2 , y0 y1 y2
(Ⅱ) C 上是否存在点 P ,使得当 l 绕 F 到某一位置时,有 OP=OA+OB 成立?若存在,求 出所有的 P 的坐标与 l 的方程;若不存在,说明理由。
(22).(本小题满分 12 分)
设函数有两个极值点 x1,x2,且x1 < x2
(Ⅰ)求 a 的取值范围,并讨论 f (x) 的单调性;
x2 1 x
3,
解得x uuur uuuv
u2u2uu,v所以AA1
2
以A为坐标原点,AB、AC、AA1分别为x、y、z轴正方向
uuuv 建系,则BD
(-1,0,
2
uuuv ),BC
(-1,1,0)
2
v 设n
(x,
y,
z),
且
v n nv
uuuv BD uuuv BC
x x
2 2 y
z 0
(Ⅲ) 记 表示抽取的 3 名工人中男工人数,求 的分布及数学期望。
9
(21).(本小题满分 12 分)
已知椭圆
C
:
x2 a2
+
y2 b2
=1(a
>b
>0)
的离心率为
3 ,过右焦点 F 的直线与 C 相交与 A 、
3
2 B 两点,当 l 的斜率为 1 时,坐标原点 O 到 l 的距离为
2
(Ⅰ)求 a, b 的值; uuur uuur uuur
设数列{an}的前 n 项和为 Sn ,已知 a1=1, Sn+1=4an + 2 。 (Ⅰ)设 bn =an+1- 2an ,证明数列{bn}是等比数列。 (Ⅱ)求数列 {an } 的通项公式。
(20).(本小题满分 12 分) 某车间甲组有 10 名工人,其中有 4 名女工人;乙组有 5 名工人,其中有 3 名女工人。现采 用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取 3 名工人进行技术 考核。 (Ⅰ)求从甲、乙两组各抽取的人数; (Ⅱ)求从甲组抽取的工人中恰好 1 名女工人的概率;
由P( 0) C24C13 2 , C120C15 25
P( 1) C16C14C13 C24C12 28, C120C15 C120C15 75
P( 2)= C62C13 C16C14C12 31, P( 3) C62C12 10
C120 C15
C120 C15
75
C120C15 75
10
1பைடு நூலகம்
3 10 3
A.
B. C.
D.
10
5
10
5
(6)已知向量 a=(2,1),a·b=10,︳a+b︳= 5 2 ,则︳b︳=
A. 5 B. 10 C. 5 D. 25 x- y- 2=0
(7)设 a=log3p , b=log3 3 , c=log3 2 ,则 A. a>b>c B. a>c>b C. b>a>c D. b>c>a
由椭圆C和直线l两个方程联立消y得( 2+3k2 )x2 6k 2 x 3k 2 6 0
显然对任意x R, 0恒成立, 从而有
x0
x1
x2
6k 2 2 3k 2
,
y0
y1
y2
k ( x1
x2
2)
4k 2 3k 2
将x0 , y0代入椭圆方程并整理得 3k4 4k 2 4 0,解得k 2 所以当直线l不垂直于x轴时, 满足条件的点P存在
(2)由(1)得bn
3
2n1 ,即a n1
2an
=3
2n1 , 所以
a n1 2n 1
an 2n
3 ,且 a1 42
1 2
a 于是{
n
}是首项为
1
,公差为
3
的等差数列
2n
2
4
所以 an 1 (n-1) 3 1 (3n 1)
2n 2
44
所以an (3n 1)2n2 , (n N* )
20.
uuur uuur 交 C 于 A、B 两点。若 AF =4FB ,则 C 的离心率为
9
6
789
A. B. C. D.
5
555
(12)12.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。
现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到 △ 右侧的平面图形,则标“△”的面的方位是
22.
解:(Ⅰ)因为 ƒ/ (x) 2x2 2x a ,(x 1) x 1
所以设g(x) 2x2 2x a (x 1)
依题意,由 g
1 〉1 2 (1)
0
得0
g
(
1
)
0
a
1 ,所以a的取值范围为(0, 2
1 )
2
2
由 ƒ/ (x) 0得 1 x x1或x x2 由 ƒ/ (x) 0得x1 x x2 所以f (x)的单调增区间为(- 1, x1 )和( x2 , ),单调减区间为(x1, x2 )
0
,
v
uuuuv
取n (1,1, 2),又CB1 (1,-1,2)
于是可得 cos
v uuuuv n, CB1
1 ,所以 2
v uuuuv n, CB1
600 ,其余角即为所求,
所以B1C与面BCD所成的角的大小为300
19.
解:(1)由Sn1 4an 2,有Sn 4an1 2,两式相减得an1 4an 4an1 变形为an1 2an 2(an 2an1 ),即bn 2bn1(, n 2) 由S2 a1 a2 4a1 2得a2 5,于是b1 a2 2a1 3 所以数列{bn }是首项为3,公比为2的等比数列
A.南 B.北 C.西 D.下
上东
2009 年普通高等学校招生统一考试
理科数学
第Ⅱ卷(非选择题,共 90 分)
注意事项: 本卷共 2 页,用黑色碳素笔将答案答在答题卡上。答在试题卷上的答案无效. 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在答题卡上.
(13). (x y- y x )4 的展开式中 x3 y3 的系数为
条形码。 网
2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮
擦擦干净后,再选涂其他答案标号。在试题卷上作答无效。
参考公式:
如果事件 A,B 互斥,那么
球的表面积公式
P( A B) P( A) P(B)
S 4πR2
如果事件 A,B 相互独立,那么 P( AgB) P( A)gP(B)
其中 R 表示球的半径
球的体积公式
如果事件 A 在一次试验中发生的概率是 P ,那么
V 4 πR3 3
n 次独立重复试验中恰好发生 k 次的概率
其中 R 表示球的半径
Pn (k) Cnk Pk (1 P)nk (k 0,1, 2,L ,n)
本卷共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 一、选择题
5
C. - 5
D. - 12
13 13
13
13
(4)曲线
y=
x 2x-
1
在点(1,1)处的切线方程为
A. x- y- 2=0 B. x+ y- 2=0 C. x+ 4 y- 5=0 D. x- 4 y- 5=0
(5)已知正四棱柱 ABCD- A1B1C1D1 中, AA1=2AB ,E 是 AA1 的中点,则异面直线 BE 与 CD1 所成角的余弦值为
p
p
(8)若将函数 y=tan(ωx+ )(ω>0) 的图像向右平移 个单位长度后,与函数
4
6
p y=tan(ωx+ ) 的图像重合,则 ω 的最小值为