高考数学一轮复习第2章函数导数及其应用第6节对数函数教师用书1

合集下载

高考数学一轮复习第2章函数导数及其应用重点强化课1函数的图像与性质教师用书文北师大版

高考数学一轮复习第2章函数导数及其应用重点强化课1函数的图像与性质教师用书文北师大版

高考数学一轮复习第2章函数导数及其应用重点强化课1函数的图像与性质教师用书文北师大版[复习导读] 函数是中学数学的核心概念,函数的图像与性质既是中学数学教学的重点,又是高考考查的重点与热点,题型以选择题、填空题为主,既重视三基,又注重思想方法的考查,备考时,要透彻理解函数,尤其是分段函数的概念,切实掌握函数的性质,并加强函数与方程思想、数形结合思想、分类讨论思想的应用意识.重点1 函数图像的应用已知f (x)为偶函数,当x≥0时,f (x)=则不等式f (x-1)≤的解集为( )A.∪⎣⎢⎡⎦⎥⎤43,74 B.∪⎣⎢⎡⎦⎥⎤14,23 C.∪⎣⎢⎡⎦⎥⎤43,74 D.∪⎣⎢⎡⎦⎥⎤13,34 A [画出函数F (X)的图像,如图,当0≤x≤时,令f (x)=cos πx≤,解得≤x≤;当x >时,令f (x)=2x -1≤,解得<x≤,故有≤x≤.因为f (x)是偶函数,所以f (x)≤的解集为∪,故f (x -1)≤的解集为∪.][迁移探究1] 在本例条件下,若关于x 的方程f (x)=k 有2个不同的实数解,求实数k的取值范围.[解] 由函数f (x)的图像(图略)可知,当k=0或k>1时,方程f (x)=k有2个不同的实数解,即实数k的取值范围是k=0或k>1. 12分[迁移探究2] 在本例条件下,若函数y=f (x)-k|x|恰有两个零点,求实数k的取值范围.[解] 函数y=f (x)-k|x|恰有两个零点,即函数y=f (x)的图像与y=k|x|的图像恰有两个交点,借助函数图像(图略)可知k≥2或k=0,即实数k的取值范围为k=0或k≥2. 12分[规律方法] 1.利用函数的图像研究函数的性质,一定要注意其对应关系,如:图像的左右范围对应定义域,上下范围对应值域,上升、下降趋势对应单调性,对称性对应奇偶性.2.有关方程解的个数问题常常转化为两个熟悉的函数图像的交点个数;利用此法也可由解的个数求参数值或范围.3.有关不等式的问题常常转化为两个函数图像的上、下关系来解.[对点训练1] 已知函数y=f (x)的图像是圆x2+y2=2上的两段弧,如图1所示,则不等式f (x)>f (-x)-2x的解集是________.图1(-1,0)∪(1,] [由图像可知,函数f (x)为奇函数,故原不等式可等价转化为f (x)>-x,在同一直角坐标系中分别画出y=f (x)与y=-x的图像,由图像可知不等式的解集为(-1,0)∪(1,].]重点2 函数性质的综合应用☞角度1 单调性与奇偶性结合(1)(2017·南昌二模)已知函数f (x)是定义在R上的偶函数,且当x∈[0,+∞)时,函数f (x)是递减函数,则f。

高考数学一轮复习 第2章 函数、导数及其应用 第6节 对数与对数函数课件 理_00001

高考数学一轮复习 第2章 函数、导数及其应用 第6节 对数与对数函数课件 理_00001

12/11/2021
第二页,共四十五页。
01
课前·知识 全通 (zhī shi)

栏 目
02 课堂(kètáng)·题型全突破
(lán mù)
导 航
03 真题·自主验效果
12/11/2021
第三页,共四十五页。
课前知识 全通关
12/11/2021
第四页,共四十五页。
1.对数的概念 如Байду номын сангаас ax=N(a>0 且 a≠1),那么 x 叫作以 a 为底 N 的对数,记作 x =_l_o_g_aN__,其中 a 叫做对数的底数,N 叫做真数. 2.对数的性质、换底公式与运算性质 (1)对数的性质:①alogaN= N ;②logaab=b(a>0,且 a≠1). (2)换底公式:logab=llooggccab(a,c 均大于 0 且不等于 1,b>0).
2 5lg 3·6lg
32=54.
12/11/2021
第二十页,共四十五页。
[规律方法] 在解决对数的化简与求值问题时,1要理解并灵活运 用对数的定义、对数的运算性质、对数恒等式和对数的换底公式.2 注意化简过程中的等价性和对数式与指数式的互化.3化异底为同 底.
12/11/2021
第二十一页,共四十五页。
12/11/2021
第三十一页,共四十五页。
(1)设函数 f(x)=ln(1+x)-ln(1-x),则 f(x)是( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数
12/11/2021
第三十二页,共四十五页。
(2)设函数 f(x)=lloogg122x-,xx,>x0<,0. 若 f(a) >f(-a),则实数 a 的取值范围是( ) A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)

2020版高考数学一轮复习第2章函数导数及其应用第6节对数与对数函数教学案含解析理

2020版高考数学一轮复习第2章函数导数及其应用第6节对数与对数函数教学案含解析理

第六节对数与对数函数[考纲传真] 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数1.对数概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N叫做对数式性质对数式与指数式的互化:a x=N⇔log a N=xlog a1=0,log a a=1,alog a N=N运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式换底公式:log a b=log c blog c a(a>0,且a≠1;c>0,且c≠1;b>0) 定义函数y=log a x(a>0,且a≠1)叫做对数函数图象a>10<a<1图象特征在y轴右侧,过定点(1,0)当x逐渐增大时,图象是上升的当x逐渐增大时,图象是下降的性质定义域(0,+∞)值域R性质单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值变化规律当x=1时,y=0当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.[常用结论]1.换底公式的两个重要结论(1)log a b=1log b a;(2)log am b n=nmlog a b.其中a>0且a≠1,b>0且b≠1,m,n∈R.2.对数函数的图象与底数大小的关系如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c<d <1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)log2x2=2log2x. ( )(2)当x>1时,log a x>0. ( )(3)函数y=lg(x+3)+lg(x-3)与y=lg[(x+3)(x-3)]的定义域相同.( )(4)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),⎝⎛⎭⎪⎫1a,-1,函数图象不在第二、三象限.( )[答案](1)×(2)×(3)×(4)√2.已知a=2-13,b=log213,c=log1213,则( )A.a>b>c B.a>c>bC.c>b>a D.c>a>bD[∵0<a=2-13<20=1,b=log213<log21=0,c=log1213>log1212=1,∴c>a>b.] 3.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1D[由图象可知y=log a(x+c)的图象是由y=log a x的图象向左平移c个单位得到的,其中0<c<1.再根据单调性可知0<a<1.]4.(教材改编)若log a34<1(a>0,且a≠1),则实数a的取值范围是( )A.⎝⎛⎭⎪⎫0,34B.(1,+∞)C.⎝⎛⎭⎪⎫0,34∪(1,+∞) D.⎝⎛⎭⎪⎫34,1C[当0<a<1时,log a34<log a a=1,∴0<a<34;当a>1时,log a34<log a a=1,∴a>1.即实数a的取值范围是⎝⎛⎭⎪⎫0,34∪(1,+∞).]5.计算:2log510+log514=________,2log43=________.2 3[2log510+log514=log5⎝⎛⎭⎪⎫102×14=2,因为log43=12log23=log23,所以2log43=2log23= 3.]对数式的化简与求值1.(lg 2)2+lg 2·lg 50+lg 25=________.2[原式=lg 2(lg 2+lg 50)+lg 25=2lg 2+2lg 5=2.]2.2log23+log43=________.33[原式=2log23·2log43=3·2log23=3 3.]3.log23·log38+(3)log34=________.5[原式=3log23·log32+3log32=3+2=5.]4.设2a=5b=m,且1a+1b=2,则m=________.10[∵ 2a=5b=m,∴a=log2m,b=log5m,∴1a+1b=1log2m+1log5m=log m2+log m5=log m10=2,∴m=10.][规律方法]对数运算的一般思路1将真数化为底数的指数幂的形式进行化简;2将同底对数的和、差、倍合并;3利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;4利用常用对数中的lg 2+lg 5=1.对数函数的图象及应用【例1】(1)(2019·大连模拟)函数y=lg|x-1|的图象是( )A B C D(2)(2019·厦门模拟)当0<x≤12时,4x<log a x,则a的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C .(1,2) D .(2,2)(3)函数y =log a (x -2)+2恒过定点P ,则点P 的坐标为________.(1)A (2)B (3)(3,2) [(1)函数y =lg|x -1|的图象可由函数y =lg|x |的图象向右平移1个单位得到,故选A.(2)构造函数f (x )=4x 和g (x )=log a x ,要使0<x ≤12时,4x<log a x ,只需f (x )在⎝ ⎛⎦⎥⎤0,12上的图象在g (x )的图象下方即可.当a >1时不满足条件;当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知只需f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.(3)由x -2=1得x =3,当x =3时,y =2,则点P 的坐标为(3,2).] [规律方法] 对数函数图象的识别及应用1在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点与坐标轴的交点、最高点、最低点等排除不符合要求的选项.2一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.aA BC D(2)函数y =log 2(x +1)的图象恒过定点P ,则点P 的坐标为________.(3)若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围为________. (1)A (2)(0,0) (3)(1,2] [(1)由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.(2)由x +1=1得x =0,当x =0时,y =0,则点P 的坐标为(0,0).(3)设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图所示,要使x ∈(1,2)时,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的图象下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log a 2≥1,所以1<a ≤2,即实数a 的取值范围是(1,2].]对数函数的性质及应用►考法1 【例2】 (1)已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a(2)设a =log 3π,b =log 23,c =log 32,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >b C .b >a >cD .b >c >a(1)B (2)A [(1)a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 在(0,+∞)上是增函数,且27>33>26,所以b >a >c ,故选B.(2)b =log 23=12log 23>12,c =log 32=12log 32<12,则b >c ,又a =log 3π>log 33=1,b =log 23<log 22=1,因此a >b >c ,故选A.►考法2 解对数不等式【例3】 (1)(2018·江苏高考)函数f (x )=log 2x -1的定义域为________. (2)设函数f (x )=若f (a )>f (-a ),则实数a 的取值范围是________.(1)[2,+∞) (2)(-1,0)∪(1,+∞) [(1)由题意知,log 2x -1≥0,即log 2x ≥log 22. 解得x ≥2,即函数f (x )的定义域为[2,+∞).(2)由题意,得⎩⎪⎨⎪⎧a>0,log2a>-log2a或即⎩⎪⎨⎪⎧a>0,log2a>0或⎩⎪⎨⎪⎧a<0,log2-a<0,解得a>1或-1<a<0.]►考法3 复合函数的单调性、值域或最值【例4】函数f(x)=log12(-x2+4x+5)的单调递增区间为________,值域为________.(2,5) [2log123,+∞)[由-x2+4x+5>0,解得-1<x<5.二次函数y=-x2+4x+5的对称轴为x=2.由复合函数单调性可得函数f(x)=log12(-x2+4x+5)的单调递增区间为(2,5).又-x2+4x+5=-(x-2)2+9≤9,所以f(x)≥log129=2log123,即函数f(x)的值域为[2log123,+∞).] [规律方法] 1.比较对数值的大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.(3)若底数与真数都不同,则常借助1,0等中间量进行比较.2.解对数不等式的类型及方法(1)形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.(2)形如log a x>b的不等式,需先将b化为以a为底的对数式的形式再进行求解.3.解决与对数函数有关的函数的单调性问题的步骤(1)(2018·天津高考)已知a=log372,b=⎝⎛⎭⎪⎫143,c=log1315,则a,b,c的大小关系为( )A.a>b>c B.b>a>cC .c >b >aD .c >a >b(2)设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log2x ,x >1,则满足f (x )≤2的x 的取值范围是( ) A .[-1,2] B .[0,2] C .[1,+∞)D .[0,+∞)(3)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为( ) A .[1,2) B .[1,2] C .[1,+∞)D .[2,+∞)(1)D (2)D (3)A [(1)c =log 1315=log 35,则log 35>log 372>log 33=1,又⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140=1,因此c >a >b ,故选D.(2)当x ≤1时,21-x≤2,解得x ≥0,所以0≤x ≤1;当x >1时,1-log 2x ≤2,解得x ≥12,所以x >1.综上可知x ≥0.(3)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g 1>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).]1.(2016·全国卷Ⅰ)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c<b cD .c a>c bB [∵0<c <1,∴当a >b >1时,log a c >log b c ,A 项错误; ∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0, ∴lo g c a <log c b ,B 项正确;∵0<c <1,∴函数y =x c在(0,+∞)上单调递增, 又∵a >b >0,∴a c >b c,C 项错误;∵0<c <1,∴y =c x在(0,+∞)上单调递减, 又∵a >b >0,∴c a <c b,D 项错误.]2.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. -7 [由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7] 自我感悟:______________________________________________________________________________________________________________________ ________________________________________________________________。

2020版高考数学一轮复习第2章函数导数及其应用第6节对数与对数函数教学案含解析理

2020版高考数学一轮复习第2章函数导数及其应用第6节对数与对数函数教学案含解析理

第六节 对数与对数函数[考纲传真] 1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.1.对数指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称.[常用结论]1.换底公式的两个重要结论 (1)log a b =1log b a; (2)log am b n=n mlog a b.其中a >0且a ≠1,b >0且b ≠1,m ,n ∈R . 2.对数函数的图象与底数大小的关系如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c <d <1<a <b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)log 2x 2=2log 2x . ( ) (2)当x >1时,log a x >0.( )(3)函数y =lg(x +3)+lg(x -3)与y =lg[(x +3)(x -3)]的定义域相同.( )(4)对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a,-1,函数图象不在第二、三象限.( )[答案] (1)× (2)× (3)× (4)√2.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >bD [∵0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b.]3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由图象可知y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.]4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C.⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D.⎝ ⎛⎭⎪⎫34,1 C [当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).] 5.计算:2log 510+log 514=________,2log 43=________.2 3 [2log 510+log 514=log 5⎝⎛⎭⎪⎫102×14=2,因为log 43=12log 23=log 23,所以2log 43=2log 23=3.]1.(lg 2)22 [原式=lg 2(lg 2+lg 50)+lg 25=2lg 2+2lg 5=2.]2.2log 23+log 43=________. 33 [原式=2log 23·2log 43=3·2log 23=3 3.]3.log 23·log 38+(3)log 34=________. 5 [原式=3log 23·log 32+3log 32=3+2=5.]4.设2a =5b=m ,且1a +1b=2,则m =________.10 [∵ 2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.]将真数化为底数的指数幂的形式进行化简;将同底对数的和、差、倍合并;利用换底公式将不同底的对数式转化成同底的对数式,用及变形应用;利用常用对数中的【例1】 (1)(2019·大连模拟)函数y =lg|x -1|的图象是( )AB CD(2)(2019·厦门模拟)当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C .(1,2) D .(2,2)(3)函数y =log a (x -2)+2恒过定点P ,则点P 的坐标为________.(1)A (2)B (3)(3,2) [(1)函数y =lg|x -1|的图象可由函数y =lg|x |的图象向右平移1个单位得到,故选A.(2)构造函数f (x )=4x 和g (x )=log a x ,要使0<x ≤12时,4x<log a x ,只需f (x )在⎝ ⎛⎦⎥⎤0,12上的图象在g (x )的图象下方即可.当a >1时不满足条件;当0<a <1时,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的图象,可知只需f ⎝ ⎛⎭⎪⎫12<g ⎝ ⎛⎭⎪⎫12,即2<log a 12,则a >22,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.(3)由x -2=1得x =3,当x =3时,y =2,则点P 的坐标为(3,2).] 在识别函数图象时,与坐标轴的交点、最高点、最低点等排除不符合要求的选项一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解 (1)(x )=aA BC D(2)函数y =log 2(x +1)的图象恒过定点P ,则点P 的坐标为________.(3)若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围为________. (1)A (2)(0,0) (3)(1,2] [(1)由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称.设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.(2)由x +1=1得x =0,当x =0时,y =0,则点P 的坐标为(0,0).(3)设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 图象的下方即可.当0<a <1时,显然不成立;当a >1时,如图所示,要使x ∈(1,2)时,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的图象下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log a 2≥1,所以1<a ≤2,即实数a 的取值范围是(1,2].]►考法1 【例2】 (1)已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a(2)设a =log 3π,b =log 23,c =log 32,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >b C .b >a >cD .b >c >a(1)B (2)A [(1)a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 在(0,+∞)上是增函数,且27>33>26,所以b >a >c ,故选B.(2)b =log 23=12log 23>12,c =log 32=12log 32<12,则b >c ,又a =log 3π>log 33=1,b =log 23<log 22=1,因此a >b >c ,故选A.►考法2 解对数不等式【例3】 (1)(2018·江苏高考)函数f (x )=log 2x -1的定义域为________.(2)设函数f (x )=若f (a )>f (-a ),则实数a 的取值范围是________.(1)[2,+∞) (2)(-1,0)∪(1,+∞) [(1)由题意知,log 2x -1≥0,即log 2x ≥log 22. 解得x ≥2,即函数f (x )的定义域为[2,+∞).(2)由题意,得⎩⎪⎨⎪⎧a >0,log 2a >-log 2a 或即⎩⎪⎨⎪⎧a >0,log 2a >0或⎩⎪⎨⎪⎧a <0,log 2-a <0,解得a >1或-1<a <0.]►考法3 复合函数的单调性、值域或最值【例4】 函数f (x )=log 12 (-x 2+4x +5)的单调递增区间为________,值域为________.(2,5) [2log 123,+∞) [由-x 2+4x +5>0,解得-1<x <5.二次函数y =-x 2+4x +5的对称轴为x =2.由复合函数单调性可得函数f (x )=log 12(-x 2+4x +5)的单调递增区间为(2,5).又-x 2+4x +5=-(x -2)2+9≤9,所以f (x )≥log 129=2log 123,即函数f (x )的值域为[2log 123,+∞).](1)(2018·天津高考)已知a =log 372,b =⎝ ⎛⎭⎪⎫1413,c =log 1315,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b(2)设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( ) A .[-1,2] B .[0,2] C .[1,+∞)D .[0,+∞)(3)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为( ) A .[1,2) B .[1,2] C .[1,+∞)D .[2,+∞)(1)D (2)D (3)A [(1)c =log 1315=log 35,则log 35>log 372>log 33=1,又⎝ ⎛⎭⎪⎫1413<⎝ ⎛⎭⎪⎫140=1,因此c >a >b ,故选D.(2)当x ≤1时,21-x≤2,解得x ≥0,所以0≤x ≤1;当x >1时,1-log 2x ≤2,解得x ≥12,所以x >1.综上可知x ≥0.(3)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).]1.(2016·全国卷Ⅰ)若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c<b cD .c a>c bB [∵0<c <1,∴当a >b >1时,log a c >log b c ,A 项错误; ∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0, ∴log c a <log c b ,B 项正确;∵0<c <1,∴函数y =x c在(0,+∞)上单调递增, 又∵a >b >0,∴a c >b c,C 项错误;∵0<c <1,∴y =c x在(0,+∞)上单调递减, 又∵a >b >0,∴c a <c b,D 项错误.]2.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ).若f (3)=1,则a =________. -7 [由f (3)=1得log 2(32+a )=1,所以9+a =2,解得a =-7.] 自我感悟:______________________________________________________________________________________________________________________ ________________________________________________________________。

高考数学一轮复习 第2章 函数、导数及其应用 第6节 对数与对数函数课件 文

高考数学一轮复习 第2章 函数、导数及其应用 第6节 对数与对数函数课件 文
(2)由 x+1=1 得 x=0,当 x=0 时,y=0,则点 P 的坐标为(0,0).
12/11/2021
第二十九页,共四十七页。
栏目导航
(3)设 f 1(x)=(x-1)2,f 2(x)=logax,要使当 x∈(1,2)时,不等式 (x-1)2<logax 恒成立,只需 f 1(x)=(x-1)2 在(1,2)上的图像在 f 2(x) =logax 图像的下方即可.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的
打“×”)
(1)log2x2=2log2x.
()
(2)当 x>1 时,logax>0.
()
(3)函数 y=lg(x+3)+lg(x-3)与 y=lg[(x+3)(x-3)]的定义域相
同.
()
(4)对数函数 y=logax(a>0,且 a≠1)的图像过定点(1,0),且过点
12/11/2021
第二十二页,共四十七页。
栏目导航
对数函数的图像(tú xiànɡ)及应用
【例 1】 (1)(2019·大连模拟)函数 y=lg|x-1|的图像是( )
12/11/2021
A
B
C
D
第二十三页,共四十七页。
栏目导航
(2)(2019·厦门模拟)当 0<x≤12时,4x<logax,则 a 的取值范围是
C.0,34∪(1,+∞)
D.34,1
12/11/2021
即实数 a 的取值范围是 0,34∪(1,+∞).]
第十五页,共四十七页。
解析答案 栏目导航
5.计算:2log510+log514=________,2log43=________.
2
3 [2log510+log514=log5102×14=2,因为 log43=12log23=

高考数学一轮复习 第2章 函数、导数及其应用 第6讲 对数与对数函数创课件 高三全册数学课件

高考数学一轮复习 第2章 函数、导数及其应用 第6讲 对数与对数函数创课件 高三全册数学课件

于是函数y=a1x的图象过定点(0,1),在R上单调递增,函数y=logax+12的图 象过定点 12,0 ,在 -12,+∞ 上单调递减.因此,D中的两个图象符 合.当a>1时,函数y=ax的图象过定点(0,1),在R上单调递增,于是函数y

1 ax
的图象过定点(0,1),在R上单调递减,函数y=loga
解析 lg (lg 10)=lg 1=0,故①正确;lg (ln e)=lg 1=0,故②正确; ③④正确;logmn·log3m=lloogg33mn ·log3m=log3n=2,故n=9,故⑤正确.
12/7/2021
第十二页,共六十四页。
解析
(4)若函数y=f(x)是函数y=2x的反函数,则f(2)=____1____. 解析 由已知得f(x)=log2x,所以f(2)=log22=1.
(5)对数函数y=logax(a>0且a≠1)的图象过定点(1,0),且过点(a,1),
1a,-1.( 答案
12/7/2021
) (1)×
(2)√
(3)×
(4)×
(5)√
第九页,共六十四页。
答案
2.小题热身 (1)已知函数y=loga(x+c)(a,c为常数,其中a>0, a≠1)的图象如图,则下列结论成立的是( ) A.a>1,c>1 B.a>1,0<c<1 C.0<a<1,c>1 D.0<a<1,0<c<1
解析
2 3.设35x=49,若用含x的式子表示log535,则log535=__2_-__x___.
35
解析
因为35x=49,所以x=log3549=
log549 log535

2log57 log535

2021届浙江新高考数学一轮复习教师用书:第二章-6-第6讲-对数与对数函数

第6讲对数与对数函数1.对数概念如果a x=N(a>0,a≠1),那么数x叫做以a为底N的对数,记作x=log a N.其中a叫做对数的底数,N叫做真数性质底数的限制:a>0,且a≠1对数式与指数式的互化:a x=N⇒log a N=x负数和零没有对数1的对数是零:log a1=0[底数的对数是1:log a a=1对数恒等式:a log a N=N运算性质log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式公式:log a b=log c blog c a…(a>0,且a≠1;c>0,且c≠1;b>0)推广:log am b n=nm log a b;log a b=1log b aa>10<a<1图象@性质定义域:(0,+∞)值域:R过定点(1,0)当x>1时,y>0当0<x<1时,y<0当x>1时,y<0当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数[3.对数函数的变化特征在同一平面直角坐标系中,分别作出对数函数y =log a x ,y =log b x ,y =log c x ,y =log d x (a>1,b >1,0<c <1,0<d <1)的图象,如图所示.作出直线y =1,分别与四个图象自左向右交于点A (c ,1),B (d ,1),C (a ,1),D (b ,1),得到底数的大小关系是:b >a >1>d >c >0.根据直线x =1右侧的图象,单调性相同时也可以利用口诀:“底大图低”来记忆.4.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.[疑误辨析])判断正误(正确的打“√”,错误的打“×”) (1)log a (MN )=log a M +log a N .( ) (2)log a x ·log a y =log a (x +y ).( )(3)函数y =log 2x 及y =log 错误!3x 都是对数函数.( ) (4)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (5)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝⎛⎭⎫1a ,-1,函数图象只经过第一、四象限.( )答案:(1)× (2)× (3)× (4)× (5)× (6)√~[教材衍化]1.(必修1P68练习T4改编)(log 29)·(log 34)=________. 解析:(log 29)·(log 34)=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=4. 答案:42.(必修1P73探究改编)若函数y =f (x )是函数y =2x 的反函数,则f (2)=________. 解析:由题意知f (x )=log 2x ,所以f (2)=log 22=1. 答案:1\3.(必修1P71表格改编)函数y =log a (4-x )+1(a >0,且a ≠1)的图象恒过点________. 解析:当4-x =1即x =3时,y =log a 1+1=1. 所以函数的图象恒过点(3,1). 答案:(3,1)4.(必修1P82A 组T6改编)已知a =2-13,b =log 213,c =log 错误!错误!,则a ,b ,c 的大小关系为________.解析:因为0<a <1,b <0,c =log 错误!错误!=log 23>1.所以c >a >b . 答案:c >a >b [易错纠偏],(1)对数函数图象的特征不熟致误; (2)忽视对底数的讨论致误; (3)忽视对数函数的定义域致误.1.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是________.(填序号)解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有②. 答案:②2.函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.】解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12.所以a =2或12.答案:2或123.函数y =错误!的定义域是________. 解析:由log 错误!(2x -1)≥0,得0<2x -1≤1. 所以12<x ≤1.所以函数y =错误!的定义域是错误!. 答案:⎝⎛⎦⎤12,1~对数式的化简与求值(1)(2020·杭州市七校联考)计算:log 212=______,2log 23+log 43=________. (2)若a =log 43,则2a +2-a =________. 【解析】 (1)log 212=log 22-12=-12; 2log 23+log 43=2log 23+12log 23=2log 2(3·3错误!)=3错误!. (2)因为a =log 43=log 223=12log 23=log 23, 所以2a +2-a =2log 23+2-log 23:=3+2log 233 =3+33 =433.【答案】 (1)-12 33 (2)433对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数的运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算. }1.计算:2log 510+log 514=________,2log 43=________.解析:2log 510+log 514=log 5⎝⎛⎭⎫102×14=2,因为log 43=12log 23=log 23,所以2log 43=2log 23= 3.答案:232.2(lg 2)2+lg2·lg 5+(lg 2)2-lg 2+1=________.解析:原式=2(lg 2)2+lg 2·lg 5+(1-lg 2)=2(lg 2)2+2lg 2·lg5+1-lg2=2lg2(lg2+lg 5)+1-lg2¥=lg2+1-lg2=1.答案:1对数函数的图象及应用(1)函数y =2log 4(1-x )的图象大致是( )(2)函数y =log a (x +4)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线x m +yn =-1上,且m >0,n >0,则3m +n 的最小值为( )A .13B .16 )C .11+6 2D .28【解析】 (1)函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.(2)函数y =log a (x +4)-1(a >0,a ≠1)的图象恒过A (-3,-1), 由点A 在直线x m +y n =-1上可得,-3m +-1n =-1,即3m +1n =1,故3m +n =(3m +n )×⎝⎛⎭⎫3m +1n =10+3⎝⎛⎭⎫n m +m n , 因为m >0,n >0,所以n m +mn ≥2n m ×m n =2(当且仅当n m =m n ,即m =n 时取等号),故3m +n =10+3⎝⎛⎭⎫n m +m n ≥10+3×2=16,故选B.【答案】 (1)C (2)B/利用对数函数的图象可求解的两类热点问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1"C .0<a <1,c >1D .0<a <1,0<c <1解析:选D.由对数函数的性质得0<a <1,因为函数y =log a (x +c )的图象在c >0时是由函数y =log a x 的图象向左平移c 个单位得到的,所以根据题中图象可知0<c <1.2.已知函数f (x )=log a (x +b )(a >0且a ≠1)的图象过两点(-1,0)和(0,1),则log b a =________.解析:f (x )的图象过两点(-1,0)和(0,1). 则f (-1)=log a (-1+b )=0且f (0)=log a (0+b )=1,所以⎩⎪⎨⎪⎧b -1=1,b =a ,即⎩⎪⎨⎪⎧b =2,a =2.所以log b a =1. 答案:1<对数函数的性质及应用(高频考点)对数函数的性质是每年高考的必考内容之一,多以选择题或填空题的形式考查,难度低、中、高档都有.主要命题角度有:(1)求对数型函数的定义域; (2)比较对数值的大小; (3)解对数不等式;(4)与对数函数有关的复合函数问题. 角度一 求对数型函数的定义域·函数f (x )=错误!的定义域为( )【解析】 要使函数有意义,应满足错误! 所以0<4x -5≤1,54<x ≤32.故函数f (x )的定义域为⎝⎛⎦⎤54,32. 【答案】 C角度二 比较对数值的大小~(1)已知奇函数f (x )在R 上是增函数.若a =-f (log 215),b =f ,c =f ,则a ,b ,c 的大小关系为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <b(2)设a =log 3π,b =log 23,c =log 32,则( ) A .a >b >c B .a >c >b C .b >a >cD .b >c >a【解析】 (1)由f (x )是奇函数可得,a =-f ⎝⎛⎭⎫log 215=f (log 25),因为log 25>>log 24=2>,且函数f (x )是增函数,所以c <b <a .(2)因为a =log 3π>log 33=1,b =log 23<log 22=1,所以a >b ,又b c =12log 2312log 32=(log 23)2>1,c >0,所以b >c ,故a >b >c . ;【答案】 (1)C (2)A角度三 解对数不等式设函数f (x )=错误!若f (a )>f (-a ),则实数a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【解析】 由题意,得⎩⎪⎨⎪⎧a >0,log 2a >-log 2a或错误!解得a >1或-1<a <0.故选C.】【答案】 C角度四 与对数函数有关的复合函数问题(1)(2020·金丽衢十二校联考)函数y =lg|x |( ) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递增 D .是奇函数,在区间(0,+∞)上单调递减(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.—【解析】 (1)因为lg|-x |=lg|x |,所以函数y =lg|x |为偶函数,又函数y =lg|x |在区间(0,+∞)上单调递增,由其图象关于y 轴对称可得,y =lg|x |在区间(-∞,0)上单调递减,故选B.(2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2).【答案】 (1)B (2)[1,2)(1)比较对数值的大小的方法①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.②若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较. ③若底数与真数都不同,则常借助1,0等中间量进行比较.~(2)解对数不等式的类型及方法①形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式再进行求解. (3)解决与对数函数有关的函数的单调性问题的步骤1.(2020·宁波模拟)已知a >0,a ≠1,函数f (x )=log a |ax 2-x |在[3,4]上是增函数,则a 的取值范围是( )≤a <14或a >1>B .a >1 ≤a <14 ≤a ≤14或a >1解析:选A.令t =|ax 2-x |,y =log a t ,当a >1时,外函数为递增函数,所以内函数t =|ax 2-x |,x ∈[3,4],要为递增函数,所以1a <3或4≤12a ,解得a >13或a ≤18,所以a >1,当0<a <1时,外函数为递减函数,所以内函数t =|ax 2-x |,x ∈[3,4],要为递减函数,12a ≤3<4<1a ,解得16≤a <14,综上所述,16≤a <14或a >1,故选A.2.(2020·绍兴一中高三期中)已知f (x )=lg(2x -4),则方程f (x )=1的解是________,不等式f (x )<0的解集是________.解析:因为f (x )=1,所以lg(2x -4)=1,所以2x -4=10,所以x =7;因为f (x )<0,所以0<2x -4<1,所以2<x <,所以不等式f (x )<0的解集是(2,.答案:7 (2,|思想方法系列1 分类讨论思想研究指数、对数函数的性质已知函数f (x )=log a (2x -a )(a >0且a ≠1)在区间[12,23]上恒有f (x )>0,则实数a 的取值范围是( )A .(13,1) B .[13,1) C .(23,1)D .[23,1)【解析】 当0<a <1时,函数f (x )在区间[12,23]上是减函数,所以log a (43-a )>0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间[12,23]上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值范围是(13,1).【答案】 A本题利用了分类讨论思想,在研究指数、对数函数的性质时,常对底数a 的值进行分类讨论,实质上分类讨论就是“化整为零,各个击破,再集零为整”的数学思想. "已知函数y =b +ax 2+2x (a ,b 是常数且a >0,a ≠1)在区间[-32,0]上有y max =3,y min =52,试求a ,b 的值.解:令t =x 2+2x =(x +1)2-1, 因为x ∈[-32,0],所以t ∈[-1,0].(1)若a >1,函数f (x )=a t 在[-1,0]上为增函数,所以a t ∈[1a ,1],则b +ax 2+2x ∈[b +1a ,b +1], 依题意得⎩⎪⎨⎪⎧b +1a =52,b +1=3,解得⎩⎪⎨⎪⎧a =2,b =2.(2)若0<a <1,函数f (x )=a t 在[-1,0]上为减函数,】所以a t ∈[1,1a ],则b +ax 2+2x ∈[b +1,b +1a ],依题意得⎩⎨⎧b +1a =3,b +1=52,解得⎩⎨⎧a =23,b =32.综上,a ,b 的值为⎩⎪⎨⎪⎧a =2,b =2或⎩⎨⎧a =23,b =32.[基础题组练]1.实数lg 4+2lg 5的值为( ) A .2B .5 #C .10D .20解析:选 4+2lg 5=2lg 2+2lg 5=2(lg 2 +lg 5)=2lg (2×5)=2lg 10=2.故选A. 2.函数f (x )=ln (x +3)1-2x 的定义域是( )A .(-3,0)B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)解析:选A.因为f (x )=ln (x +3)1-2x ,所以要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x +3>0,1-2x >0,即-3<x <0. 3.(2020·浙江省名校新高考研究联盟联考)若log 83=p ,log 35=q ,则lg 5(用p 、q 表示)等于( )、D .p 2+q 2解析:选C.因为log 83=p ,所以lg 3=3p lg 2,又因为log 35=q ,所以lg 5=q lg 3,所以lg 5=3pq lg 2=3pq (1-lg 5),所以lg 5=3pq1+3pq,故选C.4.若函数f (x )=a x-1的图象经过点(4,2),则函数g (x )=log a 1x +1的图象是( )解析:选D.由题意可知f (4)=2,即a 3=2,a =32. 所以g (x )=log 321x +1=-log 32(x +1).由于g (0)=0,且g (x )在定义域上是减函数,故排除A ,B ,C.5.(2020·瑞安四校联考)已知函数f (x )=log 错误!|x -1|,则下列结论正确的是( )、A .f ⎝⎛⎭⎫-12<f (0)<f (3)B .f (0)<f ⎝⎛⎭⎫-12<f (3)C .f (3)<f ⎝⎛⎭⎫-12<f (0)D .f (3)<f (0)<f ⎝⎛⎭⎫-12 解析:选=log 错误!错误!,因为-1=log 错误!2<log 错误!错误!<log 错误!1=0,所以-1<f ⎝⎛⎭⎫-12<0;f (0)=log 错误!1=0;f (3)=log 错误!2=-1,所以C 正确. 6.设函数f (x )=log 错误!(x 2+1)+错误!,则不等式f (log 2x )+f (log 错误!x )≥2的解集为( )A .(0,2]C .[2,+∞)∪[2,+∞)《解析:选B.因为f (x )的定义域为R ,f (-x )=log 错误!(x 2+1)+错误!=f (x ),所以f (x )为R上的偶函数.易知其在区间[0,+∞)上单调递减, 令t =log 2x ,所以log 错误!x =-t ,则不等式f (log 2x )+f (log 错误!x )≥2可化为f (t )+f (-t )≥2, 即2f (t )≥2,所以f (t )≥1,又因为f (1)=log 错误!2+错误!=1,f (x )在[0,+∞)上单调递减,在R 上为偶函数,所以-1≤t ≤1,即log 2x ∈[-1,1],所以x ∈⎣⎡⎦⎤12,2,故选B. 7.(2020·瑞安市高三四校联考)若正数a ,b 满足log 2a =log 5b =lg(a +b ),则1a +1b 的值为________.解析:设log 2a =log 5b =lg(a +b )=k ,¥所以a =2k ,b =5k ,a +b =10k ,所以ab =10k , 所以a +b =ab ,则1a +1b =1. 答案:18.设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为________.解析:作出y =|log a x |(0<a <1)的大致图象如图,令|log a x |=1.得x =a 或x =1a ,又1-a -⎝⎛⎭⎫1a -1=1-a -1-a a =(1-a )(a -1)a<0, 故1-a <1a -1,所以n -m 的最小值为1-a =13,a =23.《答案:239.(2020·台州模拟)已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.解析:当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立,则f (x )min =log a (8-2a )>1, 解得1<a <83,当0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立,则f (x )min =log a (8-a )>1, 且8-2a <0,所以a >4,且a <1,故不存在.。

高考数学一轮复习第2章函数导数及其应用第6节对数函数教师用书

第六节 对数函数1.对数的概念如果a x=N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b=b (a >0,且a ≠1). (2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a M N=log a M -log a N ,③log a M n=n log a M (n ∈R ). 3.对数函数的定义、图象与性质定义函数y =log a x (a >0且a ≠1)叫做对数函数图象a >1 0<a <1定义域:(0,+∞)性质值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时,y <0; 当x >1时,y >0 当0<x <1时,y >0; 当x >1时,y <0 在(0,+∞)上为增函数在(0,+∞)上为减函数4.指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)log 2x 2=2log 2x .( ) (2)当x >1时,log a x >0.( )(3)函数y =lg(x +3)+lg(x -3)与y =lg[(x +3)(x -3)]的定义域相同.( )(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a,-1,函数图象不在第二、三象限.( )[答案] (1)× (2)× (3)× (4)√2.已知a =2,b =log 213,c =,则( ) A .a >b >c B .a >c >b C .c >b >aD .c >a >bD [∵0<a =2<20=1,b =log 213<log 21=0,c ==1,∴c >a >b .]3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图2­6­1,则下列结论成立的是( )图2­6­1A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由图象可知y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.]4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C.⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D.⎝ ⎛⎭⎪⎫34,1 C [当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).] 5.(2017·杭州二次质检)计算:2log 510+log 514=________,2log 43=________.2 3 [2log 510+log 514=log 5⎝ ⎛⎭⎪⎫102×14=2,因为log 43=12log 23=log 23,所以2log 43=2log23= 3.]对数的运算(1)设2a =5b=m ,且1a +1b=2,则m 等于( ) A.10 B .10 C .20D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. 【导学号:51062043】 (1)A (2)-20 [(1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.(2)原式=(lg 2-2-lg 52)×100=⎝⎛⎭⎪⎫lg122·52×10=(lg 10-2)×10=-2×10=-20.][规律方法] 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.[变式训练1] (1)(2017·嘉兴市高三教学测试)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f x +1,x <4,则f (2+log 23)的值为( )A .24B .16C .12D .8(2)(2015·浙江高考)计算:log 222=________,2log 23+log 43=________. (1)A (2)-12 3 3 [(1)∵3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=23+log 23=8×3=24,故选A.(2)log 222=log 22-log 22=12-1=-12;2log 23+log 43=2log 23·2log 43=3×2log 43=3×2log23=3 3.]对数函数的图象及应用(1)(2017·绍兴一模)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )A B C D(2)(2017·湖州调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a=0有且只有一个实根,则实数a 的取值范围是________.【导学号:51062044】(1)B (2)(1,+∞) [(1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的大致图象如图所示.故选B.(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.][规律方法] 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. [变式训练2] 如图2­6­2,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( )图2­6­2A .2B .3 C. 2D. 3D [由题意知等边△ABC 的边长为2,则由点A 的坐标(m ,n )可得点B 的坐标为(m +3,n +1).又A ,B 两点均在函数y =log 2x +2的图象上,故有⎩⎨⎧log 2m +2=n ,log 2m +3+2=n +1,解得m =3,故选D.]对数函数的性质及应用☞角度1 比较对数值的大小若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c<b cD .c a>c bB [对于选项A :log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.而a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负,∴log a c 与log b c 的大小不能确定.对于选项B :log c a =lg a lg c ,log c b =lg b lg c ,而lg a >lg b ,两边同乘一个负数1lg c 不等号方向改变,∴log c a <log c b ,∴选项B 正确.对于选项C :利用y =x c(0<c <1)在第一象限内是增函数,可得a c>b c,∴选项C 错误.对于选项D :利用y =c x(0<c <1)在R 上为减函数,可得c a<c b ,∴选项D 错误,故选B.]☞角度2 解简单的对数不等式(2016·浙江高考)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0D [法一:log a b >1=log a a , 当a >1时,b >a >1;当0<a <1时,0<b <a <1.只有D 正确. 法二:取a =2,b =3,排除A ,B ,C ,故选D.] ☞角度3 探究对数型函数的性质已知函数f (x )=log a (3-ax ),是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解] 假设存在满足条件的实数a .∵a >0,且a ≠1,∴u =3-ax 在[1,2]上是关于x 的减函数.4分 又f (x )=log a (3-ax )在[1,2]上是关于x 的减函数, ∴函数y =log a u 是关于u 的增函数, ∴a >1,x ∈[1,2]时,u 最小值为3-2a ,8分f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a3-a =1,即⎩⎪⎨⎪⎧a <32,a =32,12分故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为 1.15分[规律方法] 利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.[思想与方法]1.对数值取正、负值的规律当a>1且b>1或0<a<1且0<b<1时,log a b>0;当a>1且0<b<1或0<a<1且b>1时,log a b<0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y=1交点的横坐标进行判定.[易错与防范]1.在对数式中,真数必须是大于0的,所以对数函数y=log a x的定义域应为(0,+∞).对数函数的单调性取决于底数a与1的大小关系,当底数a与1的大小关系不确定时,要分0<a<1与a>1两种情况讨论.2.在运算性质log a Mα=αlog a M中,要特别注意条件,在无M>0的条件下应为log a Mα=αlog a |M |(α∈N *,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.课时分层训练(八) 对数函数A 组 基础达标 (建议用时:30分钟)一、选择题 1.函数y =的定义域是( )A .[1,2]B .[1,2)C.⎣⎢⎡⎦⎥⎤12,1 D.⎝ ⎛⎦⎥⎤12,1 D [由(2x -1)≥0⇒0<2x -1≤1⇒12<x ≤1.]2.(2017·石家庄模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >cB [因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1,所以a =b >c .]3.若函数y =log a x (a >0,且a ≠1)的图象如图2­6­3所示,则下列函数图象正确的是( )图2­6­3A B C DB [由题图可知y =log a x 的图象过点(3,1), ∴log a 3=1,即a =3.A 项,y =3-x=⎝ ⎛⎭⎪⎫13x 在R 上为减函数,错误;B 项,y =x 3符合;C 项,y =(-x )3=-x 3在R 上为减函数,错误; D 项,y =log 3(-x )在(-∞,0)上为减函数,错误.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1D.72A [由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2, f ⎝⎛⎭⎪⎫log 312=3+1=3log 32+1=2+1=3,所以f (f (1))+f ⎝⎛⎭⎪⎫log 312=5.] 5.已知y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( )【导学号:51062045】A .(0,1)B .(0,2)C .(1,2)D .[2,+∞)C [因为y =log a (2-ax )在[0,1]上单调递减,u =2-ax (a >0)在[0,1]上是减函数,所以y =log a u 是增函数,所以a >1.又2-a >0,所以1<a <2.]二、填空题6.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________. 【导学号:51062046】-1 [lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1.]7.(2017·“江南十校”信息优化卷)设函数f (x )=lg(x 2-4),则f (x )的定义域为________,单调递增区间为________.(-∞,-2)∪(2,+∞) (2,+∞) [由x 2-4>0,得f (x )的定义域为(-∞,-2)∪(2,+∞).其单调递增区间为(2,+∞).]8.(2016·浙江高考)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.4 2 [∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1, ∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,∴b 2b =bb 2, ∴2b =b 2,∴b =2,∴a =4.] 三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 【导学号:51062047】 [解] (1)∵f (1)=2, ∴log a 4=2(a >0,a ≠1), ∴a =2.4分由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3),∴函数f (x )的定义域为(-1,3).8分 (2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],12分 ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.15分10.已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解] (1)∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )最小值为3-2a ,当x ∈[0,2],f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0.∴a <32.5分又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.7分 (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数,8分 ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 为增函数,10分∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎪⎨⎪⎧ 3-2a >0,log a 3-a =1,即⎩⎪⎨⎪⎧ a <32,a =32,13分故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为 1.15分B 组 能力提升(建议用时:15分钟)1.(2016·浙江名校(河桥中学)交流卷三)已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则m +n =( )A.12B.32 C .2 D.52D [∵f (x )=|log 2x |,且f (m )=f (n ),∴mn =1.又0<m <n ,则有0<m <1<n ,从而有0<m 2<m <1<n ,则|log 2m 2|=2|log 2m |=2|log 2n |>|log 2n |.∵f (x )=|log 2x |在区间[m 2,n ]上的最大值为2,∴|log 2m 2|=2,即|log 2m |=1,∴m =12(m =2舍去),∴n =2. ∴m +n =52.] 2.若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 【导学号:51062048】(1,2] [当x ≤2时,y =-x +6≥4.∵f (x )的值域为[4,+∞),∴当a >1时,3+log a x >3+log a 2≥4,∴log a 2≥1,∴1<a ≤2;当0<a <1时,3+log a x <3+log a 2,不合题意.故a ∈(1,2].]3.已知函数f (x )=log a (x +1)-log a (1-x )(a >0且a ≠1).(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.[解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧ x +1>0,1-x >0,解得-1<x <1.3分故所求函数f (x )的定义域为(-1,1).6分(2)证明:由(1)知f (x )的定义域为(-1,1),且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.10分(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1, 所以使f (x )>0的x 的解集是(0,1).15分。

教育最新K122018高考数学一轮复习第2章函数导数及其应用第6节对数函数教师用书

第六节 对数函数1.对数的概念如果a x=N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b=b (a >0,且a ≠1). (2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a M N=log a M -log a N ,③log a M n=n log a M (n ∈R ). 3.对数函数的定义、图象与性质4.指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)log 2x 2=2log 2x .( ) (2)当x >1时,log a x >0.( )(3)函数y =lg(x +3)+lg(x -3)与y =lg[(x +3)(x -3)]的定义域相同.( )(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a,-1,函数图象不在第二、三象限.( )[答案] (1)× (2)× (3)× (4)√2.已知a =2,b =log 213,c =,则( ) A .a >b >c B .a >c >b C .c >b >aD .c >a >bD [∵0<a =2<20=1,b =log 213<log 21=0,c ==1,∴c >a >b .]3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图2­6­1,则下列结论成立的是( )图2­6­1A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由图象可知y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.]4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C.⎝ ⎛⎭⎪⎫0,34∪(1,+∞) D.⎝ ⎛⎭⎪⎫34,1 C [当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).] 5.(2017·杭州二次质检)计算:2log 510+log 514=________,2log 43=________.2 3 [2log 510+log 514=log 5⎝ ⎛⎭⎪⎫102×14=2,因为log 43=12log 23=log 23,所以2log 43=2log23= 3.](1)设2a =5b=m ,且a +b=2,则m 等于( ) A.10 B .10 C .20D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. 【导学号:51062043】 (1)A (2)-20 [(1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.(2)原式=(lg 2-2-lg 52)×100=⎝⎛⎭⎪⎫lg122·52×10=(lg 10-2)×10=-2×10=-20.][规律方法] 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.[变式训练1] (1)(2017·嘉兴市高三教学测试)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f x +,x <4,则f (2+log 23)的值为( )A .24B .16C .12D .8(2)(2015·浙江高考)计算:log 222=________,2log 23+log 43=________. (1)A (2)-12 3 3 [(1)∵3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=23+log 23=8×3=24,故选A.(2)log 222=log 22-log 22=12-1=-12;2log 23+log 43=2log 23·2log 43=3×2log 43=3×2log23=3 3.](1)(2017·绍兴一模)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )A B C D(2)(2017·湖州调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a=0有且只有一个实根,则实数a 的取值范围是________.【导学号:51062044】(1)B (2)(1,+∞) [(1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的大致图象如图所示.故选B.(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.][规律方法] 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. [变式训练2] 如图2­6­2,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( )图2­6­2A .2B .3 C. 2D. 3D [由题意知等边△ABC 的边长为2,则由点A 的坐标(m ,n )可得点B 的坐标为(m +3,n +1).又A ,B 两点均在函数y =log 2x +2的图象上,故有⎩⎨⎧log 2m +2=n ,log 2m +3+2=n +1,解得m =3,故选D.]☞角度1若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c<b cD .c a>c bB [对于选项A :log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.而a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负,∴log a c 与log b c 的大小不能确定.对于选项B :log c a =lg a lg c ,log c b =lg b lg c ,而lg a >lg b ,两边同乘一个负数1lg c 不等号方向改变,∴log c a <log c b ,∴选项B 正确.对于选项C :利用y =x c(0<c <1)在第一象限内是增函数,可得a c>b c,∴选项C 错误.对于选项D :利用y =c x(0<c <1)在R 上为减函数,可得c a<c b ,∴选项D 错误,故选B.]☞角度2 解简单的对数不等式(2016·浙江高考)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0D [法一:log a b >1=log a a , 当a >1时,b >a >1;当0<a <1时,0<b <a <1.只有D 正确. 法二:取a =2,b =3,排除A ,B ,C ,故选D.] ☞角度3 探究对数型函数的性质已知函数f (x )=log a (3-ax ),是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解] 假设存在满足条件的实数a .∵a >0,且a ≠1,∴u =3-ax 在[1,2]上是关于x 的减函数.4分 又f (x )=log a (3-ax )在[1,2]上是关于x 的减函数, ∴函数y =log a u 是关于u 的增函数, ∴a >1,x ∈[1,2]时,u 最小值为3-2a ,8分f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a-a =1,即⎩⎪⎨⎪⎧a <32,a =32,12分故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为 1.15分[规律方法] 利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.[思想与方法]1.对数值取正、负值的规律当a>1且b>1或0<a<1且0<b<1时,log a b>0;当a>1且0<b<1或0<a<1且b>1时,log a b<0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y=1交点的横坐标进行判定.[易错与防范]1.在对数式中,真数必须是大于0的,所以对数函数y=log a x的定义域应为(0,+∞).对数函数的单调性取决于底数a与1的大小关系,当底数a与1的大小关系不确定时,要分0<a<1与a>1两种情况讨论.2.在运算性质log a Mα=αlog a M中,要特别注意条件,在无M>0的条件下应为log a Mα=αlog a |M |(α∈N *,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.课时分层训练(八) 对数函数A 组 基础达标 (建议用时:30分钟)一、选择题 1.函数y =的定义域是( )A .[1,2]B .[1,2)C.⎣⎢⎡⎦⎥⎤12,1 D.⎝ ⎛⎦⎥⎤12,1 D [由(2x -1)≥0⇒0<2x -1≤1⇒12<x ≤1.]2.(2017·石家庄模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >cB [因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1,所以a =b >c .]3.若函数y =log a x (a >0,且a ≠1)的图象如图2­6­3所示,则下列函数图象正确的是( )图2­6­3A B C DB [由题图可知y =log a x 的图象过点(3,1), ∴log a 3=1,即a =3.A 项,y =3-x=⎝ ⎛⎭⎪⎫13x 在R 上为减函数,错误;B 项,y =x 3符合;C 项,y =(-x )3=-x 3在R 上为减函数,错误; D 项,y =log 3(-x )在(-∞,0)上为减函数,错误.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1D.72A [由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2, f ⎝⎛⎭⎪⎫log 312=3+1=3log 32+1=2+1=3,所以f (f (1))+f ⎝⎛⎭⎪⎫log 312=5.] 5.已知y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( )【导学号:51062045】A .(0,1)B .(0,2)C .(1,2)D .[2,+∞)C [因为y =log a (2-ax )在[0,1]上单调递减,u =2-ax (a >0)在[0,1]上是减函数,所以y =log a u 是增函数,所以a >1.又2-a >0,所以1<a <2.]二、填空题6.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________. 【导学号:51062046】-1 [lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1.]7.(2017·“江南十校”信息优化卷)设函数f (x )=lg(x 2-4),则f (x )的定义域为________,单调递增区间为________.(-∞,-2)∪(2,+∞) (2,+∞) [由x 2-4>0,得f (x )的定义域为(-∞,-2)∪(2,+∞).其单调递增区间为(2,+∞).]8.(2016·浙江高考)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.4 2 [∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1, ∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,∴b 2b =bb 2, ∴2b =b 2,∴b =2,∴a =4.] 三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 【导学号:51062047】 [解] (1)∵f (1)=2, ∴log a 4=2(a >0,a ≠1), ∴a =2.4分由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3),∴函数f (x )的定义域为(-1,3).8分 (2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],12分 ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.15分10.已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解] (1)∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )最小值为3-2a ,当x ∈[0,2],f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0.∴a <32.5分又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.7分 (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数,8分 ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 为增函数,10分∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎪⎨⎪⎧ 3-2a >0,log a -a =1,即⎩⎪⎨⎪⎧ a <32,a =32,13分故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为 1.15分B 组 能力提升(建议用时:15分钟)1.(2016·浙江名校(河桥中学)交流卷三)已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则m +n =( )A.12B.32 C .2 D.52D [∵f (x )=|log 2x |,且f (m )=f (n ),∴mn =1.又0<m <n ,则有0<m <1<n ,从而有0<m 2<m <1<n ,则|log 2m 2|=2|log 2m |=2|log 2n |>|log 2n |.∵f (x )=|log 2x |在区间[m 2,n ]上的最大值为2,∴|log 2m 2|=2,即|log 2m |=1,∴m =12(m =2舍去),∴n =2. ∴m +n =52.] 2.若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 【导学号:51062048】(1,2] [当x ≤2时,y =-x +6≥4.∵f (x )的值域为[4,+∞),∴当a >1时,3+log a x >3+log a 2≥4,∴log a 2≥1,∴1<a ≤2;当0<a <1时,3+log a x <3+log a 2,不合题意.故a ∈(1,2].]3.已知函数f (x )=log a (x +1)-log a (1-x )(a >0且a ≠1).(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.[解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧ x +1>0,1-x >0,解得-1<x <1.3分故所求函数f (x )的定义域为(-1,1).6分(2)证明:由(1)知f (x )的定义域为(-1,1), 且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.10分(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1, 所以使f (x )>0的x 的解集是(0,1).15分。

2024届高考数学一轮总复习第二章函数导数及其应用第六讲对数与对数函数课件


[例 2](1)方程 log2(x-1)=2-log2(x+1)的解为________. 解析:原方程变形为 log2(x-1)+log2(x+1)=log2(x2-1)= 2=log24,即 x2-1=4,解得 x=± 5, 又因为 x>1,所以 x= 5.
答案:x= 5
(2)(2022
年中卫市一模)设函数
考点一 对数的运算
1.(2022 年浙江)已知2a=5,log83=b,则4a-3b=( )
A.25
B.5
C.295
D.53
解析:由 2a=5,log83=b,可得 8b=23b=3,则 4a-3b=443ab= ((223ab))22=5322=295.故选 C.
答案:C
2.(2021 年天津)若 2a=5b=10,则a1+b1=(
【变式训练】 1.函数 f(x)=loga|x|+1(0<a<1)的图象大致为( )
A
B
C
D
解析:由函数 f(x)的解析式可确定该函数为偶函数,函数图象 关于 y 轴对称.因为 0<a<1,所以函数 f(x)在(0,+∞)上单调递减, 且函数图象恒过定点(1,1).综合选项,只有 A 选项符合条件.故 选 ห้องสมุดไป่ตู้.
第六讲 对数与对数函数
课标要求
考情分析
1.理解对数的概念和运算性质,
1.本讲复习利用对数函数的图象 掌握对数函数的性质,侧重把握
知道用换底公式能将一般对数转 对数函数与其他知识交汇问题的
化成自然对数或常用对数.
解决方法.
(续表)
课标要求
考情分析
2.通过具体实例,了解对数函数 的概念.能用描点法或借助计算 工具画出具体对数函数的图象,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节 对数函数1.对数的概念如果a x=N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b=b (a >0,且a ≠1). (2)换底公式:log a b =log c blog c a(a ,c 均大于0且不等于1,b >0).(3)对数的运算性质:如果a >0,且a ≠1,M >0,N >0,那么:①log a (M ·N )=log a M +log a N ;②log a M N=log a M -log a N ,③log a M n=n log a M (n ∈R ). 3.对数函数的定义、图象与性质定义函数y =log a x (a >0且a ≠1)叫做对数函数图象a >1 0<a <1定义域:(0,+∞)性质值域:R当x =1时,y =0,即过定点(1,0)当0<x <1时,y <0; 当x >1时,y >0 当0<x <1时,y >0; 当x >1时,y <0 在(0,+∞)上为增函数在(0,+∞)上为减函数4.指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)log 2x 2=2log 2x .( ) (2)当x >1时,log a x >0.( )(3)函数y =lg(x +3)+lg(x -3)与y =lg[(x +3)(x -3)]的定义域相同.( )(4)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a,1),⎝ ⎛⎭⎪⎫1a,-1,函数图象不在第二、三象限.( )[答案] (1)× (2)× (3)× (4)√2.已知a =2,b =log 213,c =,则( ) A .a >b >c B .a >c >b C .c >b >aD .c >a >bD [∵0<a =2<20=1,b =log 213<log 21=0,c ==1,∴c >a >b .]3.已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图2­6­1,则下列结论成立的是( )图2­6­ 1A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1D [由图象可知y =log a (x +c )的图象是由y =log a x 的图象向左平移c 个单位得到的,其中0<c <1.再根据单调性可知0<a <1.]4.(教材改编)若log a 34<1(a >0,且a ≠1),则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B .(1,+∞)C.⎝ ⎛⎭⎪⎫0,34∪(1,+∞)D.⎝ ⎛⎭⎪⎫34,1 C [当0<a <1时,log a 34<log a a =1,∴0<a <34;当a >1时,log a 34<log a a =1,∴a >1.即实数a 的取值范围是⎝ ⎛⎭⎪⎫0,34∪(1,+∞).] 5.(2017·杭州二次质检)计算:2log 510+log 514=________,2log 43=________.2 3 [2log 510+log 514=log 5⎝ ⎛⎭⎪⎫102×14=2,因为log 43=12log 23=log 23,所以2log 43=2log23= 3.]对数的运算(1)设2a =5b=m ,且1a +1b=2,则m 等于( ) A.10 B .10 C .20D .100(2)计算:⎝ ⎛⎭⎪⎫lg 14-lg 25÷100-12=________. 【导学号:51062043】 (1)A (2)-20 [(1)∵2a =5b=m ,∴a =log 2m ,b =log 5m , ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2, ∴m =10.(2)原式=(lg 2-2-lg 52)×100=⎝⎛⎭⎪⎫lg122·52×10=(lg 10-2)×10=-2×10=-20.][规律方法] 1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b=N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.[变式训练1] (1)(2017·嘉兴市高三教学测试)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥4,f x +1,x <4,则f (2+log 23)的值为( )A .24B .16C .12D .8(2)(2015·浙江高考)计算:log 222=________,2log 23+log 43=________. (1)A (2)-12 3 3 [(1)∵3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=23+log 23=8×3=24,故选A.(2)log 222=log 22-log 22=12-1=-12;2log 23+log 43=2log 23·2log 43=3×2log 43=3×2log23=3 3.]对数函数的图象及应用(1)(2017·绍兴一模)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )A B C D(2)(2017·湖州调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a=0有且只有一个实根,则实数a 的取值范围是________.【导学号:51062044】(1)B (2)(1,+∞) [(1)若函数y =a |x |(a >0,且a ≠1)的值域为{y |y ≥1},则a >1,故函数y =log a |x |的大致图象如图所示.故选B.(2)如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图象,其中a 表示直线在y 轴上截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.][规律方法] 1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. [变式训练2] 如图2­6­2,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( )图2­6­ 2A .2B .3 C. 2D. 3D [由题意知等边△ABC 的边长为2,则由点A 的坐标(m ,n )可得点B 的坐标为(m +3,n +1).又A ,B 两点均在函数y =log 2x +2的图象上,故有⎩⎨⎧log 2m +2=n ,log 2m +3+2=n +1,解得m =3,故选D.]对数函数的性质及应用☞角度1 若a >b >0,0<c <1,则( )A .log a c <log b cB .log c a <log c bC .a c<b cD .c a>c bB [对于选项A :log a c =lg c lg a ,log b c =lg clg b ,∵0<c <1,∴lg c <0.而a >b >0,∴lg a >lg b ,但不能确定lg a ,lg b 的正负,∴log a c 与log b c 的大小不能确定.对于选项B :log c a =lg a lg c ,log c b =lg b lg c ,而lg a >lg b ,两边同乘一个负数1lg c 不等号方向改变,∴log c a <log c b ,∴选项B 正确.对于选项C :利用y =x c(0<c <1)在第一象限内是增函数,可得a c>b c,∴选项C 错误.对于选项D :利用y =c x(0<c <1)在R 上为减函数,可得c a<c b ,∴选项D 错误,故选B.]☞角度2 解简单的对数不等式(2016·浙江高考)已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0D [法一:log a b >1=log a a , 当a >1时,b >a >1;当0<a <1时,0<b <a <1.只有D 正确. 法二:取a =2,b =3,排除A ,B ,C ,故选D.] ☞角度3 探究对数型函数的性质已知函数f (x )=log a (3-ax ),是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解] 假设存在满足条件的实数a .∵a >0,且a ≠1,∴u =3-ax 在[1,2]上是关于x 的减函数.4分 又f (x )=log a (3-ax )在[1,2]上是关于x 的减函数, ∴函数y =log a u 是关于u 的增函数, ∴a >1,x ∈[1,2]时,u 最小值为3-2a ,8分f (x )最大值为f (1)=log a (3-a ),∴⎩⎪⎨⎪⎧3-2a >0,log a3-a =1,即⎩⎪⎨⎪⎧a <32,a =32,12分故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为 1.15分[规律方法] 利用对数函数的性质研究对数型函数性质,要注意以下四点:一是定义域;二是底数与1的大小关系;三是如果需将函数解析式变形,一定确保其等价性;四是复合函数的构成,即它是由哪些基本初等函数复合而成的.[思想与方法]1.对数值取正、负值的规律当a>1且b>1或0<a<1且0<b<1时,log a b>0;当a>1且0<b<1或0<a<1且b>1时,log a b<0.2.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.3.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.4.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y=1交点的横坐标进行判定.[易错与防范]1.在对数式中,真数必须是大于0的,所以对数函数y=log a x的定义域应为(0,+∞).对数函数的单调性取决于底数a与1的大小关系,当底数a与1的大小关系不确定时,要分0<a<1与a>1两种情况讨论.2.在运算性质log a Mα=αlog a M中,要特别注意条件,在无M>0的条件下应为log a Mα=αlog a |M |(α∈N *,且α为偶数).3.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.课时分层训练(八) 对数函数A 组 基础达标 (建议用时:30分钟)一、选择题 1.函数y =的定义域是( )A .[1,2]B .[1,2)C.⎣⎢⎡⎦⎥⎤12,1 D.⎝ ⎛⎦⎥⎤12,1 D [由(2x -1)≥0⇒0<2x -1≤1⇒12<x ≤1.]2.(2017·石家庄模拟)已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >cB [因为a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=a ,c =log 32<log 33=1,所以a =b >c .]3.若函数y =log a x (a >0,且a ≠1)的图象如图2­6­3所示,则下列函数图象正确的是( )图2­6­ 3A B C DB [由题图可知y =log a x 的图象过点(3,1), ∴log a 3=1,即a =3.A 项,y =3-x=⎝ ⎛⎭⎪⎫13x 在R 上为减函数,错误;B 项,y =x 3符合;C 项,y =(-x )3=-x 3在R 上为减函数,错误; D 项,y =log 3(-x )在(-∞,0)上为减函数,错误.]4.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3-x+1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1D.72A [由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2, f ⎝⎛⎭⎪⎫log 312=3+1=3log 32+1=2+1=3,所以f (f (1))+f ⎝⎛⎭⎪⎫log 312=5.] 5.已知y =log a (2-ax )在区间[0,1]上是减函数,则a 的取值范围是( )【导学号:51062045】A .(0,1)B .(0,2)C .(1,2)D .[2,+∞)C [因为y =log a (2-ax )在[0,1]上单调递减,u =2-ax (a >0)在[0,1]上是减函数,所以y =log a u 是增函数,所以a >1.又2-a >0,所以1<a <2.]二、填空题6.lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________. 【导学号:51062046】-1 [lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1.]7.(2017·“江南十校”信息优化卷)设函数f (x )=lg(x 2-4),则f (x )的定义域为________,单调递增区间为________.(-∞,-2)∪(2,+∞) (2,+∞) [由x 2-4>0,得f (x )的定义域为(-∞,-2)∪(2,+∞).其单调递增区间为(2,+∞).]8.(2016·浙江高考)已知a >b >1,若log a b +log b a =52,a b =b a,则a =________,b =________.4 2 [∵log a b +log b a =log a b +1log a b =52,∴log a b =2或12.∵a >b >1,∴log a b <log a a =1, ∴log a b =12,∴a =b 2.∵a b =b a ,∴(b 2)b =bb 2,∴b 2b =bb 2, ∴2b =b 2,∴b =2,∴a =4.] 三、解答题9.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 【导学号:51062047】 [解] (1)∵f (1)=2, ∴log a 4=2(a >0,a ≠1), ∴a =2.4分由⎩⎪⎨⎪⎧1+x >0,3-x >0,得x ∈(-1,3),∴函数f (x )的定义域为(-1,3).8分 (2)f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],12分 ∴当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.15分10.已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.[解] (1)∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )最小值为3-2a ,当x ∈[0,2],f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0.∴a <32.5分又a >0且a ≠1,∴a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.7分 (2)t (x )=3-ax ,∵a >0,∴函数t (x )为减函数,8分 ∵f (x )在区间[1,2]上为减函数, ∴y =log a t 为增函数,10分∴a >1,x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ), ∴⎩⎪⎨⎪⎧ 3-2a >0,log a 3-a =1,即⎩⎪⎨⎪⎧ a <32,a =32,13分故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为 1.15分B 组 能力提升(建议用时:15分钟)1.(2016·浙江名校(河桥中学)交流卷三)已知函数f (x )=|log 2x |,正实数m ,n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则m +n =( )A.12B.32 C .2 D.52D [∵f (x )=|log 2x |,且f (m )=f (n ),∴mn =1.又0<m <n ,则有0<m <1<n ,从而有0<m 2<m <1<n ,则|log 2m 2|=2|log 2m |=2|log 2n |>|log 2n |.∵f (x )=|log 2x |在区间[m 2,n ]上的最大值为2,∴|log 2m 2|=2,即|log 2m |=1,∴m =12(m =2舍去),∴n =2. ∴m +n =52.] 2.若函数f (x )=⎩⎪⎨⎪⎧ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 【导学号:51062048】(1,2] [当x ≤2时,y =-x +6≥4.∵f (x )的值域为[4,+∞),∴当a >1时,3+log a x >3+log a 2≥4,∴log a 2≥1,∴1<a ≤2;当0<a <1时,3+log a x <3+log a 2,不合题意.故a ∈(1,2].]3.已知函数f (x )=log a (x +1)-log a (1-x )(a >0且a ≠1).(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.[解] (1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧ x +1>0,1-x >0,解得-1<x <1.3分故所求函数f (x )的定义域为(-1,1).6分(2)证明:由(1)知f (x )的定义域为(-1,1),且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.10分(3)因为当a >1时,f (x )在定义域(-1,1)内是增函数,所以f (x )>0⇔x +11-x>1,解得0<x <1, 所以使f (x )>0的x 的解集是(0,1).15分。

相关文档
最新文档