圆周运动中的动力学分析
动力学中的圆周运动

动力学中的圆周运动动力学是物理学的一个重要分支,研究物体的运动,而圆周运动是动力学中常见且重要的一种运动形式。
本文将着重介绍动力学中的圆周运动以及相关的理论和公式。
一、圆周运动的基本概念圆周运动指的是物体沿着圆形轨迹运动的过程。
在圆周运动中,物体围绕一个固定的中心点旋转,运动轨迹形成圆形。
这种运动具有一定的规律性,涉及到角度、角速度、角加速度等概念。
二、圆周运动的基本参数1. 角度:圆周运动中,我们使用角度来描述物体相对于起始位置所旋转的角度。
角度通常用符号θ表示。
2. 弧长:弧长是指圆周上一段弧所对应的长度,通常用符号s表示。
3. 角速度:角速度是指物体单位时间内绕圆心旋转的角度。
角速度通常用符号ω表示。
4. 角加速度:角加速度是指角速度单位时间内的变化率。
角加速度通常用符号α表示。
三、圆周运动的公式根据物体在圆周运动中的特性,可得到以下几个重要的公式:1. 圆周运动的速度公式:v = ω * r其中,v为物体在圆周运动中的速度,ω为角速度,r为圆周的半径。
2. 圆周运动的位移公式:s = θ * r其中,s为物体在圆周运动中的位移,θ为物体旋转的角度,r为圆周的半径。
3. 圆周运动的加速度公式:a = α * r其中,a为物体在圆周运动中的加速度,α为角加速度,r为圆周的半径。
四、圆周运动的应用圆周运动在日常生活和科学研究中有着广泛的应用。
以下列举几个例子:1. 研究天体运动:天体运动中的行星、卫星等物体都遵循着圆周运动的规律,研究圆周运动有助于解析天体运动的规律。
2. 轮胎滚动:车辆行驶时轮胎进行的滚动运动也是圆周运动的一种应用,了解圆周运动的特性有助于提高车辆运行的效率和稳定性。
3. 机械振动:很多机械装置中的振动运动也可以近似地看作是圆周运动,理解圆周运动对于机械振动的控制和调节有着重要的意义。
五、总结动力学中的圆周运动是物体在圆形轨迹上的运动形式,具有一定的规律性和重要性。
在圆周运动中,角度、角速度、角加速度等参数起着重要的作用。
曲线运动精讲精练:11.圆周运动的动力学问题

圆周运动的动力学问题一、向心力1.作用效果:产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小:F=m v2r=mω2r=m4π2rT2=mωv=4π2mf2r3.方向:总是沿半径方向指向圆心,时刻在改变,即向心力是一个变力.4.来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.二、圆周运动、向心运动和离心运动1.匀速圆周运动与非匀速圆周运动两种运动具体比较见下表:2.(1)本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的倾向.(2)受力特点(如图所示)①当F=mrω2时,物体做匀速圆周运动;②当F=0时,物体沿切线方向飞出;③当F<mrω2时,物体逐渐远离圆心,F为实际提供的向心力.④当F>mrω2时,物体逐渐向圆心靠近,做向心运动.三、圆周运动动力学分析思路1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.2.向心力的确定(1)先确定圆周运动的轨道所在的平面,确定圆心的位置.(2)再分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力.3.解决动力学问题要注意三个方面的分析(1)几何关系的分析,目的是确定圆周运动的圆心、半径等.(2)运动分析,目的是表示出物体做圆周运动所需要的向心力.(3)受力分析,目的是利用力的合成与分解知识,表示出物体做圆周运动时,外界所提供的向心力.4.几种常见的向心力来源(1)飞机在水平面内的圆周运动,如图1所示;(2)火车转弯,如图2所示;(3)圆锥摆,如图3所示;。
圆周运动的实例分析

物体沿圆的内轨道运动
A
mg
N
N
N
【例题5】质量为m的小球在竖直平面内的圆形轨道内侧运动,若经最高点不脱离轨道的临界速度为v,则当小球以2v速度经过最高点时,小球对轨道的压力大小为( ) 0 mg 3mg 5mg
C
2、轻杆模型
五、竖直平面内圆周运动
质点被一轻杆拉着在竖直面内做圆周运动
质点在竖直放置的光滑细管内做圆周运动
过最高点的最小速度是多大?
V=0
L
R
【例题6】用一轻杆栓着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( ) A.小球过最高点时,杆的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,杆对小球的作用力可以与球所受的重力方向相反
BD
【例题4】如图所示,火车道转弯处的半径为r,火车质量为m,两铁轨的高度差为h(外轨略高于内轨),两轨间距为L(L>>h),求: 火车以多大的速率υ转弯时,两铁轨不会给车轮沿转弯半径方向的侧压力? υ是多大时外轨对车轮有沿转弯半径方向的侧压力? υ是多大时内轨对车轮有沿转弯半径方向的侧压力?
四、汽车过拱形桥
T
mg
T
mg
过最高点的最小速度是多大?
O
【例题1】如图所示,一质量为m的小球用长为L的细绳悬于O点,使之在竖直平面内做圆周运动,小球通过最低点时速率为v,则小球在最低点时细绳的张力大小为多少? O mg T
【例题2】用细绳栓着质量为m的物体,在竖直平面内做圆周运动,圆周半径为R。则下列说法正确的是 A.小球过最高点时,绳子的张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点是的速度是 D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反
圆周运动实例分析(圆锥摆类问题)

整理得: 由几何关系有:
③
④
《课时跟踪检测》P77
(8)
(多选)如图,一根细线下端拴一个金属小球P,细 线的上端固定在金属块Q上,Q放在带小孔的水平桌面 上。小球在某一水平面内做匀速圆周运动(圆锥摆)。 现使小球在一个更高一些的水平面上做匀速圆周运动 (图上未画出),两次金属块Q都保持在桌面上静止。 则后一种情况与原来相比较,下面的判断中正确的是 ( ) A.小球P运动的周期变大 B.小球P运动的线速度变大 C.小球P运动的角速度变大 D.Q受到桌面的支持力变大
1.火车在水平弯道转弯
N
●
2.倾斜弯道转弯
N
051201铁路弯道内外轨高度差.asf
F
G
●
●
h
L
G
θ
01
问题:火车水平轨道转弯
向心力来源? 动力学方程? ①
问题:
当火车转弯速度: ①火车运动轨迹的圆心 ① v > v0 时 是 0 2点? (1 )内外轨道高度差 h ② v < v0 时 ②车轮刚好与内外轨道没 2 / gr h = L v 0 有挤压时,向心力来源?火 车的速度v0=?
N A.h 越高,摩托车对侧壁 的压力将越大 B.h 越高,摩托车做圆周 G 运动的向心力将越大 C.h 越高,摩托车做圆周运动的周期将越小 D.h 越高,摩托车做圆周运动的线速度将越大
-----圆锥摆模型 建立物理模型:
P31 图2-3-2 旋转秋千 L
θ
y
T
h
●
x O
G
动力学方程:
现象观察:?
竖直面内的圆周运动模型(解析版)--2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法竖直面内的圆周运动模型目录一.一般圆周运动的动力学分析二.竖直面内“绳、杆(单、双轨道)”模型对比分析三.竖直面内圆周运动常见问题与二级结论三.过拱凹形桥模型一.一般圆周运动的动力学分析如图所示,做圆周运动的物体,所受合外力与速度成一般夹角时,可将合外力沿速度和垂直速度分解,则由牛顿第二定律,有:Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2r作一般曲线运动的物体,处理轨迹线上某一点的动力学时,可先以该点附近的一小段曲线为圆周的一部分作曲率圆,然后即可按一般圆周运动动力学处理。
Fτ=maτ,aτ改变速度v的大小F n=ma n,a n改变速度v的方向,a n=v2ρ,ρ为曲率圆半径。
二.竖直面内“绳、杆(单、双轨道)”模型对比分析轻绳模型(没有支撑)轻杆模型(有支撑)常见类型过最高点的临界条件由mg=mv2r得v临=gr由小球能运动即可得v临=0对应最低点速度v低≥5gr对应最低点速度v低≥4gr绳不松不脱轨条件v低≥5gr或v低≤2gr不脱轨最低点弹力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力F低-mg=mv低2/rF低=mg+mv低2/r,向上拉力最高点弹力过最高点时,v≥gr,F N+mg=mv2r,绳、轨道对球产生弹力F N=mv2r-mg向下压力(1)当v=0时,F N=mg,F N为向上支持力(2)当0<v<gr时,-F N+mg=m v2r,F N向上支持力,随v的增大而减小(3)当v=gr时,F N=0(4)当v>gr时,F N+mg=m v2r,F N为向下压力并随v的增大而增大在最高点的F N 图线取竖直向下为正方向取竖直向下为正方向三.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。
圆周运动的动力学问题

课题:圆周运动的动力学问题教学目1。
理解掌握向心力的来源及圆周运动的动力学问题是牛顿定律的具体应用2•掌握圆周运动的动力学问题处理方法。
重点、难点:圆周运动的动力学问题的处理方法教学方法:讲练结合 教学过程一、描述匀速圆周运动线速度方向改变快慢的物理量 42r方向:总是指向圆心,时刻在变化(a 是一个变加速度)注意:a 与r 是成正比还是反比,要看前提条件,若3相同,a 与r 成正比;若 v 相同,a 与r 成反比。
二、质点做匀速圆周运动的条件:质点具有初速度,并且始终受到跟线速度方 向垂直,时刻指向圆心,大小恒定的合外力(即向心力)的作用。
广2大小:F mJ m 2r mar向心力 方向:总是指向圆心,时刻在变化(F 是一个变力)-作用:产生向心加速度,只改变速度的方向,不改变速度的大小,因 此向心力对做圆周运动的物体不做功。
注意:(1)由于匀速圆周运动仅是速度方向变化而速度大小不变,故仅存在向 心加速度,因此向心力就是做匀速圆周运动的物体所受外力的合力。
(2) 一个物体不论在哪个平面内做匀速圆周运动,其合外力在任何时刻必指 向圆心,且大小不变。
(3) 向心力不是和重力、弹力、摩擦力相并列的一种类型的力,是根据力的效果命名的在分析做圆周运动的质点受力情况时, 切不可在物体的相互作用力 (重力、弹力摩擦力、万有引力)以外再添加一个向心力。
二、一般的圆周运动(非匀速圆周运动)速度的大小有变化,向心力和向心加速度的大小也随着变化,禾I 」用公式求圆周 上某一点或某一时刻的向心力和向心加速度的大小,必须用该点的瞬时速度 值。
重点分析:1、力的合力或分力都可以作为向心力,如下表所示:向心力不是一种特殊的 力,重力(引力)、弹力、摩擦力等每种力以及这些匀速圆周运动实例 T向心力厂 2y 大小:a — 2r 4 2] r向心加速度l2、Fn=man仅是牛顿第二定律在匀速圆周运动中的应用,也就是说,匀速圆周运动同样遵循牛顿运动定律,匀速圆周运动的瞬时特性可以与一个匀加速直线运动相对应,如下表所示:【例1】在一个水平转台上放有A、B、C三个物体,它们跟台面间的摩擦因数相同,A的质量为2m,B、C各为m, A、B离转轴均为r、c为2r,贝UA、若A、B、C三物体随转台一起转动未发生滑动,A、C的向心加速度比B大B、若A、B、C三物体随转台一起转动未发生滑动,B把受的摩擦力最小(2)C 、 当转台转速增加时,C 最先发生滑动D 、 当转台转速继续增加时,A 比B 先滑动【解析】A 、B 、C 三物体随转台一起转动时,它们的角速度都等于转台的角速 度,设为3,根据向心加速度的公式a 2r 已知r A =r B <r c ,把以三物体向心加 速度的大小关系为a A =a B <s c , A 错。
【高考物理】圆周运动的动力学临界问题

圆周运动的动力学临界问题圆周运动动力学的临界问题——比如小球过竖直平面内圆周轨道最高点、物块随水平桌面转动而不外滑等,很多同学在最初接触这个问题时,都感觉很难理解,各种情形下的结论也常常混淆,究其根本,问题还是出在对圆周运动的径向动力学的理解不深入,对圆周运动动力学临界问题的类型和分析技巧不熟悉。
一、圆周运动的动力学之供需关系问题圆周运动的临界问题的正确分析,需要从供需匹配角度深入理解圆周运动的径向动力学——供需匹配,物体就做圆周运动,供需不匹配,物体就要离开圆周轨道做离心、近心运动。
我们以一个具体的例子来说明这个问题。
如图2-12-1所示,光滑水平桌面上,用一根细绳拴着一个小球绕O 点做圆周运动,则由圆周运动动力学可知,小球所受径向合力,即绳中拉力满足rv m F 2=。
现若将绳从O 点完全松开,绳中张力变为0,即0=F ,则小球将由于惯性而沿原圆周轨道切线方向做直线运动离开圆周轨道;若并不是完全放松,而只是适当的减小一些绳中拉力,即rv m F 2<,则绳中拉力虽然没能够将小球拉回原来的圆周轨道,但也将小球的轨迹拉弯了——夹在沿切线的直线和原圆周轨道之间,做离心运动;若不仅没松开绳,而且还用更大的力拉绳,即rv m F 2>,则小球将被绳拉到原圆周轨道内侧来,做近心运动。
圆周运动径向动力学的供需匹配问题,可以从上述例子中总结出来:1、径向合力为零:0n =F ,物体沿切线方向做直线运动。
2、径向合力不为零:0n ≠F ,物体偏离切线方向向径向合力一侧做曲线运动。
(1)径向合力小于所需的向心力:r m rv m F 22n ω=<,物体相对原圆周轨道做离心运动;(2)径向合力等于所需的向心力:r m rv m F 22n ω==,物体沿原圆周轨道继续做圆周运动;(3)径向合力大于所需的向心力:r m rv m F 22n ω=>,物体相对原圆周轨道做近心运动。
进一步可以这样理解:物体由于惯性,总有沿着切线做离心运动的趋势;物体转动的线速度、角速度越大,离心运动的趋势越大,越有可能做离心运动;线速度、角速度越小,离心运动的趋势越小,越有可能被径向合力拉近圆心而做近心运动;只有径向合力正好等于所需向心力大小时,径向合力刚好抵消物体的离心运动趋势,物体才能沿固定半径轨道做圆周运动。
从动力学角度分析匀速圆周运动

从动力学角度分析匀速圆周运动根据牛顿第二定律,物体的加速度方向和大小都由物体所受到的合外力来决定。
我们来看一个具体的例子。
细绳拴着一个小球在光滑水平面上做匀速圆周运动。
分析小球的受力。
由于竖直方向上小球始终静止,处于平衡状态,因此重力和支持力合力为0。
小球受到的合外力就等于绳子的拉力,沿着绳子指向圆心,由牛顿第二定律可知向心加速度的方向也是指向圆心。
从这个例子,我们看出做匀速圆运动的物体受到的合外力一定是沿着半径指向圆心的,因此称为向心力。
1.向心力:做匀速圆周运动的物体受到的合外力又称为向心力。
以前,我们经常是对物体受力分析,得到合外力的方向,进而确定加速度的方向。
现在,对于做圆周运动的物体,我们更经常的是反过来。
如果已经知道一个物体在做匀速圆周运动,那么,那么它的加速度一定是指向圆心的,因此合外力的方向(对匀速圆周运动来说也就是向心力的方向)也就是指向圆心的。
需要注意的是,虽然我们从向心加速度反推物体合外力的方向,但是要清楚:力是产生加速度的原因,力决定了加速度的方向,而不是加速度决定了力的方向。
2.向心力的大小:根据牛顿第二定律,3.向心力是效果力受力分析时不应画在受力图示中。
受力图中出现的应该是性质力。
【引入】:小球在光滑的圆锥桶内做匀速圆周运动,分析其受力情况。
【提问】:下图中的受力分析正确吗?从上面向心力的定义知道,向心力是做匀速圆周运动的物体受到的各个外力的合力,因此在上面受力分析图中不应该与重力、支持力同时画在一起。
从另外一个角度看,上面受力分析图中,重力的施力物体是地球,支持力的施力物体是圆锥桶壁,那么所画的向心力的施力物体是谁呢?不能明确的说出来。
受力分析时,找不出明确的施力物体的那个力,是不存在的,不应该出现在受力分析图中。
其实,像重力、支持力、摩擦力等,是按照力的性质来命名的,称为性质力。
像在光滑斜面上的物体,我们所说的下滑力是按照作用效果——使物体沿斜面下滑,来命名的,其实它是重力沿斜面的分力,在受力分析图中不应该单独出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动中的动力学分析
(1)向心力的来源
向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力.
(2)向心力的确定
①确定圆周运动的轨道所在的平面,确定圆心的位置.
②分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力. 例1 (多选)如图1
所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=3.14),则赛车( )
图1
A .在绕过小圆弧弯道后加速
B .在大圆弧弯道上的速率为45 m/s
C .在直道上的加速度大小为5.63 m/s 2
D .通过小圆弧弯道的时间为5.58 s
绕赛道一圈时间最短.
答案 AB
解析 在弯道上做匀速圆周运动时,根据径向静摩擦力提供向心力得,kmg =m v 2m r
,当弯道半径一定时,在弯道上的最大速率是一定的,且在大弯道上的最大速率大于小弯道上的最大速率,故要想时间最短,可在绕过小圆弧弯道后加速,选项A 正确;在大圆弧弯道上的速率为v m R =kgR = 2.25×10×90 m /s =45 m/s ,选项B 正确;直道的长度为x =L 2-(R -r )2
=50 3 m ,在小弯道上的最大速率为:v m r =kgr = 2.25×10×40 m /s =30 m/s ,在直道上
的加速度大小为a =v 2m R -v 2m r 2x =452-3022×503
m /s 2≈6.50 m/s 2,选项C 错误;由几何关系可知,小圆弧轨道的长度为2πr 3,通过小圆弧弯道的时间为t =2πr
3v m r =2×3.14×403×30
s ≈2.80 s ,选项D 错误.。