高考数学大一轮复习 5.3平面向量的数量积试题 理 苏教版

合集下载

新高考苏教版数学理大一轮复习训练5.3平面向量的数量积(含答案解析)

新高考苏教版数学理大一轮复习训练5.3平面向量的数量积(含答案解析)

5.3 平面向量的数量积一、填空题1. 已知向量a 和向量b 的夹角为30°,| a |=2,| b |=3 ,则a ·b = .解析 考查数量积的运算. a ·b =22=3. 答案 32.已知a 是平面内的单位向量,若向量b 满足b·(a-b)=0,则|b|的取值范围是________.解析 ∵b ·(a -b )=0,∴a ·b =b 2,即|a ||b |·cos θ=|b |2,当b ≠0时, ∴|b |=|a |cos θ=cos θ∈(0,1].所以|b|∈[0,1]. 答案 [0,1]3.若e 1,e 2是夹角为π3的单位向量,且a =2e 1+e 2,b =-3e 1+2e 2,则a ·b 等于________.解析 a ·b =(2e 1+e 2)·(-3e 1+2e 2)=-6e 21+e 1·e 2+2e 22=-6+cos π3+2=-4+12=-72. 答案 -724.已知平面向量a ,b 的夹角为60°,a =(3,1),|b |=1,则|a +2b |=________. 解析 由a =(3,1),得|a |=2,所以|a +2b |=a +2b2=a 2+4a ·b +4b 2=4+8cos 60°+4=12=2 3. 答案 2 35.在△ABC 中,已知BC =2,AB →·AC →=1,则△ABC 的面积S △ABC 最大值是________. 解析 以线段BC 所在直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系,则B (-1,0),C (1,0).设A (x ,y ) 则AB →=(-1-x ,-y ),AC →=(1-x ,-y ),于是AB →·AC →=(-1-x )(1-x )+(-y )(-y )=x 2-1+y 2.由条件AB →·AC →=1知x 2+y 2=2,这表明点A 在以原点为圆心,2为半径的圆上. 当OA ⊥BC 时,△ABC 面积最大,即 S △ABC =12×2×2= 2.【点评】 建系设标,数形转化,简单易行,用心体会.6.已知1e ,2e 是夹角为23π的两个单位向量, a =1e -22e ,b =k 1e +2e , 若a ·b =0,则实数k 的值为 .解析 由a ·b =0得(1e -22e )·(k 1e +2e )=0. 整理,得 k - 2+(1-2k )cos 23π=0,解得k=54. 答案547.如图,在△ABC 中,AD ⊥AB ,BC →=3BD →,|AD →|=1,则AC →·AD →=________.解析 法一 建系如图所示. 令B (x B,0),C (x C ,y C ),D (0,1), 所以BC →=(x C -x B ,y C ),BD →=(-x B,1),BC →= 3 BD →, 所以⎩⎪⎨⎪⎧x C -x B =3-x B,y C =3,所以x C =(1-3)x B ,y C = 3.AC →=((1-3)x B ,3),AD →=(0,1),则AC →·AD →= 3.法二 AC →·AD →=(AB →+BC →)·AD →=BC →·AD →=3AD →·BD →, 其中AD →·BD →=|AD →||BD →|cos ∠ADB =|AD →||BD →|·|AD →||BD →|=AD →2=1.故 3 AD →·BD →= 3.答案38.若等边△ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.解析 建立直角坐标,由题意,设C (0,0),A (23,0),B (3,3),则M ⎝ ⎛⎭⎪⎫332,12,MA →·MB →=⎝ ⎛⎭⎪⎫32,-12·⎝ ⎛⎭⎪⎫-32,52=-2.答案 -29.已知向量p 的模是2,向量q 的模为1,p 与q 的夹角为π4,a =3p +2q ,b=p -q ,则以a ,b 为邻边的平行四边形的长度较小的对角线的长是________. 解析 |a -b |=|3p +2q -p +q |=|2p +3q | =p +3q2=4p 2+12p ·q +9q 2 =8+122×22+9 =29. 答案2910.在平面直角坐标系xOy 中,已知A (0,-1),B (-3,-4)两点.若点C 在∠AOB 的平分线上,且|OC →|=10,则点C 的坐标是________.解析 法一:设点C 的坐标是(x ,y ),且x <0,y <0,直线OB 方程为y =43x ,因点C 在∠AOB 的平分线上,所以点C 到直线OB 与y 轴的距离相等,从而|4x -3y |5=|x |.又x 2+y 2=10,解之得⎩⎨⎧x =-1,y =-3,所以点C 的坐标是(-1,-3).法二:设点C 的坐标是(x ,y ),且x <0,y <0,则因点C 在∠AOB 的平分线上,所以由cos 〈OC →,OA →〉=cos 〈OC →,OB →〉得-y 1·10=-3x -4y510.又x 2+y 2=10,解之得⎩⎨⎧x =-1,y =-3,所以点C 的坐标是(-1,-3).答案 (-1,-3)11.已知O 是△ABC 的内部一点,OA →+OB →+OC →=0,AB →·AC →=2,且∠BAC =60°,则△OBC 的面积为________.解析 由AB →·AC →=|AB →||AC →|cos 60°=2,得|AB →||AC →|=4,S △ABC =12|AB →||AC →|sin 60°=3,由OA →+OB →+OC →=0知,O 是△ABC 的重心,所以S △OBC =13S △ABC =33. 答案3312.已知点G 是△ABC 的重心,AG →=λAB →+μAC →(λ,μ∈R ),若∠A =120°,AB →·AC→=-2,则|AG →|的最小值是________.解析 设AG 交BC 于D ,则由G 是△ABC 的重心,得D 是BC 的中点, 所以AG →=23AD →=23·12(AB →+AC →)=13(AB →+AC →),所以|AG →|2=19(AB →+AC →)2 =19(|AB →|2+|AC →|2-4),又由-2=AB →·AC → =|AB →||AC →|cos 120°,得|AB →||AC →|=4,故当|AB →|=|AC →|=2时,|AG →|取最小值23.答案2313.已知△ABC 所在平面上的动点M 满足2AM →·BC →=AC →2-AB →2,则M 点的轨迹过△ABC 的________心.解析 如图,设N 是BC 的中点,则由2AM →·BC →=(AC →-AB →)·(AC →+AB →)=BC →·2AN →,得(AM →-AN →)·BC →=0,即NM →·BC →=0,所以NM →⊥BC →,所以M 点的轨迹过△ABC 的外心. 答案 外心 二、解答题14.已知向量a ,b 满足|a |=2,|b |=1,|a -b |=2. (1)求a ·b 的值; (2)求|a +b |的值. 解析 (1)因为|a -b |=2,所以|a -b |2=a 2-2a ·b +b 2=4+1-2a ·b =4. 所以a ·b =12.(2)|a +b |2=a 2+2a ·b +b 2=4+2×12+1=6.故|a +b |= 6.15.已知|a |=2,|b |=3,a 与b 夹角为45°,求使向量a +λb 与λa +b 的夹角为钝角时,λ的取值范围. 解析 由条件知,cos45°=a·b|a|·|b|,∴a·b =3,设a +λb 与λa +b 的夹角为θ,则θ为钝角,∴cos θ=a +λb λa +b|a +λb |·|λa +b |<0,∴(a +λb )·(λa +b )<0. λa 2+λb 2+(1+λ2)a·b <0, ∴2λ+9λ+3(1+λ2)<0,∴3λ2+11λ+3<0, ∴-11-856<λ<-11+856.若θ=180°时,a +λb 与λa +b 共线且方向相反, ∴存在k <0,使a +λb =k (λa +b ),∵a ,b 不共线,∴⎩⎨⎧k λ=1,λ=k .∴k =λ=-1, ∴-11-856<λ<-11+856且λ≠-1.16.已知向量a =(cos α,sin α),b =(cos β,sin β),c =(-1,0).(1)求向量b +c 的长度的最大值; (2)设α=π4,且a ⊥(b +c ),求cos β的值. 解析 (1)因为b +c =(cos β-1,sin β), 所以|b +c |2=(cos β-1)2+sin 2 β=2(1-cos β). 因为-1≤cos β≤1,所以0≤|b +c |2≤4,即0≤|b +c |≤2,故当cos θ=-1时,向量b +c 的长度取最大值2. (2)若α=π4,则a =⎝ ⎛⎭⎪⎫22,22,又b +c =(cos β-1,sin β),所以a ·(b +c )=22cos β+22sin β-22. 因为a ⊥(b +c ),所以a ·(b +c )=0,即cos β+sin β=1,平方得cos β sin β=0, 所以cos β=0或cos β=1.经检验cos β=0或cos β=1即为所求.17.如图,在△ABC 中,已知AB =3,AC =6,BC =7,AD 是∠BAC 的平分线.(1)求证:DC =2BD ;(2)求AB →·DC →的值.解析(1)证明 在△ABD 中,由正弦定理得AB sin ∠ADB =BDsin ∠BAD .①在△ACD 中,由正弦定理得AC sin ∠ADC=DC sin ∠CAD. ②又AD 平分∠BAC ,所以∠BAD =∠CAD ,sin ∠BAD =sin ∠CAD , 又sin ∠ADB =sin(π-∠ADC )=sin ∠ADC , 由①②得BD DC =AB AC =36,所以DC =2BD . (2)因为DC =2BD ,所以DC →=23BC →.在△ABC 中,因为cos B =AB 2+BC 2-AC 22AB ·BC=32+72-622×3×7=1121. 所以AB →·DC →=AB →·⎝ ⎛⎭⎪⎪⎫23BC → =23|AB →||BC →|cos(π-B ) =23×3×7×⎝ ⎛⎭⎪⎫-1121=-223. 18.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,G 是△ABC 的重心,且56sin A ·GA →+40sin B ·GB →+35sin C ·GC →=0.(1)求角B 的大小;(2)设m =(sin A ,cos 2A ),n =(4k,1)(k >1),m ·n 的最大值为5,求实数k 的值.解析 (1)由G 是△ABC 的重心,得GA →+GB →+GC →=0,所以GC →=-(GA →+GB →),由正弦定理,可将已知等式转化为 56a ·GA →+40b ·GB →+35c ·(-GA →-GB →)=0.整理,得(56a -35c )·GA →+(40b -35c )·GB →=0.因为GA →,GB →不共线,所以⎩⎨⎧56a -35c =0,40b -35c =0.由此,得a ∶b ∶c =5∶7∶8.不妨设a =5,b =7,c =8,由余弦定理,得cos B =a 2+c 2-b 22ac =52+82-722×5×8=12.因为0<B <π,所以B =π3. (2)m ·n =4k sin A +cos 2A =-2sin 2A +4k sin A +1, 由(1)得B =π3,所以A +C =23π,故得A ∈⎝⎛⎭⎪⎫0,2π3.设sin A =t ∈(0,1],则m ·n =-2t 2+4kt +1,t ∈(0,1].令f (t )=-2t 2+4kt +1,则可知当t ∈(0,1],且k >1时,f (t )在(0,1]上为增函数,所以,当t =1时,m ·n 取得最大值5.于是有:-2+4k +1=5, 解得k =32,符合题意,所以,k =32.。

2021年高考数学一轮总复习 5.3 平面向量的数量积题组训练 理 苏教版

2021年高考数学一轮总复习 5.3 平面向量的数量积题组训练 理 苏教版

2021年高考数学一轮总复习 5.3 平面向量的数量积题组训练 理 苏教版基础巩固题组(建议用时:40分钟)一、填空题1.(xx·湛江二模)向量a =(1,2),b =(0,2),则a ·b =________.解析 a ·b =(1,2)·(0,2)=1×0+2×2=4. 答案 42.(xx·绍兴质检)在边长为2的菱形ABCD 中,∠BAD =120°,则AC →在AB →方向上的投影为________.解析 如图所示,AC →在AB →方向上的投影为|AC →|cos 60°=2×12=1.答案 13.(xx·山东省实验中学诊断)已知向量a =(3,1),b =(0,1),c =(k ,3).若a +2b 与c 垂直,则k =________.解析 由题意知(a +2b )·c =0,即a ·c +2b ·c =0. 所以3k +3+23=0,解得k =-3. 答案 -34.(xx·浙江五校联盟)若非零向量a ,b 满足|a |=|b |,且(2a +b )·b =0,则向量a ,b 的夹角为________.解析 由(2a +b )·b =0,得2a ·b +|b |2=0.∴2|b |2·cos〈a ,b 〉+|b |2=0,∴cos 〈a ,b 〉=-12,又〈a ,b 〉∈[0,π],∴〈a ,b 〉=2π3.答案2π35.(xx·福建卷改编)在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为________.解析 ∵AC →·BD →=1×(-4)+2×2=0, ∴AC →⊥BD →,∴S 四边形=|AC →|·|BD →|2=5·202=5.答案 56.(xx·课标全国Ⅰ卷)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =________.解析 b ·c =b ·[t a +(1-t )b ]=t a ·b +(1-t )b 2=t |a ||b |cos 60°+(1-t )|b |2=t 2+1-t =1-t2.由b ·c =0,得1-t2=0,所以t =2.答案 27.(xx·重庆卷)在OA 为边,OB 为对角线的矩形中,OA →=(-3,1),OB →=(-2,k ),则实数k =________.解析 在矩形中,OA →=(-3,1),OB →=(-2,k ),所以AB →=OB →-OA →=(-2,k )-(-3,1)=(1,k -1),因为AB →⊥OA →,所以AB →·OA →=0,即-3+k -1=0,解得k =4. 答案 48.(xx·潍坊二模)如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos 60°=1×3×12=32,又AO→=12⎝⎛⎭⎫AB →+AC →,所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),即AO →2=14(1+3+9)=134,所以|OA →|=132.答案132二、解答题9.已知平面向量a =(1,x ),b =(2x +3,-x )(x ∈R ).(1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |. 解 (1)若a ⊥b ,则a ·b =1×(2x +3)+x (-x )=0. 整理得x 2-2x -3=0,故x =-1或x =3. (2)若a ∥b ,则有1×(-x )-x (2x +3)=0, 即x (2x +4)=0,解得x =0或x =-2.当x =0时,a =(1,0),b =(3,0),a -b =(-2,0), ∴|a -b |=-22+02=2.当x =-2时,a =(1,-2),b =(-1,2),a -b =(2,-4), ∴|a -b |=2 5.综上,可知|a -b |=2或2 5.10.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积. 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a ·b -3|b |2=61.又|a |=4,|b |=3,∴64-4a ·b -27=61, ∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a|=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.能力提升题组 (建议用时:25分钟)一、填空题1.(xx·泰州一模)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则向量a +b 与a 的夹角为________.解析 由|a +b |=|a -b |,得a 2+2a ·b +b 2=a 2-2a ·b +b 2,即a ·b =0,所以(a +b )·a =a 2+a ·b =|a |2.故向量a +b 与a 的夹角θ的余弦值为cos θ=a +b ·a |a +b ||a |=|a |22|a ||a |=12.所以θ=π3.答案π32.已知向量p 的模为2,向量q 的模为1,p 与q 的夹角为π4,且a =3p +2q ,b =p -q ,则以a ,b 为邻边的平行四边形的长度较小的对角线长为________.解析 由题意可知较小的对角线为|a -b |=|3p +2q -p +q |=|2p +3q |=2p +3q 2=4p 2+12p ·q +9q 2= 8+122×22+9=29. 答案293.(xx·浙江卷)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________. 解析 因为e 1·e 2=cos π6=32,所以b 2=x 2+y 2+2xy e 1·e 2=x 2+y 2+3xy .所以x 2b2=x 2x 2+y 2+3xy=11+⎝ ⎛⎭⎪⎫y x2+3yx,设t =y x,则1+t 2+3t =⎝ ⎛⎭⎪⎫t +322+14≥14,所以0<11+t 2+3t≤4,即x 2b 2的最大值为4,所以|x ||b |的最大值为2. 答案 2 二、解答题4.设两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2的夹角为60°,若向量2t e 1+7e 2与向量e 1+t e 2的夹角为钝角,求实数t 的取值范围.解 由已知得e 21=4,e 22=1,e 1·e 2=2×1×cos 60°=1.∴(2t e 1+7e 2)·(e 1+t e 2)=2t e 21+(2t 2+7)e 1·e 2+7t e 22=2t 2+15t +7. 欲使夹角为钝角,需2t 2+15t +7<0,得-7<t <-12.设2t e 1+7e 2=λ(e 1+t e 2)(λ<0),∴⎩⎪⎨⎪⎧2t =λ,7=tλ,∴2t 2=7.∴t =-142,此时λ=-14. 即t =-142时,向量2t e 1+7e 2与e 1+t e 2的夹角为π. ∴当两向量夹角为钝角时,t 的取值范围是⎝⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12. 26942 693E 椾24178 5E72 干39806 9B7E 魾?836681 8F49 轉JP23370 5B4A 孊28282 6E7A 湺36234 8D8A 越p 25433 6359 捙。

备考2025届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式

备考2025届高考数学一轮复习强化训练第六章平面向量复数第3讲平面向量的数量积及应用极化恒等式

极化恒等式例6 (1)[2024北京高考]在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ 的取值范围是( D ) A.[-5, 3]B.[-3,5]C.[-6,4]D.[-4,6]解析 解法一(极化恒等式) 设AB 的中点为M ,CM⃗⃗⃗⃗⃗⃗ 与CP ⃗⃗⃗⃗⃗ 的夹角为θ,由极化恒等式得PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =PM ⃗⃗⃗⃗⃗⃗ 2-14AB ⃗⃗⃗⃗⃗ 2=(CM ⃗⃗⃗⃗⃗⃗ -CP ⃗⃗⃗⃗⃗ )2-254=CM ⃗⃗⃗⃗⃗⃗ 2+CP ⃗⃗⃗⃗⃗ 2-2CM ⃗⃗⃗⃗⃗⃗ ·CP ⃗⃗⃗⃗⃗ cos θ-254=254+1-5cos θ-254=1-5cos θ,因为cos θ∈[-1,1],所以PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6]. 解法二 以C 为坐标原点,CA ,CB 所在直线分别为x 轴,y 轴建立平面直角坐标系,则 A (3,0),B (0,4),设P (x ,y ),则x 2+y 2=1,PA⃗⃗⃗⃗⃗ =(3-x ,-y ),PB ⃗⃗⃗⃗⃗ = (-x ,4-y ),所以PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =x 2-3x +y 2-4y =(x -32)2+(y -2)2-254,又(x -32)2+(y -2)2表示圆x 2+y 2=1上一点到点(32,2)距离的平方,圆心(0,0)到点(32,2)的距离为52,所以PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ∈[(52-1)2-254,(52+1)2-254],即PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6],故选D. 解法三 以C 为坐标原点,CA ,CB 所在直线分别为x 轴,y 轴建立平面直角坐标系,则 A (3,0),B (0,4),因为PC =1,所以P 在以(0,0)为圆心,1为半径的圆上,所以设点P 坐标为(cos α,sin α),则PA ⃗⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ =(3-cos α,-sin α)·(-cos α,4-sin α)=1-3cos α-4sin α=1-5sin (α+φ)(其中tan φ=34).因为sin (α+φ)∈[-1,1],所以PA ⃗⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ∈[-4,6]. (2)[全国卷Ⅱ]已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )的最小值是( B ) A.-2B.-32C.-43D.-1解析 解法一 如图,取BC 的中点D ,则PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =2PD ⃗⃗⃗⃗⃗ ,则PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=2PA ⃗⃗⃗⃗⃗ ·PD ⃗⃗⃗⃗⃗ .在△PAD 中,取AD 的中点O ,则2PA ⃗⃗⃗⃗⃗ ·PD⃗⃗⃗⃗⃗ =2|PO ⃗⃗⃗⃗⃗ |2-12|AD ⃗⃗⃗⃗⃗ |2=2|PO⃗⃗⃗⃗⃗ |2-32. 由于点P 在平面内是随意的,因此当且仅当点P ,O 重合时,|PO ⃗⃗⃗⃗⃗ |取得最小值,即2PA ⃗⃗⃗⃗⃗ ·PD ⃗⃗⃗⃗⃗ 取得最小值-32.故选B. 解法二 如图,以等边三角形ABC 的底边BC 的中点O 为坐标原点,BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系,则A (0,√3),B (-1,0),C (1,0).设P (x ,y ),则PA⃗⃗⃗⃗⃗ =(-x ,√3-y ),PB ⃗⃗⃗⃗⃗ =(-1-x ,-y ),PC ⃗⃗⃗⃗⃗ =(1-x ,-y ),所以PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )=(-x ,√3-y )·(-2x ,-2y )=2x 2+2(y -√32)2-32,易知当x =0,y =√32时,PA ⃗⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ )取得最小值,最小值为-32.故选B.方法技巧极化恒等式:a ·b =14[(a +b )2-(a -b )2].几何意义:向量a ,b 的数量积等于以这组向量所对应的线段为邻边的平行四边形的“和对角线长”与“差对角线长”的平方差的14.应用:(1)在▱ABCD 中,O 为AC ,BD 的交点,则有AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =14(4|AO ⃗⃗⃗⃗⃗ |2-4|OB ⃗⃗⃗⃗⃗ |2)=|AO⃗⃗⃗⃗⃗ |2-|OB ⃗⃗⃗⃗⃗ |2. (2)如图,在△ABC 中,若M 是BC 的中点,则AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ 2-14BC⃗⃗⃗⃗⃗ 2. 训练4 [2024山东青岛二中5月模拟]如图,在四边形ABCD 中,∠B =60°,AB =3,BC =6,且AD ⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ·AB⃗⃗⃗⃗⃗ =-32,则实数λ的值为 16,若M ,N 是线段BC 上的动点,且 |MN ⃗⃗⃗⃗⃗⃗⃗ |=1,则DM ⃗⃗⃗⃗⃗⃗ ·DN⃗⃗⃗⃗⃗⃗ 的最小值为 132.解析 依题意得AD ∥BC ,∠BAD =120°,由AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ |·cos ∠BAD = -32|AD ⃗⃗⃗⃗⃗ |=-32,得|AD ⃗⃗⃗⃗⃗ |=1,因此λ=|AD⃗⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗ |=16.取MN 的中点E ,连接DE ,则DM⃗⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ =2DE ⃗⃗⃗⃗⃗ ,DM ⃗⃗⃗⃗⃗⃗ ·DN ⃗⃗⃗⃗⃗⃗ =14[(DM ⃗⃗⃗⃗⃗⃗ +DN ⃗⃗⃗⃗⃗⃗ )2-(DM ⃗⃗⃗⃗⃗⃗ -DN ⃗⃗⃗⃗⃗⃗ )2]=DE ⃗⃗⃗⃗⃗ 2-14NM ⃗⃗⃗⃗⃗⃗⃗ 2=DE ⃗⃗⃗⃗⃗ 2-14.留意到线段MN 在线段BC 上运动时,DE 的最小值等于点D 到直线BC 的距离,即AB ·sin B =3√32,因此DE ⃗⃗⃗⃗⃗ 2-14的最小值为(3√32)2-14=132,即DM ⃗⃗⃗⃗⃗⃗ ·DN⃗⃗⃗⃗⃗⃗ 的最小值为132.思维帮·提升思维 快速解题三角形“四心”的向量表示与运用角度1 垂心的向量表示与运用例7 [2024山西朔州模拟]已知H 为△ABC 的垂心,若AH⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,则sin ∠BAC = √63.解析 如图,连接BH ,CH ,因为AH ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,所以BH ⃗⃗⃗⃗⃗⃗ =BA⃗⃗⃗⃗⃗ +AH ⃗⃗⃗⃗⃗⃗ = -23AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ +AH ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ -35AC ⃗⃗⃗⃗⃗ .由H 为△ABC 的垂心,得BH ⃗⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =0,即(-23AB ⃗⃗⃗⃗⃗ +25AC ⃗⃗⃗⃗⃗ )·AC⃗⃗⃗⃗⃗ =0,可知25|AC ⃗⃗⃗⃗⃗ |2=23|AC ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ |cos ∠BAC ,即cos ∠BAC =3|AC⃗⃗⃗⃗⃗ |5|AB⃗⃗⃗⃗⃗ | ①,同理有CH ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,即(13AB ⃗⃗⃗⃗⃗ -35AC ⃗⃗⃗⃗⃗ )·AB ⃗⃗⃗⃗⃗ =0,可知13|AB ⃗⃗⃗⃗⃗ |2=35|AC ⃗⃗⃗⃗⃗ ||AB ⃗⃗⃗⃗⃗ |cos ∠BAC ,即cos ∠BAC =5|AB ⃗⃗⃗⃗⃗ |9|AC ⃗⃗⃗⃗⃗ |②,①×②得cos 2∠BAC =13,得sin 2∠BAC =1-cos 2∠BAC =1-13=23,又sin ∠BAC >0,所以sin ∠BAC =√63. 方法技巧1.垂心的定义:三角形三条高的交点称为该三角形的垂心.2.垂心的性质:设O 是△ABC 的垂心,P 为△ABC 所在平面内随意一点,则有(1)OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ ·OA ⃗⃗⃗⃗⃗ ;(2)|OA ⃗⃗⃗⃗⃗ |2+|BC ⃗⃗⃗⃗⃗ |2=|OB ⃗⃗⃗⃗⃗ |2+|CA ⃗⃗⃗⃗⃗ |2=|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2; (3)动点P 满意AP⃗⃗⃗⃗⃗ =λ(AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cos∠ABC +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |cos∠ACB )或OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cos∠ABC +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |cos∠ACB ),λ∈R 时,动点P 的轨迹经过△ABC 的垂心.角度2 重心的向量表示与运用例8 [2024广州一中诊断]如图,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 分别交于M ,N 两点,AM ⃗⃗⃗⃗⃗⃗ =x AB⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =y AC ⃗⃗⃗⃗⃗ ,则xy x +y= 13 .解析 由M ,G ,N 三点共线得,存在实数λ使得AG ⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ +(1-λ)AN ⃗⃗⃗⃗⃗⃗ =x λAB ⃗⃗⃗⃗⃗ +y (1-λ)AC⃗⃗⃗⃗⃗ ,且0<λ<1. 因为G 是△ABC 的重心,所以AG ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),所以{xλ=13,y (1-λ)=13,则{x =13λ,y =13(1-λ),故xy =19λ(1-λ),x +y =13λ(1-λ),则xy x +y =19λ(1-λ)×3λ(1-λ)=13.方法技巧1.重心的定义:三角形三条中线的交点称为该三角形的重心.2.重心的性质:设O 是△ABC 的重心,P 为平面内随意一点,则有(1)OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0;(2)PO⃗⃗⃗⃗⃗ =13(PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ );(3)动点P 满意AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ + λ(AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),λ∈[0,+∞)时,动点P 的轨迹经过△ABC 的重心. 角度3 外心的向量表示与运用例9 [2024湖北荆门模拟]已知点O 为△ABC 所在平面内一点,在△ABC 中,满意2AB ⃗⃗⃗⃗⃗ ·AO ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |2,2AC ⃗⃗⃗⃗⃗ ·AO ⃗⃗⃗⃗⃗ =|AC ⃗⃗⃗⃗⃗ |2,则点O 为该三角形的( B ) A.内心B.外心C.垂心D.重心解析 因为2AB ⃗⃗⃗⃗⃗ ·AO⃗⃗⃗⃗⃗ =2|AB ⃗⃗⃗⃗⃗ ||AO ⃗⃗⃗⃗⃗ |cos ∠OAB =|AB ⃗⃗⃗⃗⃗ |2,所以|AO ⃗⃗⃗⃗⃗ |cos ∠OAB = 12|AB ⃗⃗⃗⃗⃗ |,则向量AO ⃗⃗⃗⃗⃗ 在向量AB⃗⃗⃗⃗⃗ 上的投影向量的长度为|AB ⃗⃗⃗⃗⃗ |的一半,所以点O 在边AB 的中垂线上,同理,点O 在边AC 的中垂线上,所以点O 为该三角形的外心,故选B. 方法技巧1.外心的定义:三角形三边垂直平分线的交点称为该三角形的外心.2.外心的性质:若O 是△ABC 的外心,则有(1)|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC ⃗⃗⃗⃗⃗ |; (2)(OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )·AB ⃗⃗⃗⃗⃗ =(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·AC ⃗⃗⃗⃗⃗ =(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )·BC ⃗⃗⃗⃗⃗ =0. 角度4 内心的向量表示与运用例10 [2024四川南充阶段测试]已知O 是△ABC 所在平面内一点,且点O 满意OA ⃗⃗⃗⃗⃗ ·(AB⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |-AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)=OB ⃗⃗⃗⃗⃗ ·(BA ⃗⃗⃗⃗⃗ |BA ⃗⃗⃗⃗⃗ |-BC ⃗⃗⃗⃗⃗ |BC ⃗⃗⃗⃗⃗ |)=OC ⃗⃗⃗⃗⃗ ·(CA ⃗⃗⃗⃗⃗ |CA ⃗⃗⃗⃗⃗ |-CB⃗⃗⃗⃗⃗ |CB ⃗⃗⃗⃗⃗ |)=0,则点O 为△ABC 的( C ) A.外心 B.重心C.内心D.垂心解析 解法一AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |,AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |分别是与AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 方向相同的单位向量,可令AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |=AD ⃗⃗⃗⃗⃗ ,AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=AE ⃗⃗⃗⃗⃗ ,连接ED ,则△ADE 为腰长是1的等腰三角形,AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |-AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=ED ⃗⃗⃗⃗⃗ ,所以OA ⃗⃗⃗⃗⃗ ·ED ⃗⃗⃗⃗⃗ =0,所以AO 为∠CAB 的平分线,同理BO 为∠ABC 的平分线,CO 为∠ACB 的平分线,所以O 为△ABC 的内心.故选C. 解法二 OA ⃗⃗⃗⃗⃗ ·(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |-AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)=0,即OA ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |=OA ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,即|OA ⃗⃗⃗⃗⃗ |·|AB ⃗⃗⃗⃗⃗ ||AB⃗⃗⃗⃗⃗ |cos (π-∠OAB )=|OA ⃗⃗⃗⃗⃗ |·|AC ⃗⃗⃗⃗⃗||AC ⃗⃗⃗⃗⃗|·cos (π-∠OAC ),所以∠OAB =∠OAC ,即AO 是∠BAC 的平分线,同理可得BO 为∠ABC 的平分线,CO 为∠ACB 的平分线,所以O 为△ABC 的内心. 方法技巧1.内心的定义:三角形三条内角平分线的交点称为该三角形的内心.2.内心的性质:若O 是△ABC 的内心,P 为平面内随意一点,则有(1)a OA ⃗⃗⃗⃗⃗ +b OB ⃗⃗⃗⃗⃗ +c OC ⃗⃗⃗⃗⃗ =0(a ,b ,c 分别是△ABC 的三边BC ,AC ,AB 的长);(2)动点P 满意AP ⃗⃗⃗⃗⃗ =λ(AB⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)或OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |),λ∈[0,+∞)时,动点P 的轨迹经过△ABC 的内心.训练5 (1)[2024长春模拟]点O 是平面α上确定点,点P 是平面α上一动点,A ,B ,C 是平面α上△ABC 的三个顶点(点O ,P ,A ,B ,C 均不重合),以下命题正确的是 ①②③④ .①动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,则△ABC 的重心确定在满意条件的P 点的集合中; ②动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)(λ>0),则△ABC 的内心确定在满意条件的P 点的集合中;③动点P 满意OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )(λ>0),则△ABC 的重心确定在满意条件的P 点的集合中;④动点P 满意OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |cosB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC ) (λ∈R ),则△ABC 的垂心确定在满意条件的P 点的集合中.解析 对于①,OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,移项得-OA ⃗⃗⃗⃗⃗ +OP ⃗⃗⃗⃗⃗ =AP ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ ,即PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0,则点P 是△ABC 的重心,故①正确. 对于②,因为动点P 满意OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |)(λ>0),移项得AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |+AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |)(λ>0),所以AP ⃗⃗⃗⃗⃗ 与∠BAC 的平分线对应的向量共线,所以P 在∠BAC 的平分线上,所以△ABC 的内心在满意条件的P 点的集合中,②正确. 对于③,OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |sinC )(λ>0),即AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗ |sinB +AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |sinC ),过点A 作AD ⊥BC ,垂足为D ,则|AB⃗⃗⃗⃗⃗ |sin B =|AC ⃗⃗⃗⃗⃗ |sin C =AD ,AP ⃗⃗⃗⃗⃗ =λAD(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),设M 为BC 的中点,则AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AM ⃗⃗⃗⃗⃗⃗ ,则AP ⃗⃗⃗⃗⃗ =2λAD AM ⃗⃗⃗⃗⃗⃗ ,所以P 在BC 的中线上,所以△ABC 的重心确定在满意条件的P 点的集合中,③正确. 对于④,OP⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC )(λ∈R ),即AP ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB+AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC ),所以AP ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗ |cosB +AC ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |cosC)=λ(-|BC ⃗⃗⃗⃗⃗ |+|BC ⃗⃗⃗⃗⃗ |)=0,所以AP⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ ,所以P 在边BC 上的高所在的直线上,所以△ABC 的垂心确定在满意条件的P 点的集合中,④正确.故正确的命题是①②③④.(2)[多选/2024安徽淮北师大附中模拟]数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的重心、垂心和外心共线.这条线就是三角形的欧拉线.在△ABC 中,O ,H ,G 分别是外心、垂心和重心,D 为BC 边的中点,则下列四个选项中正确的是( ABD ) A.GH =2OG B.GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0 C.AH =ODD.S △ABG =S △BCG =S △ACG解析 依据题意画出图形,如图所示.对于B ,连接GD ,由重心的性质可得G 为AD 的三等分点,且GA ⃗⃗⃗⃗⃗ =-2GD ⃗⃗⃗⃗⃗ ,又D 为BC 的中点,所以GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =2GD ⃗⃗⃗⃗⃗ ,所以GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =-2GD ⃗⃗⃗⃗⃗ +2GD ⃗⃗⃗⃗⃗ =0,故B 正确.对于A ,C ,因为O 为△ABC 的外心,D 为BC 的中点,所以OD ⊥BC ,所以AH ∥OD ,所以△AHG ∽△DOG ,所以GHOG =AHOD =AGDG =2,即GH =2OG ,AH =2OD ,故A 正确,C 不正确.对于D,延长AH交BC于N,过点G作GE⊥BC,垂足为E,则△DEG∽△DNA,所以GEAN=DGDA =13,所以S△BGC=12×BC×GE=12×BC×13×AN=13S△ABC,同理,S△AGC=S△AGB=13S△ABC,所以S△ABG=S△BCG=S△ACG,故D正确.故选ABD.。

江苏专用高考数学大一轮复习第五章平面向量复数5.3平面向量的数量积教案含解析

江苏专用高考数学大一轮复习第五章平面向量复数5.3平面向量的数量积教案含解析

江苏专用高考数学大一轮复习第五章平面向量复数5.3平面向量的数量积教案含解析§5.3 平面向量的数量积考情考向分析 主要考查利用数量积的定义解决数量积的运算、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模以及判断两个平面向量的平行与垂直关系.一般以填空题的形式考查,偶尔会在解答题中出现,属于中档题.1.向量的夹角已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB 就是向量a 与b 的夹角,向量夹角的范围是[0,π]. 2.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a ||b |·cos θ叫做a 与b 的数量积(或内积),记作a ·b 投影|a |cos θ叫做向量a 在b 方向上的投影, |b |cos θ叫做向量b 在a 方向上的投影几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积拓展:向量数量积不满足: ①消去律,即a ·b =a ·c ⇏b =c ; ②结合律,即(a ·b )·c ⇏a ·(b ·c ). 3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb )=λa ·b . (3)(a +b )·c =a ·c +b ·c . 4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论几何表示坐标表示模|a|=a·a|a|=x21+y21夹角cosθ=a·b|a||b|cosθ=x1x2+y1y2x21+y21x22+y22a⊥b的充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤(x21+y21)(x22+y22)概念方法微思考1.a在b方向上的投影与b在a方向上的投影相同吗?提示不相同.因为a在b方向上的投影为|a|cosθ,而b在a方向上的投影为|b|cosθ,其中θ为a与b的夹角.2.两个向量的数量积大于0,则夹角一定为锐角吗?提示不一定.当夹角为0°时,数量积也大于0.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.( √)(2)由a·b=0可得a=0或b=0.( ×)(3)(a·b)c=a(b·c).( ×)(4)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( ×)(5)若a·b>0,则a和b的夹角为锐角;若a·b<0,则a和b的夹角为钝角.( ×)题组二教材改编2.[P90T18]已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=________.答案12解析∵2a-b=(4,2)-(-1,k)=(5,2-k),由a·(2a-b)=0,得(2,1)·(5,2-k)=0,∴10+2-k=0,解得k=12.3.[P89T8]已知两个单位向量e1,e2的夹角为π3.若向量b1=e1-2e2,b2=3e1+4e2,则b1·b2=________.答案 -6解析 b 1=e 1-2e 2,b 2=3e 1+4e 2, 则b 1·b 2=(e 1-2e 2)·(3e 1+4e 2) =3e 21-2e 1·e 2-8e 22.因为e 1,e 2为单位向量,〈e 1,e 2〉=π3,所以b 1·b 2=3-2×12-8=3-1-8=-6.题组三 易错自纠4.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 3解析 方法一 |a +2b |=(a +2b )2=a 2+4a ·b +4b 2=22+4×2×1×cos60°+4×12=12=2 3. 方法二 (数形结合法)由|a |=|2b |=2知,以a 与2b 为邻边可作出边长为2的菱形OACB ,如图,则|a +2b |=|OC →|.又∠AOB =60°,所以|a +2b |=2 3.5.已知|a |=3,|b |=2,若a ·b =-3,则a 与b 的夹角的大小为________. 答案2π3解析 设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-33×2=-12.又0≤θ≤π,所以θ=2π3.6.已知△ABC 的三边长均为1,且AB →=c ,BC →=a ,CA →=b ,则a·b +b·c +a·c =________. 答案 -32解析 ∵〈a ,b 〉=〈b ,c 〉=〈a ,c 〉=120°,|a |=|b |=|c |=1, ∴a·b =b·c =a·c =1×1×cos120°=-12,∴a·b +b·c +a·c =-32.题型一 平面向量数量积的基本运算1.(2018·全国Ⅱ改编)已知向量a ,b 满足|a |=1,a·b =-1,则a ·(2a -b )=________. 答案 3解析 a ·(2a -b )=2a 2-a ·b =2|a |2-a ·b . ∵|a |=1,a ·b =-1,∴原式=2×12+1=3.2.(2018·苏北四市调研)已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=________. 答案61解析 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61.3.(2018·江苏)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________. 答案 3解析 设A (a,2a ),则a >0.又B (5,0),故以AB 为直径的圆的方程为(x -5)(x -a )+y (y -2a )=0.由题意知C ⎝ ⎛⎭⎪⎫a +52,a . 由⎩⎪⎨⎪⎧(x -5)(x -a )+y (y -2a )=0,y =2x ,解得⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =a ,y =2a .∴D (1,2).又AB →·CD →=0,AB →=(5-a ,-2a ),CD →=⎝ ⎛⎭⎪⎫1-a +52,2-a , ∴(5-a ,-2a )·⎝⎛⎭⎪⎫1-a +52,2-a =52a 2-5a -152=0, 解得a =3或a =-1. 又a >0,∴a =3.4.(2018·江苏淮安清江中学调研)如图,在△ABC 中,∠BAC =120°,AB =AC =2,D 为BC边上的点,且AD →·BC →=0,CE →=2EB →,则AD →·AE →=________.答案 1解析 ∵AD →·BC →=0,∴AD →⊥BC →,且D 为BC 的中点,∠B =∠C =30°, ∴在Rt△ADB 中可求得AD =1,AD →·DE →=0, ∵AD →·AE →=AD →·(AD →+DE →)=AD →2+AD →·DE →, ∴AD →·AE →=1.思维升华平面向量数量积的三种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a·b =|a ||b |cos 〈a ,b 〉. (2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.(3)利用数量积的几何意义求解.题型二 平面向量数量积的应用命题点1 求向量的模与夹角例1(1)在△ABC 中,∠BAC =60°,AB =5,AC =6,D 是AB 上一点,且AB →·CD →=-5,则|BD →|=________. 答案 3解析 如图所示,设AD →=kAB →,所以CD →=AD →-AC →=kAB →-AC →, 所以AB →·CD →=AB →·(kAB →-AC →) =kAB →2-AB →·AC → =25k -5×6×12=25k -15=-5,解得k =25,所以|BD →|=⎝ ⎛⎭⎪⎫1-25|AB →|=3.(2)设向量a ,b 满足|a |=2,|b |=1,a ·(a -b )=3,则a 与b 的夹角为________. 答案π3解析 由题意得a ·(a -b )=a 2-a ·b =4-2×1×cos α=4-2cos α=3, ∴cos α=12,∵0≤α≤π,∴α=π3.(3)设向量a ,b ,c 满足|a |=|b |=2,a ·b =-2,〈a -c ,b -c 〉=60°,则|c |的最大值为________. 答案 4解析 因为|a |=|b |=2,a ·b =-2,所以cos 〈a ,b 〉=a ·b |a ||b |=-12,〈a ,b 〉=120°.如图所示,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c ,∠AOB =120°. 所以∠ACB =60°,所以∠AOB +∠ACB =180°, 所以A ,O ,B ,C 四点共圆. 不妨设为圆M ,因为AB →=b -a , 所以AB →2=a 2-2a ·b +b 2=12. 所以|AB →|=23,由正弦定理可得△AOB 的外接圆即圆M 的直径为 2R =|AB →|sin∠AOB=4.所以当|OC →|为圆M 的直径时,|c |取得最大值4.命题点2 平面向量的平行与垂直例2在平面直角坐标系xOy 中,已知向量AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),且AD →∥BC →. (1)求x 与y 之间的关系式;(2)若AC →⊥BD →,求四边形ABCD 的面积.解 (1)由题意得AD →=AB →+BC →+CD →=(x +4,y -2),BC →=(x ,y ). 因为AD →∥BC →,所以(x +4)y -(y -2)x =0, 即x +2y =0.(2)由题意AC →=AB →+BC →=(x +6,y +1), BD →=BC →+CD →=(x -2,y -3). 因为AC →⊥BD →,所以(x +6)(x -2)+(y +1)(y -3)=0, 即x 2+y 2+4x -2y -15=0,联立⎩⎪⎨⎪⎧x +2y =0,x 2+y 2+4x -2y -15=0,解得⎩⎪⎨⎪⎧ x =2,y =-1或⎩⎪⎨⎪⎧x =-6,y =3,当⎩⎪⎨⎪⎧x =2,y =-1时,AC →=(8,0),BD →=(0,-4),S 四边形ABCD =12×AC ×BD =16;当⎩⎪⎨⎪⎧x =-6,y =3时,AC →=(0,4),BD →=(-8,0),S 四边形ABCD =12×AC ×BD =16.所以四边形ABCD 的面积为16. 思维升华 (1)求解平面向量模的方法 ①利用公式|a |=x 2+y 2. ②利用|a |=a 2.(2)求平面向量的夹角的方法 ①定义法:cos θ=a·b|a||b |,θ的取值范围为[0,π].②坐标法:若a =(x 1,y 1),b =(x 2,y 2),则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. ③解三角形法:把两向量的夹角放到三角形中.跟踪训练1(1)(2018·江苏无锡梅村高中模拟)如图,在平面四边形ABCD 中,AB =2,△BCD 是等边三角形,若AC →·BD →=1,则AD 的长为________.答案6解析 取BD 的中点H ,连结AH ,CH ,由△BCD 为等边三角形,可得CH ⊥BD , 由AC →·BD →=1,可得(AH →+HC →)·BD →=AH →·BD →+HC →·BD →=A H →·BD →=12(AD →+AB →)·(AD →-AB →)=12(AD →2-AB →2)=1, 可得AD →2=AB →2+2=4+2=6, 所以|AD →|= 6.(2)已知平面向量α,β满足|β|=1,且α与β-α的夹角为120°,则α的模的取值范围是________.答案 ⎝⎛⎦⎥⎤0,233解析 设在△ABC 中,a =|β|=1,A =60°,|α|=c , 由正弦定理得a sin A =csin C , 则a sin C sin A =c ,即c =2 33sin C . 又0<sin C ≤1,即c 的取值范围是⎝ ⎛⎦⎥⎤0,233,则α的模的取值范围是⎝⎛⎦⎥⎤0,233.(3)设a ,b ,c 是同一平面内的三个向量,a =(1,2). ①若|c |=25,且c ∥a ,求c 的坐标;②若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ. 解 ①因为c ∥a ,设c =λa =(λ,2λ), 又|c |=25,所以5λ2=20,解得λ=±2, 所以c =(2,4)或(-2,-4). ②因为(a +2b )·(2a -b )=0, 所以2a 2-a ·b +4a ·b -2b 2=0,解得a ·b =-52,即5·52·cos θ=-52,又0≤θ≤π,所以θ=π.题型三 平面向量与三角函数例3如图,A 是单位圆与x 轴正半轴的交点,点B ,P 在单位圆上,且B ⎝ ⎛⎭⎪⎫-35,45,∠AOB =α,∠AOP =θ(0<θ<π),OQ →=OA →+OP →,四边形OAQP 的面积为S .(1)求cos α+sin α;(2)求OA →·OQ →+S 的最大值及此时θ的值θ0.解 (1)∵B ⎝ ⎛⎭⎪⎫-35,45,∠AOB =α, ∴cos α=-35,sin α=45,∴cos α+sin α=15.(2)由已知得A (1,0),P (cos θ,sin θ), ∴OQ →=(1+cos θ,sin θ), OA →·OQ →=1+cos θ, 又S =sin θ,∴OA →·OQ →+S =sin θ+cos θ+1=2sin ⎝ ⎛⎭⎪⎫θ+π4+1, 又0<θ<π,∴π4<θ+π4<5π4,∴-22<sin ⎝⎛⎭⎪⎫θ+π4≤1, 则OA →·OQ →+S 的最大值为2+1, 此时θ0=π2-π4=π4.思维升华平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等. 跟踪训练2在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎪⎫0,π2.(1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n .所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12,即22sin x -22cos x =12, 所以sin ⎝⎛⎭⎪⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4,所以x -π4=π6,即x =5π12.1.在△ABC 中,AB =AC =2,BC =23,则AB →·AC →=________.答案 -2解析 由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC =22+22-(23)22×2×2=-12,所以AB →·AC →=|AB →|·|AC →|cos A=2×2×⎝ ⎛⎭⎪⎫-12=-2. 2.已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|2a -b |=________. 答案 2 2解析 根据题意,|a -b |=3+2=5, 则(a -b )2=a 2+b 2-2a ·b =5-2a ·b =5, 可得a ·b =0,结合|a |=1,|b |=2, 可得(2a -b )2=4a 2+b 2-4a ·b =4+4=8, 则||2a -b =2 2.3.已知向量a =(1,1),b =(2,-3),若k a -2b 与a 垂直,则实数k 的值为________. 答案 -1解析 向量a =(1,1),b =(2,-3), 则k a -2b =()k -4,k +6.若k a -2b 与a 垂直,则k -4+k +6=0, 解得k =-1.4.已知四边形ABCD ,若AC →·BD →=AB →·CD →=2,则AD →·BC →的值为________. 答案 0解析 因为AC →·BD →=(AB →+BC →)·(BC →+CD →)=AB →·CD →+(AB →+BC →+CD →)·BC →=AB →·CD →+AD →·BC →, 所以AD →·BC →=AC →·BD →-AB →·CD →=0.5.(2018·苏北四市考试)如图,在半径为2的扇形AOB 中,∠AOB =90°,P 为AB 上的一点,若OP →·OA →=2,则OP →·AB →的值为________.答案 -2+2 3解析 方法一 因为OP →·OA →=|OP →|·|OA →|·cos∠AOP =2×2×cos∠AOP =2, 所以∠AOP =60°,∠BOP =30°,所以OP →·AB →=OP →·(OB →-OA →) =OP →·OB →-OA →·OP →=|OP →|·|OB →|·cos∠BOP -2 =2×2×cos30°-2=-2+2 3.方法二 以O 为坐标原点,OA ,OB 所在直线分别为x 轴、y 轴.设∠AOP =θ,θ∈⎣⎢⎡⎦⎥⎤0,π2,则P (2cos θ,2sin θ),A (2,0),B (0,2), 则OP →·OA →=(2cos θ,2sin θ)·(2,0) =4cos θ=2,解得cos θ=12,即θ=π3,所以P (1,3),则OP →·AB →=(1,3)·(-2,2) =-2+2 3.6.(2018·江苏无锡梅村高中月考)已知平面向量a ,b 满足|a |=2,|b |=2,|a +2b |=5,则向量a ,b 夹角的余弦值为________. 答案516解析 因为平面向量a ,b 满足|a |=2,|b |=2,|a +2b |=5, 则|a +2b |=a 2+4b 2+4a ·b=22+4×22+4×2×2cos〈a ,b 〉=5, 解得cos 〈a ,b 〉=516.7.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)一动点,则MA →·MB →的取值范围是________. 答案 [-1,3] 解析 如图所示,由题意可得,点M 所在区域的不等式表示为(x -1)2+(y -1)2≤1(0≤x ≤2,0≤y ≤2). 可设点M (x ,y ),A (0,0),B (2,0).∴MA →·MB →=(-x ,-y )·(2-x ,-y ) =-x (2-x )+y 2=(x -1)2+y 2-1,由(x -1)2+y 2∈[0,2],∴MA →·MB →∈[-1,3].8.如图,在△ABC 中,AC =3,BC =4,∠C =90°,D 是BC 的中点,则BA →·AD →的值为________.答案 -17解析 如图,建立平面直角坐标系,则C (0,0),A (3,0),B (0,4),D (0,2). 则BA →=(3,-4),AD →=(-3,2). ∴BA →·AD →=3×(-3)-4×2=-17.9.(2018·南京模拟)在△ABC 中,AB =3,AC =2,∠BAC =120°,BM →=λBC →.若AM →·BC →=-173,则实数λ的值为________. 答案 13解析 由题意知,AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →,所以AM →·BC →=[(1-λ)AB →+λAC →]·(AC →-AB →)=(λ-1)·AB →2+λAC →2+(1-2λ)AB →·AC →=9(λ-1)+4λ+(1-2λ)×3×2×cos120°=19λ-12=-173,所以λ=13.10.(2016·江苏)如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.答案 78解析 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点, 则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b . AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝ ⎛⎭⎪⎫-23a +13b ⎝ ⎛⎭⎪⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1.可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b .CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝ ⎛⎭⎪⎫-56a +16b ⎝ ⎛⎭⎪⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.11.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,求PA →·(PB →+PC →)的最小值. 解 方法一 设BC 的中点为D ,AD 的中点为E ,则有PB →+PC →=2PD →, 则PA →·(PB →+PC →)=2PA →·PD → =2(PE →+EA →)·(PE →-EA →) =2(PE →2-EA →2). 而AE →2=⎝ ⎛⎭⎪⎫322=34,当P 与E 重合时,PE →2有最小值0, 故此时PA →·(PB →+PC →)取最小值, 最小值为-2EA →2=-2×34=-32.方法二 以AB 所在直线为x 轴,AB 的中点为原点建立平面直角坐标系,如图,则A (-1,0),B (1,0),C (0,3), 设P (x ,y ),取BC 的中点D , 则D ⎝ ⎛⎭⎪⎫12,32.PA →·(PB →+PC →)=2PA →·PD →=2(-1-x ,-y )·⎝ ⎛⎭⎪⎫12-x ,32-y=2⎣⎢⎡⎦⎥⎤(x +1)·⎝ ⎛⎭⎪⎫x -12+y ·⎝ ⎛⎭⎪⎫y -32=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +142+⎝ ⎛⎭⎪⎫y -342-34.因此,当x =-14,y =34时,PA →·(PB →+PC →)取最小值,为2×⎝ ⎛⎭⎪⎫-34=-32.12.(2017·江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0.于是tan x =-33. 又x ∈[0,π],所以x =5π6.(2)f (x )=a·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎪⎫x +π6.因为x ∈[0,π],所以x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎪⎫x +π6≤32,于是,当x +π6=π6,即x =0时,f (x )取得最大值3;当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.13.已知O 是△ABC 内部一点,OA →+OB →+OC →=0,AB →·AC →=2且∠BAC =60°,则△OBC 的面积为________. 答案33解析 ∵OA →+OB →+OC →=0,∴OA →+OB →=-OC →,∴O 为三角形的重心, ∴△OBC 的面积为△ABC 面积的13,∵AB →·AC →=2,∴|AB →||AC →|cos∠BAC =2, ∵∠BAC =60°,∴|AB →||AC →|=4, △ABC 的面积为12|AB →||AC →|sin∠BAC =3,∴△OBC 的面积为33. 14.在△ABC 中,∠A =120°,AB →·AC →=-3,点G 是△ABC 的重心,则|AG →|的最小值是________.答案63解析 设BC 的中点为D , 因为点G 是△ABC 的重心,所以AG →=23AD →=23×12(AB →+AC →)=13(AB →+AC →),再令|AB →|=c ,|AC →|=b ,则AB →·AC →=bc cos120°=-3,所以bc =6, 所以|AG →|2=19(|AB →|2+2AB →·AC →+|AC →|2)=19(c 2+b 2-6)≥19(2bc -6)=23, 所以|AG →|≥63,当且仅当b =c =6时取等号.15.如图,等边△ABC 的边长为2,顶点B ,C 分别在x 轴的非负半轴,y 轴的非负半轴上滑动,M 为AB 的中点,则OA →·OM →的最大值为________.答案 52+7解析 设∠OBC =θ,则B ()2cos θ,0,C ()0,2sin θ,A ⎝ ⎛⎭⎪⎫2cos θ-2cos ⎝⎛⎭⎪⎫θ+π3,2sin ⎝⎛⎭⎪⎫θ+π3,M ⎝⎛⎭⎪⎫2cos θ-cos ⎝⎛⎭⎪⎫θ+π3,sin ⎝⎛⎭⎪⎫θ+π3,OA →·OM →=⎣⎢⎡⎦⎥⎤2cos θ-2cos ⎝ ⎛⎭⎪⎫θ+π3×⎣⎢⎡⎦⎥⎤2cos θ-cos ⎝ ⎛⎭⎪⎫θ+π3+2sin ⎝ ⎛⎭⎪⎫θ+π3×sin ⎝ ⎛⎭⎪⎫θ+π3 =4cos 2θ+2cos 2⎝ ⎛⎭⎪⎫θ+π3-6cos θcos ⎝ ⎛⎭⎪⎫θ+π3+2sin 2⎝ ⎛⎭⎪⎫θ+π3 =2+4cos 2θ-6cos θcos ⎝⎛⎭⎪⎫θ+π3=2+4cos 2θ-6cos θ⎝ ⎛⎭⎪⎫12cos θ-32sin θ=2+cos 2θ+33sin θcos θ =52+12cos2θ+332sin2θ =52+7sin ()2θ+φ⎝ ⎛⎭⎪⎫其中tan φ=39. ∴OA →·OM →的最大值为52+7.16.已知OP →,OQ →是非零不共线的向量,设OM →=1m +1OP →+m m +1OQ →,定义点集A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫F ⎪⎪⎪⎪FP →·FM →||FP→=FQ →·FM →||FQ →,当F 1,F 2∈A 时,若对于任意的m ≥3,当F 1,F 2不在直线PQ 上时,不等式||F 1F 2→≤k ||PQ →恒成立,求实数k 的最小值. 解 由OM →=1m +1OP →+m m +1OQ →(m ≥3),可得P ,Q ,M 三点共线且PMQM=m ,由A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫F⎪⎪⎪⎪FP →·FM →||FP →=FQ →·FM→||FQ →, 可得||FM →cos∠PFM =||FM →cos∠QFM , 即∠PFM =∠QFM ,则FM 为∠PFQ 的角平分线, 由角平分线的性质定理可得PF QF =PMQM=m , 以P 为坐标原点,PQ 所在直线为x 轴,建立平面直角坐标系,则P ()0,0,Q ()1+m ,0,F (x ,y ),于是x 2+y 2()x -1-m 2+y2=m ,化简得⎝ ⎛⎭⎪⎫x +m 21-m 2+y 2=⎝ ⎛⎭⎪⎫m m -12, 故点F (x ,y )是以⎝ ⎛⎭⎪⎫m 2m -1,0为圆心,m m -1为半径的圆.要使得不等式||F 1F 2→||≤k PQ →对m ≥3恒成立,只需2m m-1≤k()m+1,即k≥2mm2-1=21m-1m 对m≥3恒成立,∴k≥2×13-13=34.。

苏教版必修四第二章 平面向量 第四讲 向量的数量积 (习题+解析)

苏教版必修四第二章 平面向量 第四讲 向量的数量积 (习题+解析)

1. 下列式子:①2a ba ⋅=b a;②(a ·b )2=a 2·b 2;③a ·a ·a =a 3;④(a ·b )·c =a ·(b ·c ) 其中错误的序号为________。

*2. (安徽高考)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为_______。

**3. (山东高考)在平面直角坐标系xOy 中,已知OA =(-1,t ),OB =(2,2),若∠ABO =90°,则实数t 的值为________。

*4. 在边长为1的正三角形ABC 中,设=2,=3,则·=________。

**5. 已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =25,则a 与c 的夹角是________。

**6. 已知向量=(2,2),=(4,1),O 为坐标原点,在x 轴上取一点P 使AP →·BP→有最小值,则点P 的坐标是________。

**7. 已知|a |=5,|b |=4,且a 与b 的夹角为60°,则当k 为何值时,向量k a -b 与a +2b 垂直?**8. 已知|a |=2,|b |=3,a 和b 的夹角为45°,求当向量a +λb 与a +b 的夹角为锐角时λ的取值范围。

***9. 已知a =(3,-1),b =(21,23),且存在实数k 和t ,使得x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ,试求tt k 2+的最小值。

1. ①②④ 解析:①错,因为不存在这样的运算,向量间只能作加、减、乘运算,此题应分子、分母先分开算;②错,因为(a ·b )2=(|a |·|b |cos θ)2=a 2·b 2cos 2θ不一定与a 2·b 2相等;④错,因为a 与c 方向未必一致。

江苏版高考数学一轮复习:专题5.3平面向量的数量积巩固检测题附答案.doc

江苏版高考数学一轮复习:专题5.3平面向量的数量积巩固检测题附答案.doc

学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】专题5.3 平面向量的数量积一、填空题1.已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k = 【解析】因为a +2b 与c 垂直,所以(a +2b )·c =0,即a ·c +2b ·c =0,所以3k +3+23=0,解得k =-3.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB =(1,-2),AD =(2,1),则AD ·AC =【解析】由四边形ABCD 是平行四边形,知AC =AB +AD =(1,-2)+(2,1)=(3,-1),故AD ·AC =(2,1)·(3,-1)=2×3+1×(-1)=5.3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为 【解析】由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则-λ2+2λ2=35,所以λ=-3,b =(3,-6),4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n⊥(t m+n ),则实数t 的值为5.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ·BC 的值为【解析】如图所示,AF =AD +DF .又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD =12AB ,DF =12AC +14AC =34AC ,所以AF =12AB +34AC .又BC =AC -AB ,则AF ·BC =12AB +34AC ·(AC -AB )=12AB ·AC -12AB 2+34AC 2-34AC ·AB =34AC 2-12AB 2-14AC ·AB .又|AB |=|AC |=1,∠BAC =60°,故AF ·BC =34-12-14×1×1×12=18.6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足AP =λAB ,AQ =(1-λ)AC ,λ∈R ,若BQ ·CP =-32,则λ=7.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )·b ,则|c |=________. 【解析】由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )·b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+-82=8 2.8.已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为________. 【解析】∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6,又|a |=2,|b |=1,∴a ·b =-1,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.9.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是________.【解析】a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞.10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则AM ·AN 的最大值为________.【解析】设AN =λAB +μAD ,因为N 在菱形ABCD 内,所以0≤λ≤1,0≤μ≤1.AM =AD +12DC =12AB +AD .所以AM ·AN =⎝ ⎛⎭⎪⎫12 AB +AD ·(λAB +μAD )=λ2AB 2+⎝ ⎛⎭⎪⎫λ+μ2AB ·AD +μAD 2=λ2×4+⎝ ⎛⎭⎪⎫λ+μ2×2×2×12+4μ=4λ+5μ.所以0≤AM ·AN ≤9,所以当λ=μ=1时,AM ·AN 有最大值9,此时,N 位于C 点. 二、解答题11.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cosB ,cos A ),m ·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA ·(AB -AC )=18,求边c 的长. 解:(1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ), 对于△ABC ,A +B =π-C,0<C <π, ∴sin(A +B )=sin C , ∴m ·n =sin C ,又m ·n =sin 2C ,∴sin 2C =sin C ,cos C =12,C =π3.(2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .∵CA ·(AB -AC )=18, ∴CA ·CB =18, 即ab cos C =18,ab =36.由余弦定理得c2=a2+b2-2ab cos C=(a+b)2-3ab,∴c2=4c2-3×36,c2=36,∴c=6.高中数学知识点三角函数1、以角的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P 到原点的距离记为,则sin = ,cos = ,tg = ,ctg = ,sec = ,csc = 。

2021新高考数学(江苏专用)一轮复习课时练习:5.3 平面向量的数量积 (含解析)

1.(2019·江西省临川第一中学模拟)已知向量a =(2,1),b =(m ,-1),且a ⊥(a -b ),则m 的值为( )A .1B .3C .1或3D .4答案 B解析 因为a =(2,1),b =(m ,-1),所以a -b =(2-m ,2),因为a ⊥(a -b ),则a ·(a -b )=2(2-m )+2=0,解得m =3.故选B.2.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( )A .-3B .-2C .2D .3答案 C解析 因为BC →=AC →-AB →=(1,t -3),所以|BC →|=1+(t -3)2=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2,故选C.3.(2020·拉萨模拟)已知向量a ,b 的夹角为π2,且a =(2,-1),|b |=2,则|a +2b |等于( ) A .2 3 B .3 C.21 D.41答案 C解析 由已知|a |=22+(-1)2=5,a ·b =|a ||b |cos π2=0, ∴|a +2b |2=(a +2b )2=a 2+4a ·b +4b 2=(5)2+4×22=21,∴|a +2b |=21.故选C.4.(2019·湖南省桃江县第一中学模拟)已知向量a ,b 满足|a |=2,|b |=1,且|b +a |=2,则向量a 与b 的夹角的余弦值为( ) A.22 B.23 C.28 D.24答案 D解析 由题意可知,|b +a |2=b 2+2a ·b +a 2=3+2a ·b =4,解得a ·b =12,∴cos 〈a ,b 〉=a ·b |a ||b |=122=24,故选D. 5.(2019·东莞模拟)已知非零向量m ,n 满足|n |=4|m |,且m ⊥(2m +n ),则m ,n 的夹角为( ) A.π6 B.π3 C.π2 D.2π3答案 D解析 ∵|n |=4|m |,且m ⊥(2m +n ),∴m ·(2m +n )=2m 2+m ·n =2|m |2+|m ||n |cos 〈m ,n 〉=0,且|m |≠0,|n |≠0,∴2|m |+|n |cos 〈m ,n 〉=0,∴cos 〈m ,n 〉=-2|m ||n |=-12, 又0≤〈m ,n 〉≤π,∴〈m ,n 〉=2π3.故选D. 6.已知向量a =(sin θ,3),b =(1,cos θ),|θ|≤π3,则|a -b |的最大值为( ) A .2 B. 5 C .3 D .5答案 B解析 由已知可得|a -b |2=(sin θ-1)2+(3-cos θ)2=5-4sin ⎝⎛⎭⎫θ+π3.因为|θ|≤π3,所以0≤θ+π3≤2π3,所以当θ=-π3时,|a -b |2的最大值为5-0=5, 故|a -b |的最大值为 5.7.(多选)设a ,b 是两个非零向量.则下列命题为假命题的是( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |答案 ABD解析 对于A ,若|a +b |=|a |-|b |,则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |≠0,a 与b 不垂直,所以A 为假命题;对于B ,由A 解析可知,若a ⊥b ,则|a +b |≠|a |-|b |,所以B 为假命题;对于C ,若|a +b |=|a |-|b |,则|a |2+|b |2+2a ·b =|a |2+|b |2-2|a ||b |,得a ·b =-|a ||b |,则cos θ=-1,则a 与b 反向,因此存在实数λ,使得b =λa ,所以C 为真命题.对于D ,若存在实数λ,使得b =λa ,则a ·b =λ|a |2,-|a ||b |=λ|a |2,由于λ不能等于0,因此a ·b ≠-|a ||b |,则|a +b |≠|a |-|b |,所以D 不正确.故选ABD.8.(多选)设a ,b ,c 是任意的非零平面向量,且相互不共线,则下列命题中的真命题是( )A .(a ·b )c -(c ·a )b =0B .|a |-|b |<|a -b |C .(b ·c )a -(a ·c )b 不与c 垂直D .(3a +2b )·(3a -2b )=9|a |2-4|b |2答案 BD解析 由于b ,c 是不共线的向量,因此(a ·b )c 与(c ·a )b 相减的结果应为向量,故A 错误; 由于a ,b 不共线,故a ,b ,a -b 构成三角形,因此B 正确;由于[(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,故C 中两向量垂直,故C 错误; 根据向量数量积的运算可以得出D 是正确的.故选BD.9.(2020·景德镇模拟)已知两个单位向量a ,b 的夹角为30°,c =m a +(1-m )b ,b ·c =0,则m =________.答案 4+2 3解析 b ·c =b ·[m a +(1-m )b ]=m a ·b +(1-m )b 2=m |a ||b |cos 30°+(1-m )|b |2=32m +1-m =0, 所以m =4+2 3.10.(2019·镇江模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点E ,F 分别在边AD ,DC上,BE →=12(BA →+BD →),DF →=13DC →,则BE →·BF →=________. 答案 223 解析 连接AC ,BD 交于点O ,以O 为原点,以OC →,OD →的方向分别为x 轴、y 轴的正方向建立直角坐标系,如图所示,∵菱形边长为2,∠ABC =60°,∴A (-1,0),B (0,-3),C (1,0),D (0,3),∵BE →=12(BA →+BD →), ∴E 为AD 的中点,∴E ⎝⎛⎭⎫-12,32, ∵DF →=13DC →,∴F ⎝⎛⎭⎫13,233, ∴BE →=⎝⎛⎭⎫-12,332,BF →=⎝⎛⎭⎫13,533, ∴BE →·BF →=-16+152=223. 11.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)因为(2a -3b )·(2a +b )=61,所以4|a |2-4a·b -3|b |2=61.又|a |=4,|b |=3,所以64-4a·b -27=61,所以a·b =-6,所以cos θ=a·b |a||b |=-64×3=-12. 又0≤θ≤π,所以θ=2π3. (2)|a +b |2=(a +b )2=|a |2+2a·b +|b |2=42+2×(-6)+32=13,所以|a +b |=13. (3)因为AB →与BC →的夹角θ=2π3, 所以∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,所以S △ABC =12|AB →||BC →|·sin ∠ABC =12×4×3×32=3 3. 12.已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π].(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b ,所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0,于是tan x =-33. 又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6, 从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取得最大值3; 当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.13.(2019·衡阳模拟)在△ABC 中,∠A =120°,AB →·AC →=-3,点G 是△ABC 的重心,则|AG →|的最小值是( ) A.23 B.63 C.23 D.53答案 B解析 设BC 的中点为D ,因为点G 是△ABC 的重心,所以AG →=23AD →=23×12(AB →+AC →)=13(AB →+AC →), 再令|AB →|=c ,|AC →|=b ,则AB →·AC →=bc cos 120°=-3,所以bc =6,所以|AG →|2=19(|AB →|2+2AB →·AC →+|AC →|2) =19(c 2+b 2-6)≥19(2bc -6)=23, 所以|AG →|≥63, 当且仅当b =c =6时取等号,故选B.14.(多选)如图所示,在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =2,CD =1,BC =a (a>0),P 为线段AD (含端点)上一个动点,设AP →=xAD →,PB →·PC →=y ,对于函数y =f (x ),以下四个结论中正确的是( )A .当a =2时,函数的值域为[1,4]B .∀a ∈(0,+∞),都有f (1)=1成立C .∀a ∈(0,+∞),函数f (x )的最大值都等于4D .若f (x )在(0,1)上单调递减,则a ∈(0,2]答案 BCD解析 如图所示,建立直角坐标系.∵在直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =2,CD =1,BC =a (a >0),∴B (0,0),A (-2,0),D (-1,a ),C (0,a ).∵AP →=xAD →(0≤x ≤1).∴BP →=BA →+AP →=(-2,0)+x (1,a )=(x -2,xa ),PC →=PB →+BC →=-(x -2,xa )+(0,a )=(2-x ,a -xa ).∴y =f (x )=PB →·PC →=(2-x ,-xa )·(2-x ,a -xa )=(2-x )2-ax (a -xa )=(a 2+1)x 2-(4+a 2)x +4(0≤x ≤1).当a =2时,y =f (x )=5x 2-8x +4=5⎝⎛⎭⎫x -452+45, ∵0≤x ≤1,∴当x =45时,f (x )取得最小值45; 又f (0)=4,f (1)=1,∴f (x )max =f (0)=4.综上可得,函数f (x )的值域为⎣⎡⎦⎤45,1,因此A 不正确.由y =f (x )=(a 2+1)x 2-(4+a 2)x +4.可得∀a ∈(0,+∞),都有f (1)=1成立,因此B 正确;由y =f (x )=(a 2+1)x 2-(4+a 2)x +4.可知对称轴x 0=4+a 22(a 2+1). 当0<a ≤2时,x 0≥1,∴函数f (x )在[0,1]上单调递减,因此当x =0时,函数f (x )取得最大值4.当a >2时,0<x 0<1,函数f (x )在[0,x 0)上单调递减,在(x 0,1]上单调递增.又f (0)=4,f (1)=1,∴f (x )max =f (0)=4.因此C 正确.f (x )在(0,1)上单调递减,则a ∈(0,2],因此D 正确.故选BCD.15.若向量a ,b ,c 满足a ≠b ,c ≠0,且(c -a )·(c -b )=0,则|a +b |+|a -b ||c |的最小值是( ) A. 3 B .2 2 C .2 D.32答案 C解析 设向量a =OA →,b =OB →,c =OC →,则由(c -a )·(c -b )=0得AC →·BC →=0,即C 的轨迹为以AB 为直径的圆,圆心为AB 的中点M ,半径为12|AB →|, 因此|c |=|OC →|≤|OM →|+r =12|OA →+OB →|+12|AB →| =12|OA →+OB →|+12|OA →-OB →| =12|a +b |+12|a -b |, 从而|a +b |+|a -b ||c |≥2,故选C. 16.在如图所示的平面直角坐标系中,已知点A (1,0)和点B (-1,0),|OC →|=1,且∠AOC =θ,其中O 为坐标原点.(1)若θ=3π4,设点D 为线段OA 上的动点,求|OC →+OD →|的最小值; (2)若θ∈⎣⎡⎦⎤0,π2,向量m =BC →,n =(1-cos θ,sin θ-2cos θ),求m ·n 的最小值及对应的θ值. 解 (1)设D (t ,0)(0≤t ≤1),由题意知C ⎝⎛⎭⎫-22,22, 所以OC →+OD →=⎝⎛⎭⎫-22+t ,22, 所以|OC →+OD →|2=⎝⎛⎭⎫t -222+12, 所以当t =22时,|OC →+OD →|最小,最小值为22.(2)由题意得C (cos θ,sin θ),m =BC →=(cos θ+1,sin θ),则m ·n =1-cos 2θ+sin 2θ-2sin θcos θ=1-cos 2θ-sin 2θ=1-2sin ⎝⎛⎭⎫2θ+π4, 因为θ∈⎣⎡⎦⎤0,π2,所以π4≤2θ+π4≤5π4, 所以当2θ+π4=π2,即θ=π8时,sin ⎝⎛⎭⎫2θ+π4取得最大值1,即m ·n 取得最小值1- 2. 所以m ·n 的最小值为1-2,此时θ=π8.。

2023年高考数学一轮复习第五章平面向量与复数3平面向量的数量积练习含解析

平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与投影向量的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做向量a 与b 的数量积,记作a ·b .3.平面向量数量积的几何意义设a ,b 是两个非零向量,它们的夹角是θ,e 与b 是方向相同的单位向量,AB →=a ,CD →=b ,过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1—→,我们称上述变换为向量a 向向量b 投影,A 1B 1—→叫做向量a 在向量b 上的投影向量.记为|a |cos θe . 4.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c . 5.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.几何表示 坐标表示数量积 a·b =|a ||b |cos θa·b =x 1x 2+y 1y 2模|a |=a ·a|a |=x 21+y 21夹角cos θ=a ·b|a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0 a∥b 的充要条件a =λb (λ∈R )x 1y 2-x 2y 1=0|a ·b |与|a ||b |的关系|a ·b |≤|a ||b | (当且仅当a ∥b 时等号成立)|x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的夹角的范围是⎣⎢⎡⎦⎥⎤0,π2.( × )(2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a ·b )·c =a ·(b ·c ).( × ) 教材改编题1.(多选)(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( ) A .0·a =0B .a ·b =b ·c ,则a =cC .a ·b =0⇒a ⊥bD .(a +b )·(a -b )=|a |2-|b |2答案 CD2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________.9解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0,故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =_________;a ·b =________. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0,a ·b =2×2+1×(-1)=3.(2)(2022·广州模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →| =4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.答案 -2 解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,3则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝ ⎛⎭⎪⎫AD →+14AB →·⎝ ⎛⎭⎪⎫34AB →-AD →=12AB →·AD →-AD →2+316AB →2=12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3B .-2C .2D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3, 所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos∠DBM =|BM →|2=1.思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a ) =9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=____________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°,所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144 =108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( )A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=25-12+36=49, ∴|a +b |=7,∴cos〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b|a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b |=|a +b |(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73B.23C.79D.29答案 B解析 方法一 设a =(1,0),b =(0,1),则c =(7,2),∴cos〈a ,c 〉=a ·c |a ||c |=73,∴sin〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos〈a ,c 〉=a ·c |a ||c |=71×3=73,∴sin〈a ,c 〉=23. (2)(多选)(2021·新高考全国Ⅰ)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A .|OP 1—→|=|OP 2—→| B .|AP 1—→|=|AP 2—→| C.OA →·OP 3—→=OP 1—→·OP 2—→ D.OA →·OP 1—→=OP 2—→·OP 3—→ 答案 AC解析 由题意可知,|OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故A 正确; 取α=π4,则P 1⎝ ⎛⎭⎪⎫22,22,取β=5π4,则P 2⎝ ⎛⎭⎪⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故B 错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β),所以OA →·OP 3—→=OP 1—→·OP 2—→,故C 正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA —→·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故D 错误. 题型三 平面向量的实际应用例5 (多选)(2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 ACD解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求:(1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝ ⎛⎭⎪⎫6+2222×1×1+3=32,∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A 出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10km/h ,水流速度的大小为|ν2|=6km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b ,则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线,则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则PA →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,PA →·PB →有最小值,即PA →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1B .2C.2D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c ,M 为AB 的中点,由极化恒等式有(a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°, 故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2=12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·石家庄模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·沈阳模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32, 因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎪⎫255,-55或⎝ ⎛⎭⎪⎫-255,55B.⎝ ⎛⎭⎪⎫-255,-55或⎝ ⎛⎭⎪⎫255,55C.⎝⎛⎭⎪⎫255,55 D.⎝ ⎛⎭⎪⎫-255,55答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b62+-32=±⎝ ⎛⎭⎪⎫255,-55.5.(多选)(2022·盐城模拟)下列关于向量a ,b ,c 的运算,一定成立的有( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c ) C .a ·b ≤|a |·|b | D .|a -b |≤|a |+|b | 答案 ACD解析 根据数量积的分配律可知A 正确;选项B 中,左边为c 的共线向量,右边为a 的共线向量,故B 不正确; 根据数量积的定义,可知a ·b =|a ||b |cos 〈a ,b 〉≤|a |·|b |,故C 正确;|a -b |2=|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |·cos〈a ,b 〉≤|a |2+|b |2+2|a ||b |=(|a |+|b |)2,故|a -b |≤|a |+|b |,故D 正确.6.(多选)已知向量a =(2,1),b =(1,-1),c =(m -2,-n ),其中m ,n 均为正数,且(a -b )∥c ,则下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b 上的投影向量为22b C .2m +n =4 D .mn 的最大值为2 答案 CD解析 对于A ,向量a =(2,1),b =(1,-1), 则a·b =2-1=1>0, 又a ,b 不共线,所以a ,b 的夹角为锐角,故A 错误; 对于B ,向量a 在b 上的投影向量为a·b |b |·b |b |=12b ,B 错误;对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝ ⎛⎭⎪⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,D 正确.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方,得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b , 所以AD →=12a +12b .(2)AB →·AD →=a ·⎝ ⎛⎭⎪⎫12a +12b=12a 2+12a·b =12×32+12×3×2×cos60°=6, 所以AB →·AD →=6.10.(2022·湛江模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n .(1)求函数f (x )的单调递增区间;(2)在Rt△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m·n =3sin x ·cos x +cos 2x -1 =32sin2x +12cos2x -12=sin ⎝⎛⎭⎪⎫2x +π6-12.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)f (C )=sin ⎝ ⎛⎭⎪⎫2C +π6-12=0,sin ⎝ ⎛⎭⎪⎫2C +π6=12,又C ∈⎝ ⎛⎭⎪⎫0,π2,所以C =π3.在△ACD 中,CD =233,在△BCE 中,BE =22+⎝⎛⎭⎪⎫332-2×2×33×32=213.11.(2022·黄冈质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( ) A .12 B .-12 C .20 D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD → =AD →·BD →+DC →·BD →=|AD →||BD →|cos∠BDA -|DC →||BD →|cos∠BDC =|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形 B .直角三角形 C .等腰三角形D .三边均不相等的三角形 答案 A解析 AB→|AB →|,AC→|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC→|AC →|所在的直线为∠BAC 的平分线.因为⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的平分线垂直于BC , 所以AB =AC .又AB→|AB →|·AC→|AC →|=⎪⎪⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪⎪⎪AC →|AC →|·cos∠BAC =12, 所以cos∠BAC =12,∠BAC =60°.所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=102N ,则物体的重力大小为________N.答案 20解析 如图所示,∵|F 1|=|F 2|=102N , ∴|F 1+F 2|=102×2=20N , ∴物体的重力大小为20N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB 于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________. 答案 11120解析 设BE =x ,x ∈⎝ ⎛⎭⎪⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB , ∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos0°+(1-2x )2=1, ∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝ ⎛⎭⎪⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.(多选)定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( ) A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≤|a |+1 答案 AD解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 正确.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n = (cos B ,cos A ),m ·n =sin2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c . 解 (1)m ·n =sin A cos B +sin B cos A =sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π, 所以sin(A +B )=sin C , 所以m·n =sin C , 又m·n =sin2C ,所以sin2C =sin C ,cos C =12,又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列, 可得2sin C =sin A +sin B , 由正弦定理得2c =a +b .21 因为CA →·(AB →-AC →)=18, 所以CA →·CB →=18,即ab cos C =18,ab =36. 由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。

2018高考江苏专版大一轮数学文复习检测:第36课 平面

第36课平面向量的数量积A 应知应会1.已知向量a,b满足|a|=1,|b|=3,a,b之间的夹角为60°,那么a·(a+b)=.2.已知向量a=(1,2),b=(-2,-4),|c|=.若(a+b)·c=,则向量a与c的夹角为.3.(2016·常州期末)已知向量a=(4x,2x),b=,x∈R.若a⊥b,则|a-b|=.4.在平面直角坐标系xOy中,点A(1,0),函数y=e x的图象与y轴的交点为B,P为函数y=e x图象上的任意一点,则·的最小值为.5.已知向量a与b的夹角为120°,且|a|=4,|b|=2.(1)求|a+b|;(2)求|3a-4b|;(3)求(a-2b)·(a+b).6.已知e1,e2是夹角为60°的两个单位向量,a=3e1-2e2,b=2e1-3e2.(1)求a·b;(2)求a+b与a-b的夹角.B 巩固提升1.(2015·四川卷)已知四边形ABCD为平行四边形,||=6,||=4.若点M,N满足=3,=2,则·=.(第2题)2.(2015·苏州调查)如图,AB是半径为3的圆O的直径,P是圆O上异于A,B的一点,Q是线段AP上靠近点A的三等分点,且·=4,则·=.3.(2016·苏州、无锡、常州、镇江二模)在平面直角坐标系中,M是函数f(x)=(x>0)图象上的任意一点,过点M分别向直线y=x和y轴作垂线,垂足分别是点A,B,则·=.(第4题)4.如图,在△ABC中,已知AB=4,AC=6,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=3.若F为DE 的中点,则·的值为.5.已知向量a=,b=cos ,-sin ,且θ∈.(1)求的最值;(2)是否存在实数k,使得|k a+b|=|a-k b|?6.(2016·江苏卷)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点.已知·=4,·=-1,求·的值.(第6题)第36课平面向量的数量积A 应知应会1.【解析】a·(a+b)=a2+a·b=1+|a||b|cos 60°=1+1×3×=.2.120°【解析】因为a+b=(-1,-2),故a+b与a方向相反,且模相等.设向量a+b与c的夹角为θ,则cosθ===,所以c与a+b的夹角θ=60°,所以a与c的夹角为120°.3.2【解析】因为a⊥b,所以4x+2x·=4x+2x-2=0,解得2x=-2(舍去)或2x=1,故a=(1,1),b=(1,-1),故a-b=(0,2),所以|a-b|=2.4. 1【解析】由题意得B(0,1).设P(x,e x),则=(-1,1),=(x,e x),所以·=-x+e x.令f(x)=e x-x,则f'(x)=e x-1.令f'(x)=0,得x=0,求得最小值为f(0)=1.5.【解答】由题知a·b=|a|·|b|cos 120°=4×2×=-4.(1)|a+b|2=(a+b)2=|a|2+2a·b+|b|2=12,所以|a+b|=2.(2)|3a-4b|2=9|a|2-24a·b+16|b|2=16×19,所以|3a-4b|=4.(3)(a-2b)·(a+b)=|a|2-2a·b+a·b-2|b|2=12.6.【解答】(1)由题知e1·e2=cos 60°=,所以a·b=(3e1-2e2)·(2e1-3e2)=6-13e1·e2+6=6-+6=.(2)a2=(3e1-2e2)2=9-12e1·e2+4=9-6+4=7,b2=(2e1-3e2)2=4-12e1·e2+9=7,而(a+b)·(a-b)=a2-b2=0,所以a+b与a-b的夹角为90°.B 巩固提升1. 9【解析】=+,=-=-+,所以·=(4+3)·(4-3)=(16-9)=×(16×36-9×16)=9.2. 24【解析】因为·=·(+)==4,所以=12,因此·=(+)·==-=36-12=24.3.-2【解析】设M(t>0),则||==,||=t,所以·=||·||·cos135°=×t×=-2.4.4【解析】方法一:记,方向上的单位向量分别为a,b,则a2=b2=1,a·b=,=4a,=6b,从而=2a,=2b,=(+)=a+b,=-=b-3a,=-=2b-2a,所以·=(b-3a)·(2b-2a)=2b2+6a2-8a·b=2+6-4=4.方法二:取CE的中点G,连接BG.设BG的中点为M,连接FM,则=,且FM⊥BM,所以·==BM2=DE2=22=4.方法三:以A为坐标原点,的方向为x轴的正方向,建立平面直角坐标系,则A(0,0),B(4,0),C(3,3),从而D(2,0),E(1,),F,所以=-,,=(-1,),所以·=+=4.5.【解答】(1)a·b=cos 2θ,|a+b|2=|a|2+|b|2+2a·b=2+2cos 2θ=4cos2θ,所以==cos θ-.因为θ∈,所以cos θ∈.令t=cos θ,则≤t≤1,'=1+>0,所以y=t-在t∈上为增函数,所以-≤t-≤,即所求的最大值为,最小值为-.(2)由题设可得|k a+b|2=3|a-k b|2.又|a|=|b|=1,a·b=cos 2θ,所以原式化简得cos 2θ=.由0≤θ≤,得-≤cos 2θ≤1,所以-≤≤1,解得k∈∪{-1}.6.【解答】方法一:设=a,=b,则=-b,=2a,=3a,所以=-=3a-b,=-=3a+b,=-=2a-b,=-=2a+b,=-=a-b,=-=a+b,所以·=9a2-b2,·=4a2-b2,·=a2-b2.又因为·=4,·=-1,所以9a2-b2=4,a2-b2=-1,解得a2=,b2=,所以·=4a2-b2=-=.方法二:以D为坐标原点,BC所在直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系.设点B的坐标为(-a,0),点C的坐标为(a,0),点A的坐标为(b,c),所以=(b+a,c),=(b-a,c),=,=.因为·=b2-a2+c2=4,·=-a2+=-1,所以b2+c2=,a2=.又因为=,=,所以·=-a2+=×-=.。

江苏版高考数学一轮复习:专题5.3平面向量的数量积练习题附答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】专题5.3 平面向量的数量积【基础巩固】一、填空题1.设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =________. 【答案】-23【解析】由题意,得a ·b =0⇒x +2(x +1)=0⇒x =-23.2.已知向量a =(1,3),b =(3,1),则a 与b 夹角的大小为________. 【答案】π63.(2017·镇江期末)已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|a -b |=________. 【答案】 5 【解析】|a -b |=a -b2=a 2-2a ·b +b 2=1+4= 5.4.对任意平面向量a ,b ,下列关系式中不恒成立的是________(填序号). ①|a ·b |≤|a ||b |;②|a -b |≤||a |-|b ||; ③(a +b )2=|a +b |2;④(a +b )·(a -b )=a 2-b 2. 【答案】②【解析】对于①,由|a ·b |=||a ||b |cos a ,b|≤|a ||b |恒成立;对于②,当a ,b 均为非零向量且方向相反时不成立;对于③④容易判断恒成立. 5.已知a =(1,-2),b =(x,2),且a ∥b ,则|b |=________. 【答案】 5【解析】∵a ∥b ,∴1x =-22,解得x =-1,∴b =(-1,2),∴|b |=-12+22= 5.6.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=________. 【答案】5【解析】∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3, -1).∴AD →·AC →=2×3+(-1)×1=5.7.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为________. 【答案】2π3【解析】因为a ⊥(2a +b ),所以a ·(2a +b )=0,得到a ·b =-2|a |2,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=-2|a |24|a |2=-12,又0≤θ≤π,所以θ=2π3. 8.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),若∠ABC 为锐角,则实数m 的取值范围是________.【答案】⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞二、解答题9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61, (1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积. 解 (1)∵(2a -3b )·(2a +b )=61,10.(2017·德州一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n =(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影. 解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝ ⎛⎭⎪⎫-352=45. (2)由正弦定理,得asin A =bsin B ,则sin B =b sin A a =5×4542=22,因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝ ⎛⎭⎪⎫-35,解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.【能力提升】11.(2017·南通、扬州、泰州调研)如图,已知△ABC 的边BC 的垂直平分线交AC 于点P ,交BC 于点Q .若|AB →|=3,|AC →|=5,则(AP →+AQ →)·(AB →-AC →)的值为________.【答案】-16【解析】(AP →+AQ →)·(AB →-AC →)=(2AQ →+QP →)·CB →=2AQ →·CB →=(AB →+AC →)·(AB →-AC →)=|AB →|2-|AC →|2=32-52=-16.12.已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为________. 【答案】-4【解析】∵n ⊥(t m +n ),∴n ·(t m +n )=0,即t ·m ·n +n 2=0,∴t |m ||n |cos 〈m ,n 〉+|n |2=0,由已知得t ×34|n |2×13+|n |2=0,解得t =-4.13.已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________. 【答案】514.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R ). (1)若m =n =23,求|OP →|;(2)用x , y 表示m -n ,并求m -n 的最大值. 解 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 平面向量的数量积一、填空题1.已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量ka -b 垂直,则k=________.解析 ∵a +b 与ka -b 垂直,∴(a +b )·(ka -b )=0,化简得(k -1)(a·b +1)=0,根据a 、b 向量不共线,且均为单位向量得a·b +1≠0,得k -1=0,即k =1. 答案 12.已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________.解析 设a 与b 的夹角为θ,依题意有(a +2b )·(a -b )=a 2+a·b -2b 2=-7+2cos θ=-6,所以cos θ=12,因为0≤θ≤π,所以θ=π3.答案 π33.已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则|a -b |=________. 解析 |a -b |=a -b2=a 2+b 2-2a ·b=12+22-2×1×2cos 60°= 3. 答案34.设E 、F 分别是Rt △ABC 的斜边BC 上的两个三等分点,已知AB =3,AC =6,则AE →·AF →=________.解析 由BE →=2EC →,得AE →-AB →=2(AC →-AE →),所以AE →=13AB →+23AC →.同理AF →=23AB →+13AC →,又AB →⊥AC →,所以AE →·AF →=⎝ ⎛⎭⎪⎫13AB →+23AC →·⎝ ⎛⎭⎪⎫23AB →+13AC →=29AB →2+29AC →2=29×9+29×36=10. 答案 105.已知非零向量a ,b 满足|a +b |=|a -b |=233|a |,则a +b 与a -b 的夹角为________.解析 将|a +b |=|a -b |两边同时平方得:a ·b =0; 将|a -b |=233|a |两边同时平方得:b 2=13a 2.所以cos 〈a +b ,a -b 〉=a +b ·a -b |a +b |·|a -b |=a 2-b 243a2=12.所以〈a +b ,a -b 〉=60°.答案 60°6.已知O 是△ABC 的内部一点,OA →+OB →+OC →=0,AB →·AC →=2,且∠BAC =60°,则△OBC 的面积为________.解析 由AB →·AC →=|AB →||AC →|cos 60°=2,得|AB →||AC →|=4,S △ABC =12|AB →||AC →|sin 60°=3,由OA →+OB →+OC →=0知,O 是△ABC 的重心,所以S △OBC =13S △ABC =33.答案337.若等边三角形ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.解析 建立直角坐标,由题意,设C (0,0),A (23,0),B (3,3),则M ⎝ ⎛⎭⎪⎫332,12,MA →·MB →=⎝⎛⎭⎪⎫32,-12·⎝ ⎛⎭⎪⎫-32,52=-2.答案 -28.已知向量p 的模为2,向量q 的模为1,p 与q 的夹角为π4,且a =3p +2q ,b =p -q ,则以a ,b 为邻边的平行四边形的长度较小的对角线长为________.解析 由题意可知较小的对角线为|a -b |=|3p +2q -p +q |=|2p +3q |=2p +3q 2=4p 2+12p ·q +9q 2= 8+122×22+9=29. 答案299.已知平面向量a 、b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与向量a +b 的夹角为________.解析 ∵|2a +b |2=4|a |2+4a ·b +|b |2=7,|a |=1,|b |=3,∴4+4a ·b +3=7,a ·b =0,∴a ⊥b .如图所示,a 与a +b 的夹角为∠COA ,∵tan ∠COA =|CA ||OA |=3,∴∠COA =π3,即a 与a +b 的夹角为π3.答案 π310.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若(3b -c )cos A =a cos C ,S △ABC =2,则BA →·AC →=________.解析 依题意得(3sin B -sin C )cos A =sin A cos C ,即3sin B cos A =sin A cos C +sin C cos A =sin(A +C )=sin B >0,于是有cos A =13,sin A =1-cos 2A =223,又S △ABC =12·bc sin A =12bc ×223=2,所以bc =3,BA →·AC →=bc cos(π-A )=-bc cos A =-3×13=-1.答案 -1 二、解答题11.已知平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32.(1)若存在实数k 和t ,满足x =(t +2)a +(t 2-t -5)b ,y =-k a +4b ,且x ⊥y ,求出k 关于t 的关系式k =f (t );(2)根据(1)的结论,试求出函数k =f (t )在t ∈(-2,2)上的最小值. 解 (1)a·b =0,|a |=2,|b |=1,所以x·y =-(t +2)·k ·a 2+4(t 2-t -5)·b 2=0, 故-(t +2)·k ·4+4(t 2-t -5)·1=0,整理得k =f (t )=t 2-t -5t +2(t ≠-2).(2)k =f (t )=t 2-t -5t +2=t +2+1t +2-5,因为t ∈(-2,2),所以t +2>0,则k =t +2+1t +2-5≥-3, 当且仅当t +2=1,即t =-1时取等号,所以k 的最小值为-3. 12. 如图,在△ABC 中,已知AB =3,AC =6,BC =7,AD 是∠BAC 的平分线. (1)求证:DC =2BD ; (2)求AB →·DC →的值.(1)证明 在△ABD 中,由正弦定理得ABsin ∠ADB =BDsin ∠BAD.①在△ACD 中,由正弦定理得 ACsin ∠ADC =DCsin ∠CAD .②又AD 平分∠BAC ,所以∠BAD =∠CAD ,sin ∠BAD =sin ∠CAD , 又sin ∠ADB =sin(π-∠ADC )=sin ∠ADC , 由①②得BD DC =AB AC =36,所以DC =2BD .(2)解 因为DC =2BD ,所以DC →=23BC →.在△ABC 中,因为cos B =AB 2+BC 2-AC 22AB ·BC=32+72-622×3×7=1121.所以AB →·DC →=AB →·⎝ ⎛⎭⎪⎫23BC → =23|AB →||BC →|cos(π-B )=23×3×7×⎝ ⎛⎭⎪⎫-1121=-223. 13. 在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.解 (1)由题设知AB →=(3,5),AC →=(-1,1),则AB →+AC →=(2,6),AB →-AC →=(4,4). 所以|AB →+AC →|=210,|AB →-AC →|=4 2. 故所求的两条对角线长分别为42,210.(2)由题设知OC →=(-2,-1),AB →-tOC →=(3+2t,5+t ). 由(AB →-tOC →)·OC →=0,得(3+2t,5+t )·(-2,-1)=0, 从而5t =-11,所以t =-115. 14.已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4.(1)若m ⊥n ,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)记f (x )=m ·n ,在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且满足(2a -c )cos B =b cos C ,求函数f (A )的值域. 解 (1)因为m ⊥n ,所以m ·n =0,即3sin x 4cos x4+cos 2x4=0,则32sin x 2+12cos x 2+12=0, 即sin ⎝ ⎛⎭⎪⎫x 2+π6=-12,则cos ⎝⎛⎭⎪⎫π3-x 2=-12, 所以cos ⎝⎛⎭⎪⎫2π3-x =2cos 2⎝ ⎛⎭⎪⎫π3-x 2-1=-12. (2)由题意,得f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12.∴f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12.由(2a -c )cos B =b cos C ,及正弦定理得 (2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -cos B sin C =sin B cos C , ∴2sin A cos B =sin(B +C ), ∵A +B +C =π,∴sin(B +C )=sin A ,且sin A ≠0, ∴cos B =12,∴B =π3,0<A <2π3.∴π6<A 2+π6<π2, 12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1. ∴函数f (A )的值域是⎝ ⎛⎭⎪⎫1,32.。

相关文档
最新文档