2021年高考数学压轴题解法分析与强化训练《专题10 向量的形》
高考向量难题精选及详解

1.设D 、E 、F 分别是△的三边、、上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直2.设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b +=3.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=,若OP AB PA PB ⋅≥⋅,则实数λ的取值范围是A 112λ≤≤ B 11λ≤≤ C 112λ≤≤+11λ≤≤+ 4.已知向量a ≠e ,e =1,对任意t ∈R ,恒有|a -e ≥|a -e |,则A a ⊥eB a ⊥(a -e )C e ⊥(a -e )D (a +e )⊥(a -e )5..已知非零向量与满足(+)·=0且·= , 则△为( )A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形6.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的A 重心 外心 垂心B 重心 外心 内心C 外心 重心 垂心D 外心 重心 内心7. 已知==2,(a +2b )·(a -b )=-2,则a 与b 的夹角为( )8.平面向量a =(1,2),b =(4,2),c =+b(m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .29.若向量a ,b 满足:=1,(a +b)⊥a ,(2a +b)⊥b ,则=( )A .2C .110. 已知向量a ,b 满足=1,b =(2,1),且λ a+b =0(λ∈R),则|λ|=.11.如图,在△中,为边上的中线,=2,若∥,且=+λ(λ∈R),则λ的值为.12.在△所在的平面上有一点P 满足++=,则△与△的面积之比是.答案1.由定比分点的向量式得:212,1233AC AB AD AC AB +==++ 12,33BE BC BA =+12,33CF CA CB =+以上三式相加得 1,3AD BE CF BC ++=-所以选A. 2.选A .由OA 与OB 在OC 方向上的投影相同,可得:OA OC OB OC ⋅=⋅即 4585a b +=+,453a b -=.3. (1)(1,),(1)(1,1),(,)AP AB OP OA OB PB AB AP AB AP AB λλλλλλλλλλλ=⇒=-+=-=-=-=--==-解得: 11λ≤≤+,因点P 是线段AB 上的一个动点,所以01λ≤≤,即满足条件的实数λ的取值范围是112λ-≤≤,故选择答案B. 4.由|a -e ≥|a -e |得|a -e 2≥|a -e |2展开并整理得222210,,(2)480t aet ae t R ae ae -+-≥∈=-+-≤由得,得()0e a e -=,即()a a e ⊥-,选(C)5. 已知非零向量与满足(||||AB AC AB AC +)·=0,即角A 的平分线垂直于,∴ ,又cos A =||||AB AC AB AC ⋅= ,∠3π,所以△为等边三角形,选D .6. 解析:,0由知为的外心;由知,为的重心;OA OB OC O ABC NA NB NC O ABC==∆++=∆7. 解析由(a+2b)·(a-b)=2+a·b-22=-2,得a·b=2,即〈a,b〉=2,〈a,b〉=.故〈a,b〉=.答案B8.解析∵a=(1,2),b=(4,2),∴c=m(1,2)+(4,2)=(m+4,2m+2).又∵c与a 的夹角等于c与b的夹角,∴〈c,a〉=〈c,b〉.∴=.即=,解得m=2.答案D9 ∵(a+b)⊥a,=1,∴(a+b)·a=0,∴2+a·b=0,∴a·b=-1.又∵(2a+b)⊥b,∴(2a+b)·b=0.∴2a·b+2=0.∴2=2.∴=,选B.10. ==,由λa+b=0,得b=-λa,故=|-λ=|λ,所以|λ|===.答案11.因为∥,所以存在实数k,使得==-=+(λ-1),又由是△的边上的中线,=2,得点G为△的重心,所以=(+),所以+(λ-1)=(+),由平面向量基本定理可得解得λ=.答案12. 因为++=,所以+++=0,即=2,所以点P是边上靠近A点的一个三等分点,故==.答案。
2021年高考数学 第七章 第7课时 立体几何中的向量方法(一)知能演练轻松闯关 新人教A版

2021年高考数学 第七章 第7课时 立体几何中的向量方法(一)知能演练轻松闯关 新人教A 版1. 如图所示,在正方体ABCD A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M是D 1D 的中点,N 是A 1B 1的中点,则直线N O 、A M 的位置关系是( )A .平行B .相交C .异面垂直D .异面不垂直解析:选C .建立坐标系如图,设正方体的棱长为2,则A(2,0,0),M (0,0,1),O (1,1,0),N(2,1,2),N O →=(-1,0,-2),A M →=(-2,0,1),N O →·A M →=0,则直线N O 、A M 的位置关系是异面垂直.2.两个不同的平面α,β的法向量分别为m ,n ,向量a ,b 是平面α及β之外的两条不同的直线的方向向量,给出四个论断:①a ⊥b ;②m ⊥n ;③m ∥a ;④n ∥B .以其中的三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题________.解析:依题意,可得以下四个命题:(1)①②③⇒④;(2)①②④⇒③;(3)①③④⇒②;(4)②③④⇒①.不难发现,命题(3),(4)为真命题,而命题(1),(2)为假命题.答案:①③④⇒②或②③④⇒①3.已知在长方体ABCDA 1B 1C 1D 1中,底面是边长为2的正方形,高为4,求点A 1到平面AB 1D 1的距离.解:如图所示建立空间直角坐标系D xyz ,则A 1(2,0,4),A(2,0,0), B 1(2,2,4),D 1(0,0,4), AD 1→=(-2,0,4),AB 1→=(0,2,4), AA 1→=(0,0,4),设平面AB 1D 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AB 1→=0,即⎩⎪⎨⎪⎧-2x +4z =0,2y +4z =0, 解得x =2z 且y =-2z , 不妨设n =(2,-2,1),设点A 1到平面AB 1D 1的距离为d ,则d =|AA 1→·n ||n |=43.4. 如图所示,正三棱柱ABCA 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明:如图所示,取BC 的中点O ,连接A O . 因为△ABC 为正三角形,所以A O ⊥BC .因为在正三棱柱ABCA 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以A O ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以O B →,OO 1→,O A →为x 轴,y 轴,z 轴建立空间直角坐标系, 则B(1,0,0),D(-1,1,0),A 1(0,2,3), A(0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ), BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量,而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n , 故AB 1⊥平面A 1BD .5. 如图所示,在底面是矩形的四棱锥P ABCD 中,P A ⊥底面ABCD ,E 、F 分别是P C 、P D 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ;(2)求证:平面P AD ⊥平面P DC .证明:(1)以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,A P 所在直线为z 轴建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P (0,0,1),∴E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12.EF →=⎝ ⎛⎭⎪⎫-12,0,0,A P →=(0,0,1),AD →=(0,2,0), DC →=(1,0,0),AB →=(1,0,0).∵EF →=-12AB →,∴EF →∥AB →,即EF ∥AB .又AB ⊂平面P AB ,EF ⊄平面P AB , ∴EF ∥平面P AB .(2)∵A P →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0, ∴A P →⊥DC →,AD →⊥DC →, 即A P ⊥DC ,AD ⊥DC . 又A P ∩AD=A , ∴DC ⊥平面P AD . 又∵DC ⊂平面P DC , ∴平面P AD ⊥平面P DC .[能力提升]1.在四棱锥P ABCD 中,P D ⊥底面ABCD ,底面ABCD 为正方形,P D =DC ,E 、F 分别是AB 、P B 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面P CB ,并证明你的结论.解:(1)证明:如图,以DA 、DC 、D P 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D(0,0,0)、A(a ,0,0)、B(a ,a ,0)、C(0,a ,0)、E ⎝ ⎛⎭⎪⎫a ,a2,0、P (0,0,a )、F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD . (2)设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面P CB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x=a2;由FG →·C P →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0. ∴G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 点为AD 的中点.2. 如图,在多面体ABCA 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1ABC 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明:∵二面角A 1ABC 是直二面角,四边形A 1ABB 1为正方形. ∴AA 1⊥平面BAC .又∵AB =AC ,BC =2AB , ∴∠CAB =90°,即CA ⊥AB , ∴AB ,AC ,AA 1两两互相垂直. 建立如图所示的空间直角坐标系,设AB =2,则A(0,0,0),B 1(0,2,2),A 1(0,0,2),C(2,0,0),C 1(1,1,2).(1)A 1B 1→=(0,2,0),A 1A →=(0,0,-2), AC →=(2,0,0),设平面AA 1C 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0.取y =1,则n =(0,1,0). ∴A 1B 1→=2n ,即A 1B 1→∥n . ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0), A 1C →=(2,0,-2),设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·A 1C →=0,则⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0, 令x 1=1,则y 1=-1,z 1=1, 即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0, ∴AB 1→⊥m .又AB 1⊄平面A 1C 1C , ∴AB 1∥平面A 1C 1C .3. 如图,四棱锥S ABCD 中,ABCD 为矩形,S D ⊥AD ,且S D ⊥AB ,AD =a (a >0),AB =2AD ,S D =3AD ,E 为CD 上一点,且C E =3D E .(1)求证:A E ⊥平面S BD ;(2)M ,N 分别为线段S B ,CD 上的点,是否存在M ,N ,使M N ⊥CD 且M N ⊥S B ,若存在,确定M ,N 的位置;若不存在,说明理由.解:(1)证明:因为四棱锥S ABCD 中,ABCD 为矩形,S D ⊥AD ,且S D ⊥AB ,AD∩AB=A ,所以S D ⊥平面ABCD .BD 就是S B 在平面ABCD 上的射影.因为AB =2AD ,E 为CD 上一点,且C E =3D E .∴tan ∠DA E =D E AD =12,tan ∠DBA =AD AB =12,∴∠DA E =∠DBA ,∴∠DA E +∠BDA =90°.∴A E ⊥BD ,∴A E ⊥S B .∵S B∩BD=B , ∴A E ⊥平面S BD .(2)假设存在点M ,N 满足M N ⊥CD 且M N ⊥S B .建立如图所示的空间直角坐标系,由题意可知,D(0,0,0),A(a ,0,0),C(0,2a ,0),B(a ,2a ,0),S (0,0,3a ),设D M →=DB →+t B S →=(a ,2a ,0)+t (-a ,-2a ,3a )=(a -ta ,2a -2ta ,3ta )(t ∈[0,1]),即M (a -ta ,2a -2ta ,3ta ),N(0,y ,0),y ∈[0,2a ], N M →=(a -ta ,2a -2ta -y ,3ta ). 使M N ⊥CD 且M N ⊥S B ,则⎩⎪⎨⎪⎧N M →·DC →=0,N M →·B S →=0,⎩⎨⎧(a -ta ,2a -2ta -y ,3ta )·(0,2a ,0)=0,(a -ta ,2a -2ta -y ,3ta )·(-a ,-2a ,3a )=0,可得⎩⎪⎨⎪⎧2a (2a -2ta -y )=0,-a (a -ta )-2a (2a -2ta -y )+3ta 2=0, t =14∈[0,1],y =32a ∈[0,2a ]. 故存在点M ,N 使M N ⊥CD 且M N ⊥S B ,M (34a ,32a ,34a ),N(0,32a ,0).22479 57CF 埏2f32579 7F43 罃H25073 61F1 懱O)5>38384 95F0 闰36682 8F4A 轊n29176 71F8 燸u。
【2022高考必备】2012-2021十年全国高考数学真题分类汇编 向量(精解精析)

2012-2021十年全国高考数学真题分类汇编 向量(精解精析)一、选择题1.(2020年高考数学课标Ⅲ卷理科)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.2.(2019年高考数学课标全国Ⅱ卷理科)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )A .3-B .2-C .2D .3【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴211BC ==,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.3.(2019年高考数学课标全国Ⅰ卷理科)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅, 所以,3a bπ=.4.(2019年高考数学课标全国Ⅰ卷理科)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为120.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 .若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=故(169.89,178.22)h ∈,故选B .5.(2018年高考数学课标Ⅱ卷(理))已知向量a ,b 满足||1=a ,1⋅=-a b ,则a ( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .6.(2018年高考数学课标卷Ⅰ(理))在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )头顶咽喉肚脐足底A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A解析:在ABC△中,AD 为BC 边上的中线,E为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 7.(2017年高考数学课标Ⅲ卷理科)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( ) A . B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BDAP AB AD λμ=+λμ+32A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC∆BD =1122ACD S BC CD BD CE =⨯⨯=⨯⨯△111222CE CE ⨯⨯=⇒=C ()()224125x y -+-=1,2P θθ⎛⎫+ ⎪ ⎪⎝⎭AP AB AD λμ=+()1,2,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线而此时点到直线151λθμθ⎧=+⎪⎪⎨⎪=⎪⎩2λμθθ+=()2sin θϕ=++sin ϕ=cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =BD =1122ACD S CD CB BD CE =⨯⨯=⨯⨯△CE =P FH DB λμ+A BD C BD A FH 22r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,3AFAB ==λμ+3P λμ+AG xAB yAD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y ()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离,,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤≤13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC=BD BD C E CEBDCERt BCD△BD12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△C P C P 224(2)(1)5x y -+-=P 00(,)x y P 0021x y θθ⎧=+⎪⎪⎨⎪=⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0112x μθ==01y λθ==(其中,当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.8.(2017年高考数学课标Ⅱ卷理科)已知是边长为2的等边三角形,为平面内一点,则的最小值是( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法∵,∴112)2sin()3λμθθθϕθϕ+=+++=++=++≤sin ϕ=cos ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP (OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),PO PA x y x y ⋅=--⋅-222234PO PA x y x y ⎛⋅=+=+- ⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()2PA PC PB PO PA ⋅+=⋅由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决. 9.(2016高考数学课标Ⅲ卷理科)已知向量1(,)22BA =,31()22BC =,则ABC ∠= ( )A .30︒B .45︒C .60︒D .120︒【答案】A【解析】由题意,得112222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A . 10.(2016高考数学课标Ⅱ卷理科)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .8【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .11.(2015高考数学新课标1理科)设D 为ABC 所在平面内一点3BC CD =,则 ( )OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PA PO PA AO PA PC PB PO PA +--+-⋅+=⋅==≥-32-A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算12.(2014高考数学课标2理科)设向量a ,b 满足|a +b,|a -b,则a b = ( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积难度:B 备注:常考题 二、填空题13.(2021年高考全国甲卷理科)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.14.(2021年高考全国乙卷理科)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.⋅故答案为:35. 【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.15.(2020年高考数学课标Ⅰ卷理科)设,a b 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a ba ab b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a ba ab b -=-=-⋅+=【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题.16.(2020年高考数学课标Ⅱ卷理科)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.17.(2019年高考数学课标Ⅲ卷理科)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.18.(2018年高考数学课标Ⅲ卷(理))已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= .【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b +所以4210λ⨯-⨯=,解得12λ=. 19.(2017年高考数学新课标Ⅰ卷理科)已知向量,的夹角为,,,则__________.【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法a b 60︒2a =1b =2a b +=222|2|||44||4421cos60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +2依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.20.(2016高考数学课标Ⅰ卷理科)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = . 【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-. 21.(2015高考数学新课标2理科)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=. 考点:向量共线.22.(2014高考数学课标1理科)已知A ,B ,C 是圆O 上的三点,若,则与的夹角为______.【答案】解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想难度:B备注:高频考点23.(2013高考数学新课标2理科)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=________.【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算()2,0a=13,22b ⎛⎫= ⎪⎪⎝⎭()((22,0a b +=+=(223a b +=+=1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090难度: A备注:高频考点24.(2013高考数学新课标1理科)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____.【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点。
高考数学如何利用向量解决几何问题

高考数学如何利用向量解决几何问题高考数学是中国高中生的重要一课,其中几何问题一直是考试的重点之一。
在解决几何问题时,向量是一种常用的工具和方法。
本文将介绍如何利用向量来解决高考数学中的几何问题,并提供几个实例来加深理解。
一、向量简介向量是指有大小和方向的量,常用箭头表示,如A B⃗。
向量可以表示位移、速度、力等概念。
向量的加法、减法和数乘运算与数的运算类似。
在几何中,常用向量表示线段。
例如,A B⃗表示从点A到点B的位移向量。
二、向量的基本性质1. 平行向量:若两个向量的方向相同或者相反,则它们是平行向量。
2. 相等向量:若两个向量的大小相等且方向相同,则它们是相等向量。
3. 垂直向量:若两个向量的数量乘积为0,则它们是垂直向量。
三、向量解决几何问题的应用1. 判断线段垂直、平行关系利用向量的垂直性质可以判断两个线段是否垂直。
设A B⃗和C D⃗是两个线段的位移向量,若A B⃗·C D⃗ = 0,则可以得出线段A B⃗和C D⃗垂直。
利用向量的平行性质可以判断两个线段是否平行。
设A B⃗和C D⃗是两个线段的位移向量,若存在λ,使得A B⃗ = λC D⃗,则可以得出线段A B⃗和C D⃗平行。
2. 求线段的中点坐标设A B⃗是线段AB的位移向量,点M是线段AB的中点,则A M⃗= M B⃗ = 1/2A B⃗。
利用向量的数乘运算可以求得线段中点的坐标。
3. 判断三角形的形状利用向量可以判断三角形的形状,包括等腰三角形、等边三角形和直角三角形。
对于等腰三角形,可以利用向量A B⃗和A C⃗的相等性质来判断,若A B⃗ = A C⃗或者A B⃗ = -A C⃗,则可以得出三角形ABC是等腰三角形。
对于等边三角形,可以利用向量A B⃗、B C⃗和C A⃗相等性质来判断,若A B⃗= B C⃗= C A⃗,则可以得出三角形ABC是等边三角形。
对于直角三角形,可以利用向量的内积来判断,若A B⃗·B C⃗ = 0或者B C⃗·C A⃗ = 0或者C A⃗·A B⃗ = 0,其中·表示两个向量的数量乘积,则可以得出三角形ABC是直角三角形。
四川省成都市龙泉驿区第一中学2021年高考数学高考数学压轴题 平面向量多选题分类精编及解析

四川省成都市龙泉驿区第一中学2021年高考数学高考数学压轴题 平面向量多选题分类精编及解析一、平面向量多选题1.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( )A .212AO AB AB ⋅=B .OA OB OA OC OB OC ⋅=⋅=⋅C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则113λμ+=D .AH 与cos cos AB AC AB BAC C+共线【答案】ACD 【分析】根据外心在AB 上的射影是AB 的中点,利用向量的数量积的定义可以证明A 正确;利用向量的数量积的运算法则可以OA OB OA OC =即OA BC ⊥,在一般三角形中易知这是不一定正确的,由此可判定B 错误;利用三角形中线的定义,线性运算和平面向量基本定理中的推论可以证明C 正确;利用向量的数量积运算和向量垂直的条件可以判定cos cos AB AC AB BAC C+与BC 垂直,从而说明D 正确.【详解】如图,设AB 中点为M,则OM AB ⊥,AO cos OAM AM ∴∠=()21·cos cos ?22ABAO AB AO AB OAB AB AO OAB AB AB ∴=∠=∠==,故A 正确;··OAOB OAOC =等价于()·0OA OB OC -=等价于·0OACB =,即OA BC ⊥,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直.故B 错误; 设BC 的中点为D ,则()211111133333AG AD AB AC AE AF AE AF λμλμ⎛⎫==+=+=+ ⎪⎝⎭, ∵E,F,G 三点共线,11133λμ∴+=,即113λμ+=,故C 正确; cos cos cos cos AB AC AB BC AC BC BC AB B AC C AB B AC C ⎛⎫⋅⋅ ⎪+⋅=+ ⎪⎝⎭()cos cos cos cos AB BC B AC BC C AB BAC Cπ⋅-⋅=+0BC BC =-+=,∴cos cos AB AC AB BAC C+与BC 垂直,又AH BC ⊥,∴cos cos AB AC AB BAC C+与AH共线,故D 正确. 故选:ACD. 【点睛】本题考查平面向量线性运算和数量及运算,向量垂直和共线的判定,平面向量分解的基本定理,属综合小题,难度较大,关键是熟练使用向量的线性运算和数量积运算,理解三点共线的充分必要条件,进而逐一作出判定.2.设点A ,B 的坐标分别为()0,1,()1,0,P ,Q 分别是曲线x y e =和ln y x =上的动点,记12,I AQ AB I BP BA =⋅=⋅,则下列命题不正确的是( ) A .若12I I =,则()PQ AB R λλ=∈ B .若12I I =,则AP BQ = C .若()PQ AB R λλ=∈,则12I I = D .若AP BQ =,则12I I =【答案】ABD【分析】作出两个函数的图象,利用图象结合平面向量共线知识和平面向量数量积的几何意义分析可得答案. 【详解】根据题意,在直线AB 上取点,P Q '',且满足||||AP BQ ''=,过,P Q ''分别作直线AB 的垂线,交曲线x y e =于1P ,2P ,交曲线ln y x =于12,Q Q ,在曲线x y e =上取点3P ,使13||||AP AP =,如图所示:1||||cos I AQ AB AQ AB QAB =⋅=⋅∠,令||cos ||AQ QAB AQ '∠=,则1||||I AQ AB '=⋅,2||||cos I BP BA BP BA PBA =⋅=⋅∠,令||cos ||BP PBA BP '∠=,则2||||I BP BA '=⋅,若||||AP BQ ''=,则||||AQ BP ''=,若12I I =,则||||AQ BP ''=即可,此时P 可以与1P 重合,Q 与2Q 重合,满足题意,但是()PQ AB R λλ=∈不成立,且||||AP BQ ≠,所以A 、B 不正确;对于选项C ,若PQ AB =λ,此时P 与1P 重合,且Q 与1Q 重合,或P 与2P 重合,且Q 与2Q 重合,所以满足12I I =,所以C 正确;对于D ,当P 与3P 重合时,满足13||||AP AP =,但此时3P 在直线AB 上的投影不在P '处,因而不满足||||AQ BP ''=,即12I I ≠,所以D 不正确. 故选:ABD 【点睛】关键点点睛:利用图象结合平面向量共线知识和平面向量数量积的几何意义求解是解题关键.3.下列条件中,使点P 与A ,B ,C 三点一定共面的是( )A .1233PC PA PB =+ B .111333OP OA OB OC =++ C .QP QA QB OC =++ D .0OP OA OB OC +++=【答案】AB 【分析】根据四点共面的充要条件,若A ,B ,C ,P 四点共面(1)PC xPA yPB x y ⇔=++=()1OP xOA yOB zOC x y z ⇔=++++=,对选项逐一分析,即可得到答案. 【详解】 对于A ,由1233PC PA PB =+,12133+=,所以点P 与A ,B ,C 三点共面.对于B ,由111333OP OA OB OC =++,1111333++=,所以点P 与A ,B ,C 三点共面.对于C ,由OP OA OB OC =++,11131++=≠,所以点P 与A ,B ,C 三点不共面. 对于D ,由0OP OA OB OC +++=,得OP OA OB OC =---,而11131---=-≠,所以点P 与A ,B ,C 三点不共面. 故选:AB 【点睛】关键点睛:本题主要考查四点共面的条件,解题的关键是熟悉四点A ,B ,C ,P 共面的充要条件(1)PC xPA yPB x y ⇔=++=()1OP xOA yOB zOC x y z ⇔=++++=,考查学生的推理能力与转化思想,属于基础题.4.如图所示,设Ox ,Oy 是平面内相交成2πθθ⎛⎫≠⎪⎝⎭角的两条数轴,1e ,2e 分别是与x ,y 轴正方向同向的单位向量,则称平面坐标系xOy 为θ反射坐标系中,若12OM xe ye =+,则把有序数对(),x y 叫做向量OM 的反射坐标,记为(),OM x y =.在23πθ=的反射坐标系中,()1,2a =,()2,1b =-.则下列结论中,正确的是( )A .()1,3a b -=-B .5a =C .a b ⊥D .a 在b 上的投影为37【答案】AD 【分析】123a b e e -=-+,则()1,3a b -=-,故A 正确;3a =,故B 错误;32a b ⋅=-,故C 错误;由于a 在b 上的投影为33727a b b-⋅==,故D 正确.【详解】()()121212223a b e e e e e e -=+--=-+,则()1,3a b -=-,故A 正确;()2122254cos33a e e π=+=+=B 错误;()()22121211223222322a b e e e e e e e e ⋅=+⋅-=+⋅-=-,故C 错误; 由于()22227b e e =-=a 在b 上的投影为3372147a b b-⋅==-,故D 正确。
2021年高考数学高考数学压轴题 平面向量多选题分类精编附解析

2021年高考数学高考数学压轴题 平面向量多选题分类精编附解析一、平面向量多选题1.下列关于平面向量的说法中正确的是( )A .已知,a b 均为非零向量,若//a b ,则存在唯一的实数λ,使得λabB .已知非零向量(1,2),(1,1)a b ==,且a 与a λb +的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭C .若a c b c ⋅=⋅且0c ≠,则a b =D .若点G 为ABC 的重心,则0GA GB GC ++= 【答案】AD 【分析】由向量共线定理可判断选项A ;由向量夹角的的坐标表示可判断选项B ;由数量积的运算性质可判断选项C ;由三角形的重心性质即向量线性运算可判断选项D. 【详解】对于选项A : 由向量共线定理知选项A 正确;对于选项B :()()()1,21,11,2a b λλλλ+=+=++,若a 与a λb +的夹角为锐角,则()()122530a a b λλλλ⋅+=+++=+>解得53λ>-,当a 与a λb +共线时,()221λλ+=+,解得:0λ=,此时(1,2)a =,()1,2a b λ+=,此时a b =夹角为0,不符合题意,所以实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭,故选项B 不正确; 对于选项C :若a c b c ⋅=⋅,则()0c a b ⋅-=,因为0c ≠,则a b =或c 与a b -垂直, 故选项C 不正确;对于选项D :若点G 为ABC 的重心,延长AG 与BC 交于M ,则M 为BC 的中点,所以()1222AG GM GB GC GB GC ==⨯⨯+=+,所以0GA GB GC ++=,故选项D 正确.故选:AD 【点睛】易错点睛:两个向量夹角为锐角数量积大于0,但数量积大于0向量夹角为锐角或0,由向量夹角为锐角数量积大于0,需要检验向量共线的情况. 两个向量夹角为钝角数量积小于0,但数量积小于0向量夹角为钝角或π.2.下列命题中真命题的是( )A .向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R )B .a ,b 为单位向量,其夹角为θ,若|a b -|>1,则3π<θ≤πC .A 、B 、C 、D 是空间不共面的四点,若AB •AC =0,AC •AD =0,AB •AD =0则△BCD 一定是锐角三角形D .向量AB ,AC ,BC 满足AB AC BC =+,则AC 与BC 同向 【答案】BC 【分析】对于A :利用共线定理判断 对于B :利用平面向量的数量积判断 对于C :利用数量积的应用判断 对于D :利用向量的四则运算进行判断 【详解】对于A :由向量共线定理可知,当0b =时,不成立.所以A 错误. 对于B :若|a b -|>1,则平方得2221a a b b -⋅+>,即12a b ⋅<,又1||2a b a b cos cos θθ⋅=⋅=<,所以3π<θ≤π,即B 正确.对于C :()()220BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=-⋅-=⋅-⋅-⋅+=>,0||BC BD cosB BC BD ⋅=⋅>,即B 为锐角,同理A ,C 也为锐角,故△BCD 是锐角三角形,所以C 正确.对于D :若AB AC BC =+,则AB AC BC CB -==,所以0CB =,所以则AC 与BC 共线,但不一定方向相同,所以D 错误. 故选:BC. 【点睛】(1)多项选择题是2020年高考新题型,需要要对选项一一验证;(2)要判断一个命题错误,只需举一个反例就可以;要证明一个命题正确,需要进行证明.3.如图,A 、B 分别是射线OM 、ON 上的点,下列以O 为起点的向量中,终点落在阴影区域内的向量是( )A .2OA OB + B .1123OA OB +C .3143OA OB + D .3145OA OB + 【答案】AC 【分析】利用向量共线的条件可得:当点P 在直线AB 上时,等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于:OP uOA vOB =+,且u >0,v >0,u +v >1.据此即可判断出答案. 【详解】由向量共线的条件可得:当点P 在直线AB 上时,存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1.可以证明点P 位于阴影区域内等价于: OP uOA vOB =+,且u >0,v >0,u +v >1. 证明如下:如图所示,点P 是阴影区域内的任意一点,过点P 作PE //ON ,PF //OM ,分别交OM ,ON 于点E ,F ;PE 交AB 于点P ′,过点P ′作P ′F ′//OM 交ON 于点F ′,则存在唯一一对实数(x ,y ),(u ′,v ′),使得OP xOE yOF u OA v OB ''''=+=+,且u ′+v ′=1,u ′,v ′唯一;同理存在唯一一对实数x ′,y ′使得OP x OE y OF uOA vOB =+=+'', 而x ′=x ,y ′>y ,∴u =u ′,v >v ′,∴u +v >u ′+v ′=1,对于A ,∵1+2>1,根据以上结论,∴点P 位于阴影区域内,故A 正确; 对于B ,因为11123+<,所以点P 不位于阴影区域内,故B 不正确;对于C ,因为311314312+=>,所以点P 位于阴影区域内,故C 正确; 对于D ,因为311914520+=<,所以点P 不位于阴影区域内,故D 不正确; 故选:AC. 【点睛】关键点点睛:利用结论:①点P 在直线AB 上等价于存在唯一的一对有序实数u ,v ,使得OP uOA vOB =+成立,且u +v =1;②点P 位于阴影区域内等价于OP uOA vOB =+,且u >0,v >0,u +v >1求解是解题的关键.4.在ABC 中,D 、E 分别是AC 、BC 上的点,AE 与BD 交于O ,且AB BC BC CA CA AB ⋅=⋅=⋅,2AB AC AE +=,2CD DA =,1AB =,则( )A .0AC BD ⋅=B .0OA OE ⋅=C .3OA OB OC ++=D .ED 在BA 方向上的正射影的数量为712【答案】BCD 【分析】根据AB BC BC CA CA AB ⋅=⋅=⋅以及正弦定理得到sin cos sin cos C B B C ⋅=⋅,从而求出B C =,进一步得到B C A ==,ABC 等边三角形,根据题目条件可以得到E 为BC 的中点和D 为AC 的三等分点,建立坐标系,进一步求出各选项. 【详解】由AB BC BC CA CA AB ⋅=⋅=⋅得cos cos AB BC B CA BC C ⋅=⋅,||cos ||cos AB B CA C ⋅=⋅,正弦定理,sin cos sin cos C B B C ⋅=⋅,()0sin B C =-,B C =,同理:A C =,所以B C A ==,ABC 等边三角形.2AB AC AE +=,E 为BC 的中点,2CD DA =,D 为AC 的三等分点.如图建立坐标系,30,A ⎛⎫ ⎪ ⎪⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,13,6D ⎛⎫ ⎪ ⎪⎝⎭,解得30,O ⎛⎫ ⎪ ⎪⎝⎭, O 为AE 的中点,所以,0OA OE +=正确,故B 正确;1323,,,223AC BD ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,AC BD ⋅=12331=0236⨯-⨯-≠,故A 错误; 324OA OB OC OA OE OE ++=+==,故C 正确; 13,6ED ⎛⎫= ⎪ ⎪⎝⎭,13,2BA ⎛⎫= ⎪ ⎪⎝⎭,投影712||ED BA BA ⋅=,故D 正确. 故选:BCD. 【点睛】如何求向量a 在向量b 上的投影,用向量a 的模乘以两个向量所成的角的余弦值就可以了,当然还可以利用公式a b b⋅进行求解.5.如图,已知长方形ABCD 中,3AB =,2AD =,()01DE DC λλ→→=<<,则下列结论正确的是( )A .当13λ=时,1233E A A E D B →→→=+B .当23λ=时,10cos ,10AE BE →→=C .对任意()0,1λ∈,AE BE →→⊥不成立D .AE BE →→+的最小值为4 【答案】BCD 【分析】根据题意,建立平面直角坐标系,由DE DC λ→→=,根据向量坐标的运算可得()3,2E λ,当13λ=时,得出()1,2E ,根据向量的线性运算即向量的坐标运算,可求出2133AD AE BE →→→=+,即可判断A 选项;当23λ=时,()2,2E ,根据平面向量的夹角公式、向量的数量积运算和模的运算,求出cos ,AE BE →→=,即可判断B 选项;若AE BE →→⊥,根据向量垂直的数量积运算,即可判断C 选项;根据向量坐标加法运算求得()63,4AE BE λ→→+=-,再根据向量模的运算即可判断D 选项.【详解】解:如图,以A 为坐标原点,,AB AD 所在直线分别为x 轴、y 轴建立平面直角坐标系, 则()0,0A ,()3,0B ,()3,2C ,()0,2D ,由DE DC λ→→=,可得()3,2E λ,A 项,当13λ=时,()1,2E ,则()1,2AE →=,()2,2BE →=-, 设AD m AE n BE →→→=+,又()0,2AD →=,所以02222m n m n =-⎧⎨=+⎩,得2313m n ⎧=⎪⎪⎨⎪=⎪⎩,故2133AD AE BE →→→=+,A 错误;B 项,当23λ=时,()2,2E ,则()2,2AE →=,()1,2BE →=-,故cos ,AE BE AE BE AE BE→→→→→→⋅===⋅,B 正确;C 项,()3,2AE λ→=,()33,2BE λ→=-,若AE BE →→⊥,则()2333229940AE BE λλλλ→→⋅=-+⨯=-+=, 对于方程29940λλ-+=,()2Δ94940=--⨯⨯<, 故不存在()0,1λ∈,使得AE BE →→⊥,C 正确;D 项,()63,4AE BE λ→→+=-,所以4AE BE →→+=≥,当且仅当12λ=时等号成立,D 正确. 故选:BCD.【点睛】关键点点睛:本题考查平面向量的坐标运算,数量积运算和线性运算,考查运用数量积表示两个向量的夹角以及会用数量积判断两个平面向量的垂直关系,熟练运用平面向量的数量积运算是解题的关键.6.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π 【答案】CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题.故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.7.下列各式结果为零向量的有( ) A .AB BC AC ++ B .AB AC BD CD +++ C .OA OD AD -+ D .NQ QP MN MP ++-【答案】CD 【分析】对于选项A ,2AB BC AC AC ++=,所以该选项不正确;对于选项B ,2AB AC BD CD AD +++=,所以该选项不正确;对于选项C ,0OA OD AD -+=,所以该选项正确;对于选项D ,0NQ QP MN MP ++-=,所以该选项正确. 【详解】对于选项A ,2AB BC AC AC AC AC ++=+=,所以该选项不正确;对于选项B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,所以该选项不正确;对于选项C ,0OA OD AD DA AD -+=+=,所以该选项正确; 对于选项D ,0NQ QP MN MP NP PN ++-=+=,所以该选项正确. 故选:CD 【点睛】本题主要考查平面向量的加法和减法法则,意在考查学生对这些知识的理解掌握水平.8.ABC 是边长为2的等边三角形,已知向量a 、b 满足AB a =、AC a b =+,则下列结论正确的是( ) A .2b = B .a b ⊥C .2a b ⋅=D .(2)a b BC +⊥【答案】AD 【分析】本题首先可以根据向量的减法得出BC b =,然后根据ABC 是边长为2的等边三角形得出A 正确以及B 错误,再然后根据向量a 、b 之间的夹角为120计算出2a b ⋅=-,C 错误,最后通过计算得出(2)0a b BC +⋅=,D 正确. 【详解】因为AB a =,AC a b =+,所以BC AC AB a b a b =-=+-=, 因为ABC 是边长为2的等边三角形,所以2b BC ==,A 正确, 因为AB a =,BC b =,所以向量a 、b 之间的夹角为120,B 错误, 所以1cos1202222a b a b ⎛⎫⋅=⋅⋅=⨯⨯-=- ⎪⎝⎭,C 错误, 因为()22(2)(2)22220a b BC a b b a b b +⋅=+⋅=⋅+=⨯-+=, 所以(2)a b BC +⊥,D 正确, 故选:AD. 【点睛】本题考查向量的减法运算以及向量的数量积,若向量a 、b 之间的夹角为θ,则cos a b a b θ⋅=⋅⋅,若0a b ⋅=,则a b ⊥,考查推理能力与计算能力,是中档题.9.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λa b ,则a b a b +=-【答案】AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.10.已知ABC ∆是边长为()20a a >的等边三角形,P 为ABC ∆所在平面内一点,则()PA PB PC ⋅+的值可能是( )A .22a -B .232a -C .243a -D .2a -【答案】BCD 【分析】通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果. 【详解】建立如图所示的平面直角坐标系.设(),P x y ,又()3A a ,(),0B a -,(),0C a ,则()3PA x a y =--,(),PB a x y =---,(),PC a x y =--.则()(),,a x y a P PC x y B -+--+-=- 即()2,2PB x y PC --+= 所以()()()32,2x a PA PB P y x y C =--⋅--⋅+则()PA PB PC ⋅+22223xy ay =+-即()PA PB PC ⋅+222332222x y a a ⎛⎫=+-- ⎪ ⎪⎝⎭. 所以()PA PB PC ⋅+232a ≥- 故选:BCD. 【点睛】本题主要通过建系的方法求解几何中向量的问题,属中档题.。
2021年高考数学(理)一轮复习题型归纳与训练 专题8.6 立体几何中的向量方法(教师版含解析)
2021年高考理科数学一轮复习:题型全归纳与高效训练突破专题8.6 立体几何中的向量方法目录一、考点全归纳1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=|a·n||a||n|.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图①①,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【常用结论】 利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.二 题型全归纳题型一 异面直线所成的角【题型要点】用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量. (3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【易错提醒】注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.【例1】如图,在四棱锥P ABCD 中,P A ①平面ABCD ,底面ABCD 是菱形,AB =2,①BAD =60°.(1)求证:BD ①平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 【解析】(1)证明:因为四边形ABCD 是菱形, 所以AC ①BD .因为P A ①平面ABCD ,所以P A ①BD . 又因为AC ∩P A =A ,所以BD ①平面P AC . (2)设AC ∩BD =O .因为①BAD =60°,P A =AB =2,所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系Oxyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64.即PB 与AC 所成角的余弦值为64. 【例2】.如图,在三棱锥P ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0. 因为MN ①平面BDE , 所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以,线段AH 的长为85或12.题型二 直线与平面所成的角【题型要点】(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);①通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2. 【易错提醒】求解直线和平面所成角,要注意直线的方向向量与平面法向量的夹角和所求角之间的关系,线面角的正弦值等于两向量夹角的余弦值的绝对值.【例1】(2020·深圳模拟)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PD =PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ①平面AMHN .(1)证明:MN ①PC ;(2)设H 为PC 的中点,P A =PC =3AB ,P A 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.【解析】:(1)证明:如图①,连接AC 交BD 于点O ,连接PO .因为四边形ABCD 为菱形,所以BD ①AC ,且O 为BD 的中点. 因为PD =PB ,所以PO ①BD ,因为AC ∩PO =O ,且AC ,PO ①平面P AC ,所以BD ①平面P AC . 因为PC ①平面P AC ,所以BD ①PC .因为BD ①平面AMHN ,且平面AMHN ∩平面PBD =MN ,所以BD ①MN , 所以MN ①PC .(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD ,因为P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A .因为P A =3AB ,所以BO =36P A .以O 为坐标原点,OA →,OD →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图①所示的空间直角坐标系,记P A =2,则O (0,0,0),A (1,0,0),B ⎝⎛⎭⎫0,-33,0,C (-1,0,0),D ⎝⎛⎭⎫0,33,0,P (0,0,3),H ⎝⎛⎭⎫-12,0,32, 所以BD →=⎝⎛⎭⎫0,233,0,AH →=⎝⎛⎭⎫-32,0,32,AD →=⎝⎛⎭⎫-1,33,0. 设平面AMHN 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,解得y =0,z =23,所以n =(2,0,23)是平面AMHN 的一个法向量. 记AD 与平面AMHN 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=⎪⎪⎪⎪⎪⎪n ·AD →|n ||AD →|=34.所以AD 与平面AMHN 所成角的正弦值为34. 【例2】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1, 又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1, 又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1. 因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1, 所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E . (2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量, 易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277, 故直线B 1C 1与平面B 1CE 所成角的正弦值为277.题型三 二面角【题型要点】利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【易错提醒】:判断二面角的平面角是锐角还是钝角,可结合图形进行.【例1】(2020·深圳模拟)已知四棱锥PABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN ①P C.(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD , 所以P A 与平面ABCD 所成的角为①P AO , 所以①P AO =60°,所以AO =12P A ,PO =32P A ,因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32),所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0).设平面AMHN 的法向量为n =(x ,y ,z ), 所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 【例2】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC ,所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H xyz , 则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B CG A 的大小为30°.题型四 利用空间向量求距离【题型要点】求解点到平面的距离可直接转化为求向量在平面的法向量上的射影的长.如图,设点P 在平面α外,n 为平面α的法向量,在平面α内任取一点Q ,则点P 到平面α的距离d =|PQ →·n ||n |.【易错提醒】该题中的第(2)问求解点到平面的距离时,利用了两种不同的方法——等体积法与向量法,显然向量法直接简单,不必经过过多的逻辑推理,只需代入坐标准确求解即可.【例1】(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33,所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0, 整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 【例2】如图,①BCD 与①MCD 都是边长为2的正三角形,平面MCD ①平面BCD ,AB ①平面BCD ,AB =23,求点A 到平面MBC 的距离.【答案】见解析【解析】:如图,取CD 的中点O ,连接OB ,OM ,因为①BCD 与①MCD 均为正三角形,所以OB ①CD ,OM ①CD ,又平面MCD ①平面BCD ,平面MCD ∩平面BCD =CD ,OM ①平面MCD ,所以MO ①平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为①BCD 与①MCD 都是边长为2的正三角形,所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23),所以BC →=(1,3,0).BM →=(0,3,3).设平面MBC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ①BC →,n ①BM →得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0, 取x =3,可得平面MBC 的一个法向量为n =(3,-1,1).又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.三、高效训练突破一、选择题1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°【答案】C【解析】设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ.则sin β=|cos γ|=|cos 120°|=12. 又0°≤β≤90°,①β=30°.2.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角大小为( )A.π6B.π4C.π3D.π2 【答案】D【解析】建立如图所示的空间直角坐标系设正方体边长为1,则A (0,0,0), C (1,1,0),B 1(1,0,1),D (0,1,0). ①AC →=(1,1,0),B 1D →=(-1,1,-1),①AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,①AC →①B 1D →,①AC 与B 1D 所成的角为π2. 3.如图,在空间直角坐标系中有直三棱柱ABC A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35【答案】A 【解析】设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=-2×0+2×2+1×(-1)0+4+1·4+4+1=15=55. 4.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC ︵长为2π3,A 1B 1︵长为π3,其中B 1与C 在平面AA 1O 1O 的同侧.则异面直线B 1C 与AA 1所成的角的大小为( )A.π6 B .π4C.π3D .π2【答案】B 【解析】:.以O 为坐标原点建系如图则A (0,1,0),A 1(0,1,1),B 1⎝⎛⎭⎫32,12,1,C ⎝⎛⎭⎫32,-12,0. 所以AA 1→=(0,0,1),B 1C →=(0,-1,-1),所以cos 〈AA 1→,B 1C →〉=AA 1→·B 1C →|AA 1→||B 1C →|=0×0+0×(-1)+1×(-1)1×02+(-1)2+(-1)2=-22, 所以〈AA 1→,B 1C →〉=3π4,所以异面直线B 1C 与AA 1所成的角为π4.故选B. 5.如图,已知长方体ABCD A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B .277 C.33 D .24 【答案】A.【解析】:如图以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),所以DC 1→=(0,3,1),D 1E →=(1,1,-1),D 1C →=(0,3,-1).设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E →=0,n ·D 1C →=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3). 因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535,故选A. 6.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217.则该二面角的大小为( )A .150°B .45°C .60°D .120°【答案】C.【解析】:如图所示二面角的大小就是〈AC →,BD →〉.因为CD →=CA →+AB →+BD →,所以CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →,所以CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12, 又〈AC →,BD →〉①[0°,180°],所以〈AC →,BD →〉=60°,故二面角为60°.7.已知斜四棱柱ABCD A 1B 1C 1D 1的各棱长均为2,①A 1AD =60°,①BAD =90°,平面A 1ADD 1①平面ABCD ,则直线BD 1与平面ABCD 所成的角的正切值为( ) A.34B.134C.3913D.393 【答案】C【解析】取AD 中点O ,连接OA 1,易证A 1O ①平面ABCD .建立如图所示的空间直角坐标系得B (2,-1,0),D 1(0,2,3),BD 1→=(-2,3,3),平面ABCD 的一个法向量为n =(0,0,1),设BD 1与平面ABCD 所成的角为θ,①sin θ=|BD 1→·n ||BD 1→||n |=34,①tan θ=3913. 8.如图,在四棱锥P ABCD 中,四边形ABCD 为平行四边形,且BC ①平面P AB ,P A ①AB ,M 为PB 的中点,P A =AD =2.若AB =1,则二面角B AC M 的余弦值为( )A.66B.36C.26D.16【答案】A【解析】因为BC ①平面P AB ,P A ①平面P AB ,所以P A ①BC ,又P A ①AB ,且BC ∩AB =B ,所以P A ①平面ABCD .以点A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A xyz .则A (0,0,0),C (1,2,0),P (0,0,2),B (1,0,0),M ⎝⎛⎭⎫12,0,1,所以AC →=(1,2,0),AM →=⎝⎛⎭⎫12,0,1,求得平面AMC 的一个法向量为n =(-2,1,1),又平面ABC 的一个法向量AP →=(0,0,2),所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=24+1+1×2=16=66. 所以二面角B AC M 的余弦值为66. 9.设正方体ABCD A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22 C.223 D.233【答案】D【解析】如图建立坐标系则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0),DA 1→=(2,0,2).设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,①⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ①D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233. 二、填空题1.如图,正三棱柱ABC A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________.【答案】:35【解析】:设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1(0,3,2),F (1,0,1),E ⎝⎛⎭⎫12,32,0,G (0,0,2),B 1F →=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1). 设平面GEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F →〉|=|1-3-1|5×5=35, 所以B 1F 与平面GEF 所成角的正弦值为35. 2.如图,平面ABCD ①平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为________.【答案】63【解析】如图以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ),G (a ,a ,0),AG →=(a ,a ,0),AC →=(0,2a ,2a ),BG →=(a ,-a ,0),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0AC →·n 1=0①⎩⎪⎨⎪⎧ax 1+ay 1=02ay 1+2a =0①⎩⎪⎨⎪⎧x 1=1y 1=-1①n 1=(1,-1,1).sin θ=|BG →·n 1||BG →||n 1|=2a 2a ×3=63. 3.已知正四棱锥S ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为________.【答案】33 【解析】以两对角线AC 与BD 的交点O 作为原点,以OA ,OB ,OS 所在直线分别为x ,y ,z 轴建立空间直角坐标系设边长为2,则有O (0,0,0),A (2,0,0),B (0,2,0),S (0,0,2),D (0,-2,0),E ⎝⎛⎭⎫0,22,22, AE →=⎝⎛⎭⎫-2,22,22,SD →=(0,-2,-2), |cos AE →,SD →|=|AE →·SD →||AE →||SD →|=22×3=33, 故AE 与SD 所成角的余弦值为33. 4.在正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于________.【答案】23【解析】以D 为坐标原点,建立空间直角坐标系,如图设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0, 令y =-2,得平面BDC 1的一个法向量n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 5.(2020·汕头模拟)在底面是直角梯形的四棱锥S ABCD 中,①ABC =90°,AD ①BC ,SA ①平面ABCD ,SA=AB =BC =1,AD =12,则平面SCD 与平面SAB 所成锐二面角的余弦值是________. 【答案】63 【解析】如图所示建立空间直角坐标系,则依题意可知,D ⎝⎛⎭⎫12,0,0,C (1,1,0),S (0,0,1),可知AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量.设平面SCD 的一个法向量n =(x ,y ,z ),因为SD →=⎝⎛⎭⎫12,0,-1,DC →=⎝⎛⎭⎫12,1,0,所以⎩⎪⎨⎪⎧n ·SD →=0,n ·DC →=0,即⎩⎨⎧x 2-z =0,x 2+y =0.令x =2,则有y =-1,z =1,所以n =(2,-1,1).设平面SCD 与平面SAB 所成的锐二面角为θ,则cos θ=|AD →·n ||AD →||n |=12×2+0×(-1)+0×1⎝⎛⎭⎫122×22+(-1)2+12=63. 6.(2020·北京模拟)如图所示,四棱锥P ABCD 中,PD ①底面ABCD ,底面ABCD 是边长为2的正方形,PD =2,E 是棱PB 的中点,M 是棱PC 上的动点,当直线P A 与直线EM 所成的角为60°时,那么线段PM 的长度是________.【答案】542 【解析】如图建立空间直角坐标系,则A (2,0,0),P (0,0,2),B (2,2,0),①AP →=()-2,0,2,①E 是棱PB 的中点,①E (1,1,1),设M (0,2-m ,m ),则EM →=()-1,1-m ,m -1,①||cos 〈AP →,EM →〉=⎪⎪⎪⎪⎪⎪⎪⎪AP →·EM →|AP →||EM →|=||2+2()m -1221+2(m -1)2=12, 解得m =34,①M ⎝⎛⎭⎫0,54,34, ①PM =2516+2516=54 2. 三 解答题1.如图所示,菱形ABCD 中,①ABC =60°,AC 与BD 相交于点O ,AE ①平面ABCD ,CF ①AE ,AB =AE =2.(1)求证:BD ①平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成角的余弦值的大小.【答案】见解析【解析】:(1)证明:因为四边形ABCD 是菱形,所以BD ①AC .因为AE ①平面ABCD ,BD ①平面ABCD ,所以BD ①AE .又因为AC ∩AE =A ,AC ,AE ①平面ACFE .所以BD ①平面ACFE .(2)以O 为原点,OA ,OB 所在直线分别为x 轴,y 轴,过点O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0, 令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22, 解得a =3或a =-13(舍去). 所以OF →=(-1,0,3),BE →=(1,-3,2),cos 〈OF →,BE →〉=-1+610×8=54, 故异面直线OF 与BE 所成角的余弦值为54. 2.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1, 又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC ,又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC .因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1.又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO .又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP →=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A ,所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12. 又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55. 3.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值.【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN ,则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC .因为MN ①平面EFC ,EC ①平面EFC ,所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE .因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC ,所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC .(2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),所以DB →=(2,2,0),DM →=(1,0,2),设平面BDM 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0. 令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.。
2021年高考数学高考数学压轴题平面向量多选题分类精编及答案
2021年高考数学高考数学压轴题平面向量多选题分类精编及答案一.平面向重多选题1. 在三棱锥M-ABC中,下列命题正确的是()—,1 ―, ?—- —A. 若AD = -AB + -AC ,则BC = 3BDB. 若G 为△A3C 的重心,则MG = —AM + — A73 + — MC3 3 3c.若莎说=0,MC AB = 0^则丽•走=0D.若三棱锥M-ABC的棱长都为2, P, Q分别为MA, BC中点,则啓卜2【答案】BC【分析】作出三棱锥M - ABC直观图,在每个三角形中利用向戢的线性运算可得.对于A,由,> AD = -AB+ -AC ^3AD = 2AC +AB =>2AD-2AC = AB-AD f3 3__ __ 3:・♦■•.即2CD = DB,则〒BD = BD + DC = BC,故 A 错误:对于 B.由G 为△ABC的重心,WGA + GB + GC = 0> 又MG = MA + AG^:.MA + MB + MC = 3MG^即MG = MB + BG^ MG = MC + CG^+押€疏故B正确:对于c,若MA BC = 0.祝•而=0,则MA BC + MC AB = 0^即顾・BC + A?C (AC + cg)=0=>M4•荒 + 就疋+就•丙=0=>MA BC+MC X C-A7C BC = O=>(M4-A7C) BC+A7C ;AC = O=^CABC + MCAC = 0=>ACCB + MCAC = 0=>^CB + MC^AC = 0,即MB AC = O^故C正确;・々 | * “”・•o I ■■■! ■ | ■・““■对于D,・・PQ = MQ — MP = — (MB + MC)一一MA = -(MB + MC-MA) 2 2 2岡=£阿+祝一网= £J(屈+応一莎『2 2 o ,(而+说_顾『=~MB +MA +2MB•就_2屈•顾_2疋•顾=22 +22 +22 +2x2x2x--2x2x2x--2x2x2x- = S ,.•.『0=丄邂=血,故2 2 2 2D错误.故选:BC【点睛】关键点睛:本题考査向量的运算,用已知向量表示某一向量的三个关键点:(1) 用已知向量来表示某一向量,一立要结合图形,以图形为指导是解题的关键.(2) 要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.(3) 在立体几何中三角形法则、平行四边形法则仍然成立.2. 泄义空间两个向量的一种运算〃前=冋•円sin@,巧,则关于空间向量上述运算的以下结论中恒成立的有()A.B・a ®Z? = h ©ciC. (5+b)®c=(6/®c) + (/J®c)D. 若力=(舛,yj, b =(x2,>'2),则刁0Z?=卜』2_七〉'|【答案】BD【分析】对于A,B,只需根据泄义列出左边和右边的式子即可,对于C,当方=觞时,(N + Z?) 0 X = (1 + 兄)”卜『[sin 0, C),(玄就)+(5皐)=网卜|8|sin (氏€)+ b | - |c | sin , c ^ = (1 + 2) |/? | • |c | sin c 然不会恒成立.对于D,根据数量积求出cos如,可,再由平方关系求出sin〈打)的值,代入定义进行化简验证即可.【详解】解:对于力:= ,(脳)区>万=|州可•方sin〈25,5),故A[a®b) = (Aa)®b不会恒成立:对于 B ・ a®b = \a\ - b sing") , b 对于 C,若S 且/l>0,(a+h)®c=(l + 2)|^|-|c|sin^,c), (a + ®c) = /l^|-|c|sin^/?,c^4-|/?|-|c|sin= (1+ 2)|/?|-|c|sin^Z?,c^ , 显然+ =(«®c) + (/?®c)不会恒成立;=J (彳+斤)(兀+丈)一(“2 +>卩2『=J 彳衣+X ;)f -2為电”儿 = |x I y 2-x 2y 1|.则 a ®h = \x {y 2 -x 2y\ \ 恒成立. 故选:BD. 【点睛】本题考查向量的新立义,理解运算法则正确讣算是解题的关键,属于较难题.3. 已知△ ABC 是边长为2的等边三角形,D, F 分别是AC, AB 上的点,且疋=丽,AD = 2DC » BD 与CE 交于点0,则()A. OC + Ed = 0B. AB CE = OC. ^pA + OB + OC + OD^y/3 【答案】BD 【分析】7D.丽在就方向上的投影为:6可证明EO = CE,结合平而向量线性运算法则可判断A :由Ag 丄乙g 结合平而向量数疑 积的左义可判断B :建立直角坐标系,由平而向量线性运算及模的坐标表示可判断C :由 投影的计算公式可判断D. 【详解】因为△ABC 是边长为2的等边三角形,AE = E§,所以E 为AB 的中点,且CE 丄AB,以E 为原点如图建立直角坐标系,sin b®a=可•同sin 〈方间,故a®b=b®a 恒成立: 对于D,、2所以药在岚方向上的投影为虫卫=3二=?,故D 正确. \BC \ 2 6 故选:BD. 【点睛】关键点点睛:建立合理的平而直角坐标系是解题关键.4. 在△A3C 中,D 、E 分别是AC. 3C 上的点,AE 与BD 交于0,且所以△ CDO 里△EGO, EO = CO,则 0 0、 对于A, OC + EO = EC^d^故A 错误:对于B.由而丄CE 可得而・CE = O ,故B 正确:对于C, OA =所以 OA + OB + OC + OD = [-^-^-,所^X ^A +OB +OC +OD \1州2 =->故C 错误: 3对于D,BC = (-1,^), ED= -1,则 E(0,0)t 4(一1,0), B(l,0), C (0,V3),取血的中点G,连接GE,易得GE//AD 且^冷心",殛 茕=说・西=冯・丽,AB + AC = 2AE^ CD = 2DA^ \AB\ = \,贝ij () B ・ OA OE = 0【答案】BCD 【分析】根据而•说=就•乙5 =鬲•而以及正弦左理得到sinC cosB = sinB cosC,从而求 岀B = C,进一步得到B = C = A, A AB C 等边三角形,根据题目条件可以得到E 为BC 的中点和£>为AC 的三等分点,建立坐标系,进一步求岀各选项. 【详解】由 7B -BC = BC -CA = C 4-AB W |^|-|^C |COS B = |GA |-|BC |COS C,I AB I cos B=\CA \ cos C ,正弦定理,sin C -cosB = sin B• cos C , 0 = sin (B —C),B = C,同理:A = C,所以B = C = A, △ ABC 等边三角形.AB + AC = 2AE^ E 为3C 的中点,CD = 2DA^ D 为AC 的三等分点.0为4E 的中点,所以,丙+页=6正确,故B 正确:,AC BD= - x-- —x —= --^0.故 A 错误:2 3 2 3 6OA + OB + OC\ = ^OA + 2OE\ = ]pE\ = ^-^ 故 C 正确:而刼 7,投影—・=—,故D 正确.\BA\ 12故选:BCD.A. ACBD^O c.网+面+sq=¥ D.丽在丽方向上的正射影的数量为首X 厶6' 3 ),解得o 0, 一,.BD【点睛]如何求向量方在向量厶上的投影,用向量方的模乘以两个向量所成的角的余弦值就可以M Acrb了,当然还可以利用公式丁进行求解.b5. 已知向量2 = (@1), /; = (cos&.sin8)(g氏龙),则下列命题正确的是()A・h"丄八则tan0 = 5/2B. 若5在方上的投影为一?,则向量方与乙的夹角为斗Zr DC. 存在0,使得\a+b\=la\ + \b\D. 方・乙的最大值为【答案】BCD【分析】若a丄b,则tan 0 = —>/2 '故力错误:若厶在方上的投影为-丄,且由1 = 1,则cos&/〉=半,故3正确:2 3If b在方上的投影为 > 且1^1 = 1 I故当< a.b>=0‘ la +厶l = lal + l“l,故C正确:2a •b = >/2cos^ + sin^= >/3sin(^4-^), a・b 的最大值为故D【E确・【详解】若方丄■则a " = x^cos& + sin& = 0 ,则tan6 = -V?> 故人错误;若乙在方上的投影为一!,且区1 = 1,贝Mlcosd /;〉=斗COS&.6 弓,故B正确:若(方 + 苏=7+岁 +龙•方,(1&1 + 由1)2=1肝+1 肝+2I&I⑹,若\a + b\ = \a\ + \b\,则a •b =\a\\b\cos(o. b) = \a\\b \,即cos〈d.方〉=1,故 V",厶>=0,\a + h\ = \a\ + lh \,故 C 正确:a •b = y/2 cos0 + sin 3 = JJsin(O + 0),因为0<05 兀,0<卩<£,则当0 + p = £时,方祐的最大值为J5,故D正确,故选:BCD.【点睛】本题主要考査平而向量的数量积的讣算和应用,考査数量积的运算律,意在考查学生对这些知识的理解掌握水平.6. 下列关于平而向量的说法中正确的是()A. 已知A 、B 、C 是平而中三点,若丽,紀不能构成该平面的基底,则久3、C 共线B. 若 a b = b c 110 •则 a = cC. 若点G 为LABC 的重心,则GA + GB + GC = OD. 已知力=(1,一2), ^ = (2,2),若方,5的夹角为锐角,则实数入的取值范围为2<1 【答案】AC 【分析】根据平而向量基本定理判断A :由数量积的性质可判断3:由向量的中点表示和三角形的 重心性质可判断C ,由数量积及平而向量共线定理判断D. 【详解】解:因为脑.疋不能构成该平面的基底,所以而//;花,又淞,疋有公共点A ,所以 力、B 、C 共线,即A 正确;由平面向量的数量积可知,若亦=沁,则l«l^lcos<d^>=I^Uclcos<^c>,所以I ci I cos <ii,h>=ic\ cos < b,c > ,无法得到 fl = c > 即 B 不正确: 设线段AB 的中点为M,若点G 为A4BC 的重心,则GA + GB = 2GM^而GC = -2GM » 所以GA + GB + GC = O^ 即C 正确: 方=(1, —2), 5 = (2,2),若方,5的夹角为锐角,则a-b = 2-2A> 0解得兄<1,且方 与乙不能共线,即/IH7,所以2W (Y ),7)U(-4,1),故D 错误; 故选:AC. 【点睛】本题考查向量共线立理和向量数量积的性质和向量的加减运算,属于中档题.7. 已知A/为厶ABC 的重心,D 为BC 的中点,则下列等式成立的是() B . MA +MB +MC = 6 C. BM =-BA + -BD3 3 【答案】ABD 【分析】根据向疑的加减法运算法则依次讨论即可的答案. 【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,萝向丁法T 四边形法则易得而冷亦抨,故A 正确:对于B 选项,MB + MC = 2MD^由于M 为4D 三等分点靠近£>点的点, 莎 =一2宓所以MA + MB + MC = O^故正确;对于 C 选项,BM = BA + -Ab = BA + -(Bb-BA} = -BA + -Bb 9 故 C 错误:3 3、 丿 3 3A.D.对于D 选项,阪刀+ |乔刃+ |(葩占卜捋+ |血故D 正确 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.&关于平而向量有下列四个命题,其中正确的命题为() A ・ If a ・ b = crc^ 则 = c ;B. 已知 a = (k,3), b = (-2,6) > 若:〃■贝'JA : = —1:C. 非零向就a b 9满足I a 1=1 b 1=1 a —方I,则a 1J ci+ b 的夹角为30-;/ -* — \ab-*a—、bD.—+ —(\a\ \b\(|方1一两【答案】BCD 【分析】通过举反例知A 不成立,由平行向量的坐标对应成比例知B 正确,由向量加减法的意义 知,C 正确,通过化简计算得D 正确. 【详解】对A,当a=Q 时,可得到A 不成立:k 3对 B, N//6 时,有—=-,:.k=-\,故 B 正确.-2 6对C,当\a\^b\=\a-b\时,a. b 、a-b 这三个向量平移后构成一个等边三角形, ci + b 是这个等边三角形一条角平分线,故C 正确.I I —= (――)" — (~^-广=1 — 1=0,故 D 正确・ \b\ \a\\b\ 故选:BCD.【点睛】本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特 点•属于基础题・对D,・.・(幺+ 2).(2151 \b\ \a\9.已知AABC 是边长为2a(a>0)的等边三角形,P 为MBC 所在平而内一点,则PA^PB +.3 24 2A. —2(厂B. ------ ciC. ----- ci23【答案】BCD【分析】 通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果.【详解】PB = (-a-x,—y), PC = («-x,-y). 则 PB + PC = (-a - x,-y) + (a_x, -y) 即 PB + PC = (-2x-2y) 所以PA(PB + PC)= (_X ,屈- y) • (-2x-2y) 则 PA(TB + PC)= 2x 2+2y 2- 2羽ay10. MBC 是边长为3的等边三角形,已知向量方、5满足AB = 3a^ AC = 3a + b^则 下列结论中正确的有()所以 PA \PB +P ( 故选:BCD. 【点睛】4討即 PA(PB + PC)3 , -cr 2Va Y y-——a2本题主要通过建系的方法求解几何中向量的问题,属中档题.= 2X 2 + 2建立如图所示的平而直角坐标系.°)A ・°为单位向虽B ・bllBC C ・a 丄方【答案】ABD 【分析】求出:可判断A 选项的正误;利用向疑的减法法则求出厶,利用共线向咼的基本左理可判项的正误•综合可得出结论.【详解】 对于A 选项,...而=3乙,•••方=丄而,贝响=丄网| = 1, A 选项正确; 对于 B 选项,-AC = 3a+b = AB+b^ :.b = AC-AB = BC :.b//BC B 选项正 确:对于D 选项,(60 +可反=(殛+ 疋)•(走一而)=走'一殛‘=0,所以,(6方+可丄茕,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量 的判断,考查推理能力,属于中等题.D.(6方+可丄茕断B 选项的正误; 计算出ab >可判断C 选项的正误: 计算出(6方+可・荒 可判断D 选对于c 选项,XCOS —H0,所以方与乙不垂直,C 选项错误:。
高中数学向量专项练习(含答案)
高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。
2021年高考数学母题题源系列 专题10 平面向量的线性运算与坐标运算 理(含解析)
2021年高考数学母题题源系列专题10 平面向量的线性运算与坐标运算理(含解析)【母题来源】xx年高考北京卷理13【母题原题】在中,点,满足,.若,则;.【答案】考点定位:本题考查平面向量有关知识与坐标计算,利用向量相等解题.【命题意图】考查平面向量有关知识与线性计算,利用向量相等条件解题.【方法、技巧、规律】有关平面向量问题的基本解法有两种,一种是利用向量的加法、减法、数乘、数量积运算的几何意义或模运算,涉及平行四边形法则,三角形法则,还涉及求数量积,求向量夹角,求向量的模;另一种是建立平面直角坐标系,利用坐标运算,求两个向量的和、差、数乘、数量积,以及求夹角、求模等【探源、变式、扩展】从人教版必修四P92习题2.2第12题,在中,,,且与边交于点E,的中线与交于点N,设,用表示……可以看到这种试题的影子,高考题源于教材,是课本试题的变式,再看下面的高考模拟试题:变式一:(xx届北京市延庆县高三三月模拟考文科)在边长为2的正方形ABCD中,E,F分别为BC和DC的中点,则()A. B. C. D.【答案】C考点:平面向量数量积运算变式二、(xx届北京市昌平区高三二模文科)已知是等腰直角三角形, D 是斜边BC的中点,AB = 2 ,则等于()A.2 B. C.4 D.【答案】C考点:向量运算.2.试题选录【答案】C考点:平面向量的坐标运算【答案】A考点:空间向量的分解.【答案】考点:向量坐标表示【精品训练】1. (xx届浙江省温州市高三第二次适应性考试(二模)文科)已知为正六边形,若向量,则;(用坐标表示).【答案】考点:向量的运算2.(xx届浙江省高三第二次考试五校联考文科)已知菱形ABCD的对角线AC长为1,则=()A.4 B.2 C.1 D.【答案】D考点:平面向量的数量积.3.(xx届天津市河西区高三)在高三下学期总复习质量调查文科)边长为的正三角形中,设,,若,则的值为()(A)(B)(C)(D)【答案】C考点:向量的应用.4.(xx届浙江省温州市高三第二次适应性考试(二模)理科)在中,,,分别为的重心和外心,且,则的形状是()A.锐角三角形 B.钝角三角形C.直角三角形 D.上述三种情况都有可能【答案】B考点:向量的运算5.(xx届海南省高三五月模拟文科)高三如图,正六边形的边长为,则______【答案】考点:向量的数量积.6.(xx北京市昌平高三二模理科)如图,在菱形中,,,为的中点,则的值是.【答案】1考点:平面向量的数量积.7.(xx北京市丰台区高三五月已统一练习文)知梯形中,,是边上一点,且.当是中点时,x+y=;当在边上运动时,x+y的最大值是.【答案】【解析】考点:平面向量基本定理8.(xx届江西省鹰潭市高三一模文科)在中,,O为的内心,且则 = .【答案】考点:向量的坐标表示9.(xx届上海市闵行区高三质量调研考试(二模)理科)如图,已知点,且正方形内接于:,、分别为边、的中点.当正方形绕圆心旋转时,的取值范围为.【答案】考点:向量的数量积,圆的参数方程(换元法).10.(xx届江苏高考南通密卷二)如图,梯形中,,,,若,则.【答案】考点:向量数量积28878 70CE 烎25922 6542 敂38170 951A 锚20394 4FAA 侪27623 6BE7 毧{23689 5C89 岉33428 8294 芔26368 6700 最k 31110 7986 禆L]26730 686A 桪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
意一点与点
A
的距离以
BD
最小,根据平面几何知识知,必有
BD
AC
,即
ADB
2
,
进而可得 AB 、 BC 的值,结合余弦定理计算可得.
【解析】根据题意,在
ABC
中,点
D
满足
AD
2
AC
.
3
设 AD 2t ,则 AC 3t .
面 OAB 上一点,且 OP OA OB ( R ),当 OP 最小时,向量 OP 与 OB 的夹角
为
.
【答案】
3.(2020·苏大考前指导·11)已知向量 a , b ,满足 b 3 , a b a ,则 a b 的最小值
为________.
【答案】 2 2
4.已知平面向量α,β (α≠ 0,α≠β )满足|β |=1,且α与β- α的夹角为 120°,则|a| 的取值范围
设 M(x,y),则 x2+y2+(x-1)2+y2=4,
即 x2+y2-x=3.(*), 2
|a-b|=AB=2MC=2 (x-1)2+y2
=2 x2+y2-2x+1=2 3+x-2x+1= 10-4x. 2
由(*)知,1- 7≤x≤1+ 7,
2
2
∴ 8-2 7≤ 10-4x≤ 8+2 7,
即 7-1≤ 10-4x≤ 7+1.∴ 7-1≤|a-b|≤ 7+1.
8.已知向量 a,b,c 满足|a|=|b|=2,|c|=1,(a-c)·(b-c)=0,求|a-b|的取值范围. 【答案】[ 7-1, 7+1]. 【解析】如图,设 c=(1,0),设 A,B 是以 O 为圆心,2 为半径的圆上两点, 且 AC⊥BC,则|a-b|=AB=2MC.
∵MO2+MA2=OA2,而 MA=MC,∴MO2+MC2=4.
最大值是___________ .
【答案】 2
6.已知向量 , ,满足
, (a b)(a 2b) 0 ,则 的取值范围为 .
【答案】
1 2
,1
7.(1)已知 ABC ,若对任意 t R , BA t BC AC ,则 ABC 为_______三角形.
(在锐角、直角、钝角中选择一个填写)
2 AB BC
26
故 cos ABC 5
13
.
26
例 2 (2013·安徽·文
13)若非零向量 a, b
满足 a 3 b a 2b ,则 a, b 夹角的余弦值为_______.
【答案】 1
3
【分析】注意到条件
a
a
2b
,构造如图所示等腰直角三角形 OAB ,OC
为底边上的
专题 10 向量的形
[真题再现]
例1
(2020·常州上学期期末·14)在
ABC
中
A
,点
D
满足 AD
2
AC
,且
3
3
对任意 x R , x AC AB AD AB 恒成立,则 cos ABC ______.
【答案】 5 13 26
【 分 析 】 设 x AC AB=AP , 则 点 P 在 过 点 B 且 平 行 于 AC 的 直 线 上 , 而
∵ AD AB BD
∴对任意 x R ,
x AC AB
AD AB
恒成立,必有 BD
AC ,即 ADB
.
2
∵ A 3
∴ AB 2 AD 4t , BD 3AD 2 3t
∴ BC BD2 DC2 13t .
∴ cos ABC AB2 BC2 AC2 5 13
即|a-b|的取值范围为[ 7-1, 7+1].
应的点在圆 x2 y2 2 上即可.
c
a
b
[强化训练]
1.已知在△ABC 中,AB=5,AC=10, AB AC 25 ,点 P 为△ABC 内(包含边界)一点,
且 AP
3
AB
2
AC
(R
),则
AP
的最小值为
.
55
【答案】
2.(2020·镇江三模·12)已知在△OAB 中,OA= 2 ,OB=2,∠AOB=135°,P 为平
是
.
【答案】 0,2 3
3
【解析】设 x , y ,由余弦定理可知: x2 y 2 1 1 ,要求 x 的取
2xy
2
值范围,则将方程视为以 y 为主元的一元二次方程,由判别式可得 0,2 3
3 .
5.已知 a ,b 是平面内两个互相垂直的单位向量,若向量 c 满足 (a c) (b c) 0 ,则 c 的
中线.设 OA a , AC b ,则 OB a 2b .在 Rt△OAC , cos OAD
b
1
.
a3
所以
a,
b
夹角的余弦值为
1
.
3
(2008·浙江·理 9 改编)已知 a , b 是平面内两个互相垂直的单位向量,若向量
c 满足 (a c) (b c) 0 ,则 c 的最大值是
(2)已知 ABC ,若对任意 t R , BA t BC BA ,则 ABC 为______三角形
(在锐角、直角、钝角中选择一个填写)
(3)已知 ABC ,若对任意 t R , BA t BC BA 2BC ,则 ABC 为______三角
形(在锐角、直角、钝角中选择一个填写)
【答案】(1)直角(2)直角(3)钝角
.
【答案】 2
【解法一】
|
a
||
b
|
1,
a
b
0, 展开 (a c) (b c) 0 得
| c |2 c (a b) | c | | a b | cos
| c || a b | cos 2 cos, 则 c 的最大值是 2 .
【解法二】注意到题目中两个垂直, a b 及 (a c) (b c) ,利用数形结合, 如图, c 对