第三章 再结晶与加工硬化
3 第三章 金属的结晶、变形与再结晶——【工程材料学】

(1) 形核
形核方式有两种:均匀形核和非均匀形核。
均匀形核即晶核在液态金属中均匀的形成;非均匀形核 即晶核在液态金属中非均匀的形成。
实际生产中,金属中存在杂质并且凝固过程在容器或铸 型中进行,这样,形核将优先在某些固态杂质表面及容器 或铸型内壁进行,这就是非均匀形核。
非均匀形核所需过冷度显著小于均匀形核,实际金属的 凝固形核基本上都属于非均匀形核。
颗粒钉扎作用的电镜照片
3.2.2 塑性变形对金属组织与性能的影响
一、 塑性变形对金属组织与结构的影响
1. 显微组织的变化 滑移带 孪晶带 晶粒形状
金属在外力作用下发生塑性变形时,随着变形量的增加晶 粒形状发生变化,沿变形方向被拉长或压扁。当拉伸变形量 很大时,只能观察到纤维状的条纹(晶粒变成细条状),称 之为纤维组织。
Hall-Pitch关系:σs =σ0 + Kyd-1/2
三、 合金的塑性变形 根据组织,合金可分为单相固溶体和多相混合物两种。合
金元素的存在,使合金的变形与纯金属显著不同。
奥氏体
珠光体
1. 单相固溶体的塑性变形 单相固溶体合金组织与纯金属相同,其塑性变形过程也与
多晶体纯金属相似。但随溶质含量增加,固溶体的强度、硬度 提高,塑性、韧性下降,称固溶强化。
3.1 金属的结晶及铸件晶粒大小控制
凝固
金属由液态转变为固态的过程。
结晶
结晶是指从原子不规则排列的液 态转变为原子规则排列的晶体状 态的过程。
3.1.1 冷却曲线及结晶一般过程
一、 冷却曲线
温 度
理论冷却曲线
结晶平台(是由结晶潜热导致)
Tm
Tn
△T 过冷度
实际冷却曲线
时间
材料科学基础-名词解释

材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。
化学键是指晶体内相邻原子(或离子)间强烈的相互作用。
金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。
离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。
范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。
氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。
近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。
它是构成高分子聚合物最底层、最基本的结构。
又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。
晶体熔化时具固定的熔点,具有各向异性。
2、非晶体:原子是无规则排列的固体物质。
熔化时没有固定熔点,存在一个软化温度范围,为各向同性。
3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。
4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。
5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。
6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。
7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。
13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。
属于此晶带的晶面称为共带面。
14、晶面间距:晶面间的距离。
金属的塑性变形与再结晶(3)

同一滑移面上若有大量的位错移出,则在晶体表 面形成一条滑移线。
位错在晶体中移动时所需切应力很小,因为当位错中心前 进一个原子间距时,一齐移动的只是位错中心少数原子, 而且其位移量都不大,形成逐步滑移,这就比一齐移动所 需的临界切应力要小得多,这称为“位错的易动性”。
研究表明,亚晶界的存在使晶体的变形抗力增加, 是引起加工硬化的重要因素之一。
3.形变织构
在塑性变形过程中,当金属按一定的方向变形量 很大时(变形量大于70%以上),多晶体中原来任 意位向的各晶粒的取向会大致趋于一致,这种有 序化结构叫作“变形织构”,又称为“择优取 向”,
金属材料的加工方式不同形成不同类型的织构: 拉拔时形成的织构称为丝织构,其特征是各个晶 粒的某一晶向平行于拉拔方向;轧制时形成的织 构称为板织构,其特征是不仅某一晶面平行于轧 制平面,而且某一晶向也平行于轧制方向。
3.变形引起的内应力
在金属塑性变形过程中,大约有10%的能量转化为内应力而残留在金属中, 使其内能增加。
这些残留于金属内部且平衡于金属内部的应力称为残余内应力。它是由于金 属在外力作用下各部分发生不均匀的塑性变形而产生的。
内应力一般可分为三种类型:Βιβλιοθήκη (1)宏观内应力(第一类内应力)
金属材料在塑性变形时,由于各部分变形不均匀,使整个工件或在较大的 宏观范围内(如表层与心部)产生的残余应力。
3.1.2多晶体金属塑性变形的特点
大多数金属材料是由多晶体组成的。 多晶体塑性变形的实质与单晶体一样。 要考虑到晶粒彼此之间在变形过程中的约束作用,以及晶界对塑性变形的影
机械工程材料课后习题答案

机械工程材料思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
《金属材料与热处理》第三章金属的塑性变形对组织性能

重冷塑性变形的金属,经1小时加热后能完全再结晶的 最低温度来表示。
最低再结晶温度:
T再=0.4T熔点 式中温度单位为绝对温度(K)。
8
学习情境三:金属的塑性变形对组织性能的影响 3.2
(3)再结晶温度影响因素:
1)变形程度 ➢2)金金属属再纯结度晶前:塑纯性度变越形高的, 最相低对再变结形晶量温称度为也预就先越变低形 度➢。3)预;加先热变速形度越大, 金属的晶体缺陷就越多, 组织越不 稳➢➢杂再定质结, 最和晶低合是再金一结元扩晶素散温(过度高程也熔, 需就点一越元定低素时;)间阻才碍能原完子成扩;散和晶 ➢界➢当提迁预高移先加, 可变热显形速著度度提达会高一使最定再低大结再小晶结后在晶,较最温高低度温再;度结下晶发温生度;趋于某 一➢高原稳纯始定度晶值铝粒。(越99粗.9大9,9再%结)最晶低温再度结越晶高温。度为80 ℃; ➢工业纯铝(99.0%)最低再结晶温度提高到290 ℃。
3
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、热加工晶粒大小控制措施
(1).控制较低的加工终了温度 (2).控制较大的变形程度 (3).控制较快的冷却速度
0
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、产生残余内应力 ➢定义:外力去除后,金属内部残留下来的应力。
产生原因:金属发生塑性变形时,内部变形不均匀, 位错、空位等晶体缺陷增多,会产生残余内应力。
➢1)宏观内应力 ➢2)微观残余应力 ➢3)晶格畸变应力
1
学习情境三:金属的塑性变形对组织性能的影响 3.2
3
学习情境三:金属的塑性变形对组织性能的影响 3.1
第一节 金属的塑性变形
加工硬化是指金属材料在再结晶温度以下塑性变形时强度和硬度升高

加工硬化是指金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬化。
产生原因是,金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力等。
加工硬化的程度通常用加工后与加工前表面层显微硬度的比值和硬化层深度来表示。
加工硬化给金属件的进一步加工带来困难。
如在冷轧钢板的过程中会愈轧愈硬以致轧不动,因而需在加工过程中安排中间退火,通过加热消除其加工硬化。
又如在切削加工中使工件表层脆而硬,从而加速刀具磨损、增大切削力等。
但有利的一面是,它可提高金属的强度、硬度和耐磨性,特别是对于那些不能以热处理方法提高强度的纯金属和某些合金尤为重要。
+书上的影响加工硬化的因素:合金的成分,加工时的塑形变形速率,塑形变形量。
应用:①经过冷拉、滚压和喷丸(见表面强化)等工艺,能显著提高金属材料、零件和构件的表面强度;②零件受力后,某些部位局部应力常超过材料的屈服极限,引起塑性变形,由于加工硬化限制了塑性变形的继续发展,可提高零件和构件的安全度;③金属零件或构件在冲压时,其塑性变形处伴随着强化,使变形转移到其周围未加工硬化部分。
经过这样反复交替作用可得到截面变形均匀一致的冷冲压件;④可以改进低碳钢的切削性能,使切屑易于分离。
但加工硬化也给金属件进一步加工带来困难。
如冷拉钢丝,由于加工硬化使进一步拉拔耗能大,甚至被拉断,因此必须经中间退火,消除加工硬化后再拉拔。
又如在切削加工中为使工件表层脆而硬,再切削时增加切削力,加速刀具磨损等。
冷拔低碳钢丝是经过拔制产生冷加工硬化的低碳钢丝。
钢材的位错增殖,使晶格滑移受阻,强度提高,而反映塑性性能的指标伸长率则下降较多。
用作预应力混凝土构件的钢丝,应优先选用甲级3号钢或4号钢热轧盘条进行拔制。
这种钢丝的强度主要取决于原材料(热轧盘条)的强度和引拔后的总变形量。
伸长率也是评定其质量的重要指标,如伸长率太小,就可能导致用它配筋的预应力混凝土构件发生无显著变形预兆的脆性破坏,故拔制时应适当选择拔制道次,以保证钢丝的塑性。
第三章 材料的力学行为习题参考答案
第三章材料的力学行为习题参考答案一、解释下列名词1、加工硬化2、回复3、再结晶4、热加工5、冷加工答:1、加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象。
2、回复:加热温度较低时,变形金属中的一些点缺陷和位错,在某些晶内发生迁移变化的过程。
3、再结晶:被加热到较高的温度时,原子也具有较大的活动能力,使晶粒的外形开始变化。
从破碎拉长的晶粒变成新的等轴晶粒。
和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。
4、热加工:将金属加热到再结晶温度以上一定温度进行压力加工。
5、冷加工:在再结晶温度以下进行的压力加工。
二、填空题1、塑性变形的方式主要有滑移和孪生,而大多数情况下是滑移。
2、滑移常沿晶体中原子密度最大的晶面及晶向发生。
3、在体心立方晶格中, 原子密度最大的晶面是{110},有 6 个,原子密度最大的晶向是<111>,有2个;在面心立方晶格中, 原子密度最大的晶面是{111},有 4 个,原子密度最大的晶向是<111>,有3个。
两者比较,具有面心立方晶格的金属塑性较好,其原因是滑移系和滑移方向多。
4、多晶体金属的塑性变形由于受到晶界和晶粒位向的影响,与单晶体金属相比,塑性变形抗力增大。
5、金属在塑性变形时,随变形量的增加,变形抗力迅速增大,即强度、硬度升高,塑性、韧性下降,产生所谓加工硬化现象。
这种现象可通过再结晶加以消除。
6、变形金属在加热时,会发生回复、再结晶和晶粒长大三个阶段的变化。
7、冷绕成形的钢质弹簧,成形后应进行回复退火,温度约为250~300℃。
8、回复退火也称去应力退火。
9、冷拉拔钢丝, 如变形量大, 拉拔工序间应穿插再结晶退火,目的是消除加工硬化。
10、热加工与冷加工的划分应以再结晶温度为界线。
在再结晶温度以下的塑性变形称为冷加工;在再结晶温度以上的塑性变形称为热加工。
三、简答题1、产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:⑴随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。
材料科学基础2复习题及参考答案
材料科学基础2复习题及部分参考答案一、名词解释1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶粒的过程。
2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。
3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点强度和节约材料为目的。
(《笔记》聚合物拉伸时出现的细颈伸展过程。
)4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。
(《书》晶体中某处一列或者若干列原子发生了有规律的错排现象)5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成所谓的“柯氏气团”。
(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。
)6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。
7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。
8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。
(《书》晶体开始滑移时,滑移方向上的分切应力。
)9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬化。
(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。
)10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。
(《书》使金属在再结晶温度以上发生加工变形的工艺。
)11、柏氏矢量:是描述位错实质的重要物理量。
反映出柏氏回路包含的位错所引起点阵畸变的总积累。
(《书》揭示位错本质并描述位错行为的矢量。
)反映由位错引起的点阵畸变大小的物理量。
12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。
13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为层错面)两侧附近原子的错排的一种面缺陷。
实验三 金属塑性变形与再结晶
实验三金属塑性变形与再结晶一、实验目的认识金属冷变形加工后及经过再结晶退火后的组织性能和特征变化;研究形变程度对再结晶退火前后组织和性能的影响。
加深对加工硬化现象和回复再结晶的认识。
二、基本原理1、金属冷塑性变形后的显微组织和性能变化金属冷塑性变形为金属在再结晶温度以下进行的塑性变形。
金属在发生塑性变形时,外观和尺寸发生了永久性变化,其内部晶粒由原来的等轴晶逐渐沿加工方向伸长,在晶粒内部也出现了滑移带或孪晶带,当变形程度很大时,晶界消失,晶粒被拉成纤维状。
相应的,金属材料的硬度、强度、矫顽力和电阻等性能增加,而塑性、韧性和抗腐蚀性降低。
这一现象称为加工硬化。
为了观察滑移带,通常将已抛光并侵蚀的试样经适量的塑性变形后再进行显微组织观察。
注意:在显微镜下滑移带与磨痕是不同的,一般磨痕穿过晶界,其方向不变,而滑移带出现在晶粒内部,并且一般不穿过晶界。
2、冷塑性变形后金属加热时的显微组织与性能变化金属经冷塑性变形后,在加热时随着加热温度的升高会发生回复、再结晶、和晶粒长大。
(1)回复当加热温度较低时原子活动能力尚低,金属显微组织无明显变化,仍保持纤维组织的特征。
但晶格畸变已减轻,残余应力显著下降。
但加工硬化还在,固其机械性能变化不大。
(2)再结晶金属加热到再结晶温度以上,组织发生显著变化。
首先在形变大的部位(晶界、滑移带、孪晶等)形成等轴晶粒的核,然后这些晶核依靠消除原来伸长的晶粒而长大,最后原来变形的晶粒完全被新的等轴晶粒所代替,这一过程为再结晶。
由于金属通过再结晶获得新的等轴晶粒,因而消除了冷加工显微组织、加工硬化和残余应力,使金属又重新恢复到冷塑性变形以前的状态。
金属的再结晶过程是在一定的温度范围能进行的,通常规定在一小时内再结晶完成95%所对应的温度为再结晶温度,实验证明,金属熔点越高,再结晶温度越高,其关系大致为:T=0.4T熔。
(3)晶粒长大再结晶完成后,继续升温(或保温),则等轴晶粒以并容的方式聚集长大,温度越高,晶粒越大。
工程材料名词解释
名词解释:晶体:原子在三维空间作有规律周期性重复排列的固体,具有固定熔点、规则的几何外形和各向异性的特性。
位错:一种线缺陷,二维尺度很小但第三维尺度很大。
回复:冷变形金属重新加热时,加热温度低,材料组织和力学性能不发生明显变化,内应力消失的阶段。
再结晶:冷变形金属重新加热时,加热温度高,材料强度硬度降低,塑性韧性升高,加工硬化被消除的阶段。
热加工:再结晶温度上的加工。
滑移系:滑移面与其上滑移方向的乘积。
组织:肉眼或显微镜观察到的材料围观形貌。
固溶体:合金组元通过溶解形成一种成分和性能均匀的、且结构与组元之一相同的固相称为固溶体。
金属间化合物:合金组元相互作用想成的晶格和特性完全不同于任一组元的新相称为金属件化合物。
枝晶偏析:一个晶粒内的化学成分不均匀性。
固溶强化:通过形成固溶体是合金的强度硬度升高的现象。
同素异构转变:固态下随着温度的改变,晶体结构发生变化的现象。
本质晶粒度:钢加热到930℃,保温8h,冷却后测得的晶粒度为本质晶粒度。
实质上表示钢在规定条件下奥氏体长大的倾向。
临界冷却速度:淬火时,能全部获得M的最低冷却速度。
调制处理:钢淬火后高温回火的热处理工艺。
回火稳定性:钢在回火时,抵抗强度、硬度下降的能力。
二次硬化:淬火钢在500-600℃回火时,硬度升高的现场。
固溶处理:在较高温度下加热金属,然后快冷,是第二项来不及析出,获得单相组织的热处理工艺。
回火脆性:淬火钢在某一温度范围回火时,冲击韧性剧烈下降的现象。
(回火后韧性下降的现象)红硬性:材料在较高温度下保持高硬度的特性。
石墨化:铸铁组织中石墨的形成叫石墨化。
孕育(变质)处理:在浇筑前往液体中加入孕育剂使晶粒下滑的处理过程。
球化处理:向铸铁中加入球化剂使石墨变为球状的处理过程。
石墨化退火:通过退火使白口铸铁中的Fe3C转变为单质状态石墨的退火。
铸造:将热态金属浇筑到与零件的形状相适应的铸型型腔中冷却后获得铸件的方法。
铸造性能:金属在铸造过程中所表现出来的工艺性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑性变形对金属组织和性能的影响
(1)塑性变形对金属组织的影响 ※形成纤维组织 ※形成亚结构 ※产生形变织构 (2)塑性变形对金属性能的影响 ※产生加工硬化
如:冷轧薄钢板 冷拔钢丝等。
金属发生塑性变形,随冷变形程度 的增大,其强度和硬度显著提高, 塑性和韧性明显下降的现象。 变形、开裂、耐蚀性下 降。 利用好可提高表面疲劳 强度
近代理论事件证明:晶体滑移时,并不是整个滑移 面上全部原子一起移动,而是借助于位错的移动来 实现。
二、多晶体的塑性变形
多晶体排列中各个晶粒的位向不一致,又有晶界存 在,使得各个晶粒的塑性变形受到互相影响。
1)、由于晶界的作用而往往表现出竹节状变形。
2)、由于多晶体各个晶粒的位向不同,当一个位 向有利的晶粒滑移时,必然受到邻近位向不同的 晶粒的阻碍,因此多晶体的变形抗力比单晶体高。
纤维组织和形变织构的产生, ※使金属性能产生各向异性。 ※使金属晶体缺陷增多, 并产生残余应力。
变形10%
变形40%
变形80% 纤维组织
第二节、加工硬化(形变强化—强化材料的手段之一)
冷塑形变形时,随着 变形度的增加,金属 材料的强度、硬度增 加,而塑性、韧性降 低。
加工硬化的意义: (1)具有一定抗偶然过载的能力,保证安全;
一、消除铸态金属某些缺陷
通过热加工可使金属铸锭中的气孔和缩孔焊合;消除铸态金属 中部分偏析;改善夹杂物与碳化物的形态、大小与分布;将粗 大的柱状晶粒与枝晶改变为细小均匀的等轴晶粒。
二、形成热变形纤维组织(流态)
在热加工过程中,由于铸态组织中的各种杂物在高温下具有 一定塑性,它会沿着变形方向伸长、并逐渐形成纤维组织, 这就是热变形纤维组织,通常称为“流线”。
细晶强化 强化原理
通过晶粒细化使强度、硬度、塑性、韧性提高的 现象。 晶界原子排列较不规则→缺陷多→滑移阻力大。 晶粒越细小,则晶界越多,变形抗力越大,则强 度越大。 晶粒越细小,单位体积晶粒多→变形分散→减少 应力集中
晶粒越细小,晶界越多且越曲折→不利于裂纹的 传播→断裂前承受较大的塑性变形,则塑性越好。
1)打碎柱状晶、树枝晶,形成等轴晶,机械性能改善。 2)压合铸件中的疏松、气孔等缺陷,提高组织致密度和 机械性能. 3)产生 流线 分布 —— 非金属夹杂物沿变形方向分布, 引起各向异性。
三.冷加工对组织和性能的影响 冷加工 —— 在 T再 以下温度进行的变形加工,如低碳 钢的冷拔、冷冲。 冷加工时,无再结晶过程 思考题:其原因是什么? 能产生加工硬化,提高强度和硬度,塑性和韧性下降。 是重要的 强化手段,对不能热处理强化的合金尤其重 要。但增加继续塑性变形的抗力。
回复与再结晶:
在加工过程中和加工后,还常对金属材料进行加热,使 其组织和性能发生相应的变化。
第一节:金属塑性变形简介
一、单晶体的塑性变形:
单晶体的塑性变形,是在切应力的作用下主要以 滑移的方式进行的,滑移即是晶体的某一部分沿 着某一晶面(滑移面)相对于另一部分而滑动的 现象。
滑移是在切应力作用下,通过一条位错线从滑 移面一侧到另一侧的移动
变化
回复使塑变后金属的强度和硬度略有下降, 塑性略有增高,但残余应力大大降低。
应用
工业上利用回复过程对变形金属进行去应力 退火来降低残余应力,保留加工硬化效果。
二、再结晶
当加热到较高温度(如纯铁加热到450℃以上)时, 由于原子扩散能力增强,使得被长了晶粒重新形核、 结晶变为等轴晶粒,称为再结晶
影响再结晶后晶粒度的因素除加热温度与保温时间外, 还与晶粒的原始尺寸、杂质的分布及预先冷变形等有关, 其中以加热温度和预先冷变形度影响最大。
影响晶粒长大的因素
加热温度和保温时间
预先冷变形度
在结晶的加热温度越高, 保温时间越长,则再结晶 后的晶粒越粗大
当其他条件相同时,再结 晶后晶粒大小与预先冷变 形度之间存在曲线关系
纯金属 T再 =0.4 T熔 合金 T再 =(0.5 ~ 0.7)T熔 温度单位:绝对温度( K ) 预变形度对T再的影响
再结晶后的晶粒度
加热温度 T ↑ → 晶粒直径 d↑ 预变形度的影响
晶粒长大的实质 是一个晶粒的边 界向另一个晶粒 迁移,把另一个 晶粒的晶格位向 逐步改变与这个 晶粒相同的位向, 于是另一个晶粒 便逐步被这个晶 粒“吞并”从而 合成一个大晶粒
加工硬化与再结晶
大多数金属与合金均具有塑性变形能力,因此, 金属材料在冶炼、浇注后绝大多数都需要通过 压力加工,产生塑性变形成为塑材,如板材、 线材、棒材、管材等,或加工成预期外形的工 件才能使用。
压力加工方法示意图
加工硬化现象:
由压力加工而产生的塑性变形还能使金属材料的组织和 性能发生很大的变化,特别是冷塑性变形会使其产生加 工硬化现象。
第四节 热加工与冷加工
一、热加工与冷加工的区别 热加工与冷加工的区别是以金属再结晶温度来划 分的。
凡是金属的塑性变形是在再结晶温度以上 进行的,称为热加工。反之,在再结晶温 度一下进行塑性变形则称为冷加工。金属 在再结晶温度一下塑性变形,不发生再结 晶过程,因此蒋产生加工硬化。
热加工对金属组织与性能的影响
加工硬化在生产中的利弊
加工硬化的有利影响 强化金属的一种主要工艺,可用来提高金属的强度、硬度 和耐磨性,特别是用来提高不能用热处理强化的金属材料。 如:铜合金、高锰钢等。 它是使工件能够均匀成形的重要因素
可在一定程度上提高构件再使用过程中的安全性
加工硬化的不利影响
由于加工硬化,材料的塑性降低,当变形达到一 定程度,工件就会发生破裂。
最严重的地方
晶粒碎化
新晶核
晶核吞并旧晶粒
新晶粒代 替旧晶粒
能进行再结晶的最低温度(开始温度)称为再结 晶温度,再结晶温度是一个温度范围
a.黄铜变形量达38%后的组织 b.580℃保温3s c. .580℃保温4s d.580℃保温8s e.580℃保温15min f.700℃保温10min
最低再结晶温度 T再
为了消除内应力和加工硬化现象,恢复金属材料 的塑性,就需要进行退火处理,退火后金属材料 塑性恢复,可再继续进行冷塑形变形加工。ຫໍສະໝຸດ 三节回复、再结晶与晶粒长大
冷塑形变形的金属在加热过程中随着加热温度的升高, 经历了三个变化阶段,即回复、再结晶和晶粒长大。
一、回复
塑性变形后的金属在低温加热时,发生回复过程 位错和点缺陷大大↓,内应力显著↓ ,强度、 硬度略有↓ 。
小结 重点要求 1. 单晶体塑性变形的两种方式 2.金属在冷加工时组织和性能的变化。 3.金属再结晶时组织和性能的变化。 4.加工硬化、细晶强化的概念。 一般要求 1. 塑性变形的本质和滑移机理。 2. 热加工对金属组织和性能的影响。
作业:
思考与练习题:1、2、3、6
(2)是冷变形工件成型的重要因素;
(3)强化金属的重要工艺手段.
产生加工硬化的原因
塑性变形 →位错密度增加,相互缠结( 亚晶界),运动阻力加大→变形抗力↑
▲造成加工硬化的根本原因就是在于冷塑形变 形增大了金属材料内部的位错密度。
金属材料经塑性变形后,晶粒形状会被压扁或拉长,当变形 程度很大时,晶粒被拉长成细条状,形成纤维组织,这种纤 维组织叫做冷加工纤维组织