不锈钢304退火

合集下载

304L不锈钢经大应变冷轧和温轧处理后的退火表现

304L不锈钢经大应变冷轧和温轧处理后的退火表现

外文翻译《304L不锈钢经大应变冷轧和温轧处理后的退火表现》摘要将304L型奥氏体不锈钢在环境温度和573K下进行平板轧制以达到完全的三相应变,然后在873K,973K和1073 K的温度下退火。

退火过程中的结构变化与奥氏体逆转(冷轧样品),再结晶和晶粒生长有关,这取决于退火温度。

冷轧和冷轧样品在经过973K / 1073K退火后,得到的晶粒生长指数为4和5,而晶粒粗化非常缓慢却发生在873K下。

奥氏体区退火过程中的组织相变特征为:冷/热轧组织的逐渐细化,尽管主要的结构组织成分如黄铜,{110} <112>和硫,{123} <634>仍保留在退火样品中,与微观组织演化的退火机制无关。

退火期间的晶粒粗化的同时也伴随着晶粒的逐渐软化。

通过冷/暖轧加工退火后的超细晶粒钢的屈服强度可以通过霍尔-彼特的类型关系表示,σ0= 160MPa,ky = 470MPa m0.5。

关键词:奥氏体不锈钢;热机械加工;电子显微镜;相变;再结晶;组织1.简介铬镍奥氏体不锈钢是从厨房用具到宇宙飞船零件的各种工程应用中使用最广泛的结构材料之一。

奥氏体不锈钢经常以冷轧半成品的形式生产。

在冷轧的众多优点中,有一点需要特别强调,那就是关于具有低堆垛层错能(SFE)的面心立(fcc)奥氏体不锈钢,即强化。

此时屈服强度可以提高到2000MPa以上。

然而在另一方面,大变形冷加工也会导致塑性的急剧下降。

在经过相当大的轧制变形之后,拉伸试验中的总伸长率可能降低到几个百分点。

这个缺点限制了冷轧奥氏体不锈钢作为半成品的深加工,例如多种冲压成形工序。

此外,奥氏体不锈钢通常在冷加工过程中的应变诱发的马氏体相变,会使钢的物理性能发生变化,这对它在某些方面的应用可能是非常有害的。

在冷加工的奥氏体不锈钢中回收塑性和奥氏体组织的常用方法是在高于奥氏体反转的温度下进行退火处理。

冷轧和热处理的适当组合可以产生很好的机械性能,包括高强度和足够的延展性。

304不锈钢氮化退火温度

304不锈钢氮化退火温度

304不锈钢氮化退火温度
304不锈钢是一种常用的不锈钢材料,它通常在800°C至900°C的温度范围内进行氮化退火处理。

氮化退火是一种热处理工艺,通过在高温下引入氮气,使材料表面形成氮化物层,从而改善材料的硬度、耐磨性和耐腐蚀性能。

在氮化退火过程中,304不锈钢的晶粒会细化,硬度会增加,从而提高材料的机械性能。

这种处理通常可以在800°C至900°C的温度下进行,持续时间取决于具体的工艺要求和材料厚度,一般为数小时。

需要注意的是,具体的氮化退火温度和时间应该根据具体的工艺要求和材料性质来确定,最好在实际操作中遵循相关的工艺规范和标准,以确保处理效果和材料性能的稳定性。

不锈钢热处理工艺完整版

不锈钢热处理工艺完整版

不锈钢热处理工艺 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
不锈钢304 3/4 1/2H去应力退火工艺去应力退火
去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。

锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。

采用去应力退火消除加工过程中
产生的内应力十分重要。

去应力退火的加热温度低于相变温度A1,因此,在整个热处理过程中不发生组织转变。

内应力主要是通过工件在保温和缓冷过程中消除的。

为了使工件内应力消除
得更彻底,在加热时应控制加热温度。

一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。

焊接件得加热温度应略高于600℃。

保温时间视情
况而定,通常为2~4h。

铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。

退火工艺对304冷轧带钢组织性能的影响

退火工艺对304冷轧带钢组织性能的影响

退火工艺对304冷轧带钢组织性能的影响304奥氏体不锈钢具有优良的耐蚀性、耐热性和良好的机械加工性能,广泛应用于石油、化工、电力以及原子能等工业。

但304奥氏体不锈钢是一种低层错能的材料,在生产加工过程中容易产生加工硬化,使强度增加,塑性降低,成形性能变差。

因此,在冷轧后需要进行退火处理,304奥氏体不锈钢退火处理不仅使其具有较好的强度、恢复塑性、防止晶间腐蚀,而且可以消除因压力加工引起的应力。

在生产SUS304奥氏体不锈钢时,经冷轧退火后对其力学性能中的伸长率不够满意。

为此,对此种钢采用相同的冷轧压下率、不同退火工艺处理,通过对其组织性能进行分析,对退火工艺进行了优化。

实验材料为工业生产,经冶炼、铸造,多道次热轧成厚2.74mm,然后经过热退火酸洗、冷轧成厚1.688mm的SUS304不锈钢薄带,冷轧总压下率为38.4%。

具体的生产工艺流程为:铁水预处理→转炉冶炼→精炼处理→连铸→推进式加热炉→热轧→控冷→卷曲→(冷轧)开卷→热退火酸洗→冷轧。

材料的化学成分(质量分数,%)为:0.041C,0.4Si,1.19Mn,0.029P,0.005S,18.11Cr,8.01Ni。

将冷轧后SUS304不锈钢材料在SRJX-4-9型电阻炉中按不同退火工艺制度进行退火;将热处理后的材料制成标准的单轴拉伸试样,在AG-10TA万能拉伸机上以15mm/min的速度进行拉伸。

冷轧SUS304不锈钢薄板在退火过程中,退火温度和保温时间的轻微变化影响了带钢的退火软化效果,对其显微组织产生重要的影响,导致其具有不同的力学性能。

冷轧SUS304不锈钢薄板在1050℃退火时,屈服强度和抗拉强度随保温时间的延长呈升高趋势,但退火温度高于1050℃时,屈服强度和抗拉强度随保温时间的延长呈下降趋势;在相同的保温时间下,屈服强度和抗拉强度随温度的上升呈下降趋势;但伸长率变化却不相同,在1050℃时,随保温时间延长而升高;在其他退火工艺中,随保温时间延长,伸长率先升后降。

304不锈钢工艺介绍

304不锈钢工艺介绍

304不锈钢工艺介绍
304不锈钢是一种常见的不锈钢材料,通常用于制造家居用品、厨具、建筑材料等。

下面是关于304不锈钢工艺的介绍:
1. 熔化制造工艺:304不锈钢主要通过熔化制造工艺进行生产。

这包括将铁矿石经过冶炼、熔炼得到生铁,然后通过转炉炼钢或电炉炼钢得到不锈钢熔体。

最后,通过连铸或浇铸工艺将熔体倾入铸模,形成不锈钢坯料。

2. 热处理工艺:不锈钢坯料经过热处理工艺能够改变其微结构和物理性能。

通常,这包括热轧、热处理和退火等步骤。

热轧可以将不锈钢坯料加热至高温后进行挤压和轧制,以改变其形状和厚度。

然后,通过热处理和退火工艺,可以消除添加元素的残留应力,并提高不锈钢的硬度和耐腐蚀性能。

3. 冷加工工艺:不锈钢还可以通过冷加工工艺进行成型和加工。

冷加工包括冷轧、冷拉、冷拔、冷弯和深冲等工艺,可以改变不锈钢的形状、尺寸和表面质量。

冷加工还可以增强不锈钢的机械性能,提高其抗拉强度和硬度。

4. 表面处理工艺:为了改善不锈钢的外观和耐腐蚀性能,通常会对其进行表面处理。

典型的表面处理包括抛光、喷砂、酸洗和电镀等工艺。

抛光能够使不锈钢表面光滑且无划痕,提高其外观质量。

而酸洗可以去除不锈钢表面的氧化皮和杂质,恢复其耐腐蚀性能。

综上所述,304不锈钢经过熔化制造、热处理、冷加工和表面
处理等工艺,可以得到各种形态和性能的不锈钢制品。

这些工艺能够让不锈钢具有良好的机械性能、耐腐蚀性能和外观质量,满足各种应用领域的需求。

304不锈钢热处理硬度hrc

304不锈钢热处理硬度hrc

304不锈钢热处理硬度hrc摘要:1.304不锈钢的基本特性2.304不锈钢的热处理过程3.热处理对304不锈钢硬度的影响4.304不锈钢硬度与hrc的关系5.热处理对304不锈钢其他性能的影响6.总结正文:304不锈钢是一种常见的不锈钢牌号,因其良好的耐腐蚀性和焊接性能而在众多行业中得到广泛应用。

了解304不锈钢的热处理过程及其对硬度和其他性能的影响,对工程师和材料研究者具有重要意义。

304不锈钢的基本特性主要表现在其化学成分,其中含有18%的铬和8%的镍。

这种不锈钢具有优良的耐腐蚀性、抗氧化性、耐磨性和焊接性能。

在实际应用中,304不锈钢通常用于食品工业、化工设备、建筑装饰等领域。

对304不锈钢进行热处理是提高其性能的关键步骤。

热处理过程通常包括退火、正火、回火等工艺。

在这些过程中,304不锈钢的晶体结构和组织状态会发生改变,从而影响其性能。

热处理对304不锈钢硬度的影响尤为显著。

在热处理过程中,铬和镍元素会形成稳定的奥氏体晶体结构,提高不锈钢的硬度。

此外,热处理还可以改善304不锈钢的强度和韧性。

具体来说,通过调整热处理工艺参数,如温度、时间和冷却速度,可以获得不同硬度的304不锈钢。

值得注意的是,304不锈钢的硬度与hrc(硬度计)之间的关系。

通常情况下,hrc值越高,表示不锈钢的硬度越高。

因此,在实际应用中,根据不同的需求,可以通过调整热处理工艺来获得相应硬度的304不锈钢。

除了硬度外,热处理还对304不锈钢的其他性能产生影响。

例如,退火处理可以消除内部应力,提高不锈钢的延展性和韧性;正火处理可以使不锈钢表面产生一层致密的氧化膜,提高其耐腐蚀性;回火处理可以提高不锈钢的抗磨损性能。

总之,304不锈钢的热处理对其性能有着重要影响。

通过合理的热处理工艺,可以有效提高304不锈钢的硬度、强度、耐腐蚀性等性能。

不锈钢304热处理工艺

不锈钢304热处理工艺

不锈钢304热处理工艺(总
1页)
本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
不锈钢304 3/4 1/2H去应力退火工艺去应力退火
去应力退火是为了消除由于塑性形变加工、焊接等而造成的以及铸件内存在的残余应力而进行的退火工艺。

锻造、铸造、焊接以及切削加工后的工件内部存在内应力,如不及时消除,将使工件在加工和使用过程中发生变形,影响工件精度。

采用去应力退火消除加工过程中
产生的内应力十分重要。

去应力退火的加热温度低于相变温度A1,因此,在整个热处理过程中不发生组织转变。

内应力主要是通过工件在保温和缓冷过程中消除的。

为了使工件内应力消除
得更彻底,在加热时应控制加热温度。

一般是低温进炉,然后以100℃/h左右得加热速度加热到规定温度。

焊接件得加热温度应略高于600℃。

保温时间视情
况而定,通常为2~4h。

铸件去应力退火的保温时间取上限,冷却速度控制在(20~50)℃/h,冷至300℃以下才能出炉空冷。

2。

304ln奥氏体不锈钢焊接件的去应力退火工艺研究

304ln奥氏体不锈钢焊接件的去应力退火工艺研究

304ln奥氏体不锈钢焊接件的去应力
退火工艺研究
304ln奥氏体不锈钢焊接件的去应力退火工艺研究
304ln奥氏体不锈钢焊接件是用于制作管道、容器等重要结构件的重要材料,其必须经过去应力退火工艺处理,以提高焊接件的力学性能和
使用寿命。

本文研究了304ln奥氏体不锈钢焊接件的去应力退火工艺。

首先,需要对304ln奥氏体不锈钢焊接件进行应力退火处理,即在恒
定的温度下将焊接件保持一段时间,以使焊接件中累积的应力消失。

其次,要确定304ln奥氏体不锈钢焊接件的去应力退火温度。

一般情
况下,去应力退火温度为850℃~900℃,保持时间为1小时,退火后
的焊接件有较好的力学性能。

最后,在确定退火温度和保持时间的情
况下,分别采用慢速和快速冷却的工艺,考察304ln奥氏体不锈钢焊
接件的去应力退火效果,并与无退火处理的焊接件进行比较。

经过实验,304ln奥氏体不锈钢焊接件经过去应力退火处理后,其弯曲强度、抗拉应力和抗屈服应力均显著提高,而无退火处理的焊接件则
没有明显变化。

比较发现,慢速冷却的处理效果相对较好,可以有效
提高304ln奥氏体不锈钢的力学性能。

总之,304ln奥氏体不锈钢焊接件的去应力退火处理是一种有效的改善焊接件力学性能的方法,在确定退火温度和保持时间的前提下,慢速
冷却可以较好地提高304ln奥氏体不锈钢的力学性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SUS304 不锈钢薄板形变硬化及退火软化
SUS304 是一种18-8 系的奥氏体不锈钢,通常用作冲压垫圈类紧固件。

由于其冲压在各部分材料的形变程度各不相同,大约在15%~40% 之间,因此材料的加工硬化程度也有差异。

SUS304 不锈钢薄板冷加工以后,微观上滑移面及晶界上将产生大量位错,致使点阵产生畸变。

畸变量越大时,位错密度越高,内应力及点阵畸变越严重,使金属变形抗力和强度、硬度等随变形程度而增加,塑性指标伸长率、断面收缩率降低。

当加工硬化达一定程度时,如继续形变,便有开裂或脆断的危险,成形后其残余应力极易引起工件自爆破裂。

在环境气氛作用下,放置一段时间后,工件会自动产生晶间开裂(通常称为“季裂”)。

故在SUS304 不锈钢冲压成形过程中,一般都必须进行工序间的软化退火,即中间退火,以消除残余应力,降低硬度,恢复材料塑性,以便能进行下一道加工。

•试验材料及分析
试验材料:SUS304 ,厚度± ,其化学成分(质量分数:W% )≤ %C 、≤ %Si 、≤ %Mn 、≤ %P 、≤ %S 、% ~ %Ni 、18% ~ 20%Cr 。

表1 不同预形变量对SUS304 不锈钢力学性能的影响
由表1 可知,随着预形变量的增加,SUS304 不锈钢的屈服强度和抗拉强度增明显提高,硬度值增加,耐塑性下降,产生了明显的加工硬化现象。

同时,也可以清楚看出,随着预形变量的增加,试样的屈强比也随之增加,这说明试样的可成形性也会随着冷变形量的增加而降低。

•退火软化工艺
经加工硬化的SUS304 不锈钢可采用高温和低温退火两种方式来恢复塑性,降低硬化程度,并消除或减少残余应力,为了不使材料产生敏化,退火时应避开500 ℃ ~ 850 ℃的敏化温度范围。

不同工艺退火对具有各种预形变量的SUS304 不锈钢试样的力学性能影响见表2
表2 不同预形变量的SUS304 试样退火后的力学性能
从表中可以看出,低温退火对SUS304 不锈钢的屈服强度影响较小,在500 ℃以下退火,退火后屈服强度值变化较小,高温退火对试样屈服强度的影响较大,预形变量为15% 时在1050 ℃下退火后Re 降到260MPa ,Rm 几乎随退火温度成线性下降,但是变化的幅度比Re 小得多。

同时,试样的维氏硬度值随退火温度的升高而下降。

随着退火温度的升高,试样伸长率明显提高,特别是高温退火状态下,Re 下降最为明显,达到了完全软化状态。

在1050 ℃退火(保温5min ,快冷)伸长率A 、硬度HV 达到软化的最佳组合。

•结语
经不同预形变量的SUS304 不锈钢薄板高温(1040 ℃
~1080 ℃)短时(5
~10min )并快速冷却的退火工艺,组织发生完全再结晶,且晶粒大小较均匀,最适宜紧固件用的垫圈类产品制造,退火软化效果最为明显。

相关文档
最新文档