2018年春季新版苏科版八年级数学下学期8.3、频率与概率素材1

合集下载

八年级数学下册第8章认识概率8.3频率与概率教案(新版)苏科版

八年级数学下册第8章认识概率8.3频率与概率教案(新版)苏科版

8.3 频率与概率教学目标:1.理解随机事件发生的可能性有大有小,概率的定义;2.概率是随机事件自身的属性,它反映随机事件发生的可能性大小;3.在多次重复试验中,体会频率的稳定性.教学重点:频率稳定性的理解.教学难点:频率稳定性的理解.教学过程:一、情境创设飞机失事会给旅客造成意外伤害.一家保险公司要为购买机票的旅客进行保险,应该向旅客收取多少保费呢?为此,保险公司必须精确计算出飞机失事的可能性有多大.类似这样的问题在我们的日常生活中也经常遇到.例如:抛掷1枚均匀硬币,正面朝上.在装有彩球的袋子中,任意摸出的1个球恰好是红球.明天将会下雨.抛掷1枚均匀骰子,6点朝上.……随机事件发生的可能性有大有小.一个事件发生可能性大小的数值,称为这个事件的概率.若用A表示一个事件,则我们就用P(A)表示事件A发生的概率.通常规定,必然事件发生的概率是1,记作P(A)=1;不可能事件发生的概率为0,记作P(A)=0;随机事件发生的概率是0和1之间的一个数,即0<P(A)<1.(要求:认真理解,积极参与思考,激发学习内驱力.归纳引出概念:一个随机事件发生的概率是由这个随机事件自身决定的,并且是客观存在的.概率是随机事件自身的属性,它反映这个随机事件发生的可能性大小.)二、探索活动活动一、做“抛掷质地均匀的硬币试验”,每人10次.分别汇总5人、10人、15人……的试验结果,并将试验数据汇总填入下表:(要求:互相讨论,踊跃回答:观察上面的折线统计图,你发现了什么规律?请与同学交流. 下表是小明抛硬币试验获得的数据(折线图在教材P45): 抛掷次数50100150200250300350400450500正面朝上的频数20537098115156169202219244正面朝上的频率0.40.530.470.490.460.520.480.510.490.49活动二、观察教材P45折线统计图,当抛掷硬币次数很大时,正面朝上的频率是否比较稳定?下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据.观察此表,你发现了什么?(要求:学生畅所欲言,勇于发表自己的看法,小组推选出代表回答.从上表可以看出:“正面朝上”的频率总在21附近波动,而且近似等于21.) 活动三、表2是某批足球产品质量检验获得的数据. 抽取的足球数n50 100 200 500 1000 2000 优等品频数m46 93 194 472 953 1903 优等品频数nm (1)填写表中的空格;(2)画出优等品频率的折线统计图;(3)当抽取的足球数很大时,你认为优等品的频率会在哪个常数附近摆动?(要求:讨论后共同归纳.从表1可以看到,当抽查的足球数很多时,抽到优等品的频率n m 接近于某一个常数,并在它附近摆动.通常,在多次重复试验中,一个随机事件发生的频率会在某一个常数附近摆动,并且趋于稳定.这个性质称为频率的稳定性.)三、小结你在本节课中的感悟是什么?你还有什么疑惑?(要求:学生自由地想,大胆地说,表达自己的情感.)。

【最新苏科版精选】苏科初中数学八下《8.3 频率与概率》word教案 (1).doc

【最新苏科版精选】苏科初中数学八下《8.3 频率与概率》word教案 (1).doc
抛掷1枚均匀硬币,正面朝上.在装有彩球的袋子中,任意摸出的1个球恰好是红球.明天将会下雨.抛掷1枚均匀骰子,6点朝上.
……
随机事件发生的可能性有大有小.一个事件发生可能性大小的数值,称为这个事件的概率.若用A表示一个事件,则我们就用P(A)表示事件A发生的概率.
通常规定,必然事件发生的概率是1,记作P(A)=1;不可能事件发生的概率为0,记作P(A)=0;随机事件发生的概率是0和1之间的一个数,即0<P(A)<1.
活动一 做“抛掷质地均匀的硬币试验”,每人10次.
1.分别汇总5人、10人、15人、…、50人……的试验结果,并将试验数据汇总填入下表:
互相讨论,踊跃回答:观察上面的折线统计图,你发现了什么规律?请与同学交流.
下表是小明抛硬币试验获得的数据(折线图在课本P45):
通过学生相互讨论使学生主动参与到学习活动中来,亲身经历对随机现象的探索过程,使数学学习变得主动、有趣,培养学生合作交流精神和发散思维能力,在活动中思考,更好地体现数学的意义和价值.
讨论后共同归纳.
从表1可以看到,当抽查的足球数很多时,抽到优等品的频率 接近于某一个常数,并在它附近摆动.
通常,在多次重复试验中,一个随机事件发生的频率会在一个常数附近摆动,并且随着试验次数增多,摆动的幅度会减小,这个性质称为频率的稳定性.
师生互动,赋予学生思想、感情、创造的自由,以学生的自我发展为中心,使学生形成能力,从而提高学生的数学综合素养.
活动二
表2是某批足球产品质量检验获得的数据.
抽取的足球数n
50
100
200
500
1000
2000
优等品频数m
46
93194ຫໍສະໝຸດ 4729531903

八年级下册数学课件(苏科版)频率与概率

八年级下册数学课件(苏科版)频率与概率
幅度越小. 这个性质称为频率的稳定性
频率
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
50 100 150 200 250 300 350 40进行同 一试验时,事件 A 发生的频率 m 会稳定地在
n
某一个常数附近摆动,这个常数就是事件 A 发生的概率P(A).
概率反映这个随机事件发生的可能性大小
但是我们用什么方法 知道一个随机事件发
生的概率呢?
全班同学做抛掷硬币试验,每人10次,并且每人一定 要准确的记录下正面朝上的次数
正面
反面
抛掷次数n
50 100 150 200 250 300 350 400 450 500
正面朝上的次数m
正面朝上的频率 m
n
小明抛掷硬币试验获得的数据 以及绘制的折线统计图
1.必然事件A发生的概率是1,记作P(A)=1 2.不可能事件A发生的概率是0,记作P(A)=0 3.随机事件A发生的概率P(A)是0和1之间的一个数
0
不可能事件 P(A)=0
随机事件 P(A)是0 和1之间 的数
1
必然事件 P(A)=1
对于一个随机事件,它发生的概率是由它自 身决定的,并且是客观存在的,概率是随机事件 自身的属性.
频率
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
50 100 150 200 250 300 350 400 450 500 抛掷次数
18世纪以来一些统计学家抛掷硬币的试验结果
试验者 布丰
试验次数n 4 040
正面朝上次数 m 正面朝上的频率 m
n
2 048
0.506 9
事实上,这类随机事件发生的概率的值 是客观存在的,但我们无法确定它们的精 确值,因而在实际工作中常把试验次数很 大时事件发生的频率作为概率的近似值

苏科版八年级数学下册第八章《频率与概率》优课件

苏科版八年级数学下册第八章《频率与概率》优课件
3. 会求事件的概率。
认真书P44-48页zxxk . 1. 会用随机事件发生的频率估计事件发
生的概率并会表示概率。
2.知道频率与概率之间的联系与区别 3.会求事件的概率 五分钟后同桌互查,然后老师抽查。
活动一
• 抛掷一枚质地均匀的硬币时,“正面向上”和 “反面向上”发生的可能性相等吗?
• 这是否意味着抛掷一枚硬币100次时,就会有50次 “正面向上”和50次“反面向上”呢?
检测练习 从大量的实验中可以发现,幼树移植成
活的频率在0.9左右摆动,并且随着统计数 据的增加,这种规律愈加明显,所以估计幼 树移植成活的概率为__0_.9__。
1.林业部门种植了该幼树1000棵,估计能成 活___9_0_0__棵。
2.我们学校需种植这样的树苗500棵来绿化校 园,则至少向林业部门购买约___5_5_6__棵。
谢谢观赏
You made my day!
我们,还在路上……
3.一个口袋中有8个红球,2个黑球,每个球除颜色不同 外,其余都相同,若从中任意拿出1个球,拿出的这个 球是红球的概率为_____
4.如图,一任意转动的转盘被均匀分成六份,当随 意转动一次,停止后指针落在阴影部分的概率是 ________,落在空白部分的概率为________.
5、飞镖随机地掷在下面的靶子上。
7.8ห้องสมุดไป่ตู้.普3 频查率与与抽概样率调查2 中学学科
中学学科
1. 继续体会随机事件在每一次实验中是否 发生是不可预言的,但在大数次的反复实 验后,随机事件发生的频率(成功率)会 逐渐稳定在某一数值上。
8.3频率与概率
1. 体会随机事件在每一次实验中是否发 生是不可预言的.
2. 随机事件发生的频率(成功率)会逐 渐稳定在某一数值上即是概率。

八年级数学下册 第8章 认识概率 8.3 频率与概率 第2课

八年级数学下册 第8章 认识概率 8.3 频率与概率 第2课
0.960 0.943 0.860 0.920 0.948 0.947 0.949
8.3 第2课时 用频率估计概率
【归纳总结】 用频率估计概率的“三个步骤”: (1)判断:先判断某个试验的结果不是有限的或各种可能结果不是 等可能的; (2)试验:大量重复试验直至某事件发生的频率在某一数值附近摆 动; (3)估计:用上述稳定数值估计该事件的概率.
第8章 认识概率
8.3 第2课时 用频率估计概率
第8章 认识概率
8.3 第2课时 用频率估计概率
知识目标 目标突破 总结反思
8.3 第2课时 用频率估计概率
知识目标
1.经历对试验结果的探究与归纳,知道在一定条件下进行大 量重复试验时,事件发生的频率可以作为其概率的估计值.
2.通过对实际问题的分析,进一步了解事件发生的概率与频 率的关系,会用事件发生的频率估计事件发生的概率,从而解决实 际问题.
8.3 第2课时 用频率估计概率
目标突破
目标一 利用试验求出的频率探究概率的大小
例 1 教材补充例题 某种油菜籽在相同条件下的发芽试验,结果 如下表所示:
每批粒数 n 100 300 400 600 1000 2020 3000 发芽的粒数 m 96 283 344 552 948 1912 2848 发芽的频率mn
(1)计算并填写表中发芽的频率(结果精确到 0.001); (2)这种油菜籽发芽的概率估计值是________(精确到 0.01).
8.3 第2课时 用频率估计概率
解:(1)
每批粒数 n 发芽的粒数 m
m 发芽的频率n (2)0.95
100 300 400 600 1000 2020 3000 96 283 344 552 948 1912 2848

八年级数学下册 8.3 频率与概率 探索 频率与概率素材 (新版)苏科版

八年级数学下册 8.3 频率与概率 探索 频率与概率素材 (新版)苏科版
n
(2)
50 100 46 93 0.92 0.93
200 500 1000 2000 194 472 953 1902 0.97 0.944 0.953 0.951
(3)在间被决定 。2022/3/12022/3/1Tuesday, March 01, 2022

13、生气是拿别人做错的事来惩罚自 己。2022/3/12022/3/12022/3/12022/3/13/1/2022

14、抱最大的希望,作最大的努力。2022年3月1日 星期二2022/3/12022/3/12022/3/1

15、一个人炫耀什么,说明他内心缺 少什么 。。2022年3月 2022/3/12022/3/12022/3/13/1/2022

10、低头要有勇气,抬头要有低气。2022/3/12022/3/12022/3/13/1/2022 9:15:11 PM

11、人总是珍惜为得到。2022/3/12022/3/12022/3/1M ar-221- Mar-22

12、人乱于心,不宽余请。2022/3/12022/3/12022/3/1Tuesday, March 01, 2022

16、业余生活要有意义,不要越轨。2022/3/12022/3/1Marc h 1, 2022

17、一个人即使已登上顶峰,也仍要 自强不 息。2022/3/12022/3/12022/3/12022/3/1
谢谢收看
抽取的足球数 50 100 200 500 1000 2000 优等品频数m 46 93 194 472 953 1902 优等品频率m
n
(1)填写表中的空格; (2)画出这批足球优等品频率的折线统计图; (3)当抽取的足球数很大时,你认为这批足球优 等品的频率会在哪个常数附近摆动?

八年级数学下册8.3频率与概率教案1(新版)苏科版

8.3频率与概率(1)【教学目标】体会随机事件在每一次实验中是否发生是不可预言的,但在数多次的反复实验后,随机事件发生的频率(成功率)会逐渐稳定在某一数值上.【重点难点】重点:知道随机事件随实验次数的增加而逐渐趋稳的事实.难点:对实验结果的分析.【预习导航】1.随机事件发生的可能性有大有小.一个事件发生可能性大小的数值,称为这个事件的概率.若用表示一个事件,则我们就用表示事件发生的概率.2.通常规定,必然事件发生的概率是1,记作;不可能事件发生的概率为0,记作;随机事件发生的概率是0和1之间的一个数,即0<<1.3.任一随机事件,它发生的概率是由它自身决定的,且是客观存在的,概率是随机事件自身的属性。

它反映这个随机事件发生的可能性大小.。

【课堂导学】2.例题教学试验一、抛掷硬币1、下表是小明抛硬币试验获得的数据:(1)根据上表,完成下面的折线统计图:(2)观察上面的折线统计图,你发现了什么规律?(3)观察折线统计图,当抛掷硬币次数很大时,正面朝上的频率是否比较稳定?2、下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据。

观察此表,你发现了什么?总结:在多次重复试验中,一个随机事件的频率一般会在某一个___________附近摆动,而且随着试验次数增多,摆动的幅度减小。

这个性质称为频率的___________.【当堂训练】1.事件发生的可能性越大,则它的概率越接近;反之,事件发生的可能性越小,则它的概率越接近.2.在抛掷一枚硬币的实验中,出现正面的概率是,若小明连续抛掷9次都是正面朝上,则第10次抛掷,出现正面朝上的概率是.3.一个质量均匀的正方体骰子,每个面上分别有1~6个点,则随着所掷次数的增多,掷得的点数越来越接近 ( )A.奇数点比偶数点多 B.偶数点比奇数点多C.没有规律 D.奇、偶数点的次数相近4.下列说法正确吗?请说明理由(1)天气预报说,明天下雨的概率是90%,那么明天一定会下雨.(2)某医院说,该医院的某种疾病的治愈率为98.7%,因此,某患者去治疗该病一定能治好.(3)抛一枚普通的正方体骰子20次,掷得的点数是2的频数是6,所以掷得2的频率是,所以掷得2的概率是.(4)抛掷一枚质量分布均匀的硬币,因出现正、反面的概率均为,所以抛10次的话一定会有5次正面,5次反面.【课后巩固】1、可能发生的事件是指发生的概率介于和之间。

苏科版八年级下册课件8.3频率与概率(21张PPT)


2 6
1 3
4 2
P(点数大于3)= 6
3
1<2
33
这个游戏公平吗?不公平 的话怎么修改?
∴小华赢的可能性大
课堂练习:
1. 8张形状、大小一样的卡片,它们的正面上的 数字分别是2、2、2、3、4、4、5、5.现将它们背面朝 上,洗好后,从中任意取一张. 摸到每张卡片的可能性是相等的
(1)摸到2、3、4、5的概率分别为多少?
2481
3
1
24-3 21 7
拓我们展知:道甲一、枚乙骰两子人掷抛出掷6两点个的普概通率的是正1方体骰子, 6
(1)甲乙两人各抛掷一次,两枚骰子都掷出6点的
概率是多少?
1
36
(2)若规定掷出“和为7”甲方赢,掷出“和为8” 乙方赢.现在让甲、乙都连续掷100次,你认为谁会赢 ?
甲赢

1
1
2 在直线y=x上点的概率
P(摸到2)=
3 8
1 P(摸到3)= 8
P(摸到4)=
2 8
1 4
P(摸到5)=
1 4
(2)摸到奇数、偶数的概率分别为多少
P(摸到奇数)= 3 8
5
P(摸到偶数)=
8
2. 某次游艺活动中有翻暗板得奖品项目,小王参 与此活动,他只有一次翻板的机会,翻板设置如图:
贺卡一张
练习本一本 谢谢参与
《故事会》一 谢谢参与 本
(1)若小明获得一次抽奖机会,则小明中奖是 必然
事件;(填“随机”“必然”或“不可能”)
(2)小明观察一段时间后发现,平均每8个人中会有1人
抽中一等奖,2人抽中二等奖,若袋中共有24个球,请你
估算袋中白球的数量;24

苏科版八年级数学下册8.3 频率与概率(第1课时)优秀教案

学科数学年级八课题8.3 频率与概率第1课时主备人教学目标1.经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。

2.通过试验活动了解概率的意义,认识概率是对随机现象的一种数学描述,是刻画随机事件发生的可能性的大小。

3.通过实验,理解当实验次数较大时实验频率稳于理论概率.教学重难点实验中估计某一事件发生的概率。

教学准备教学过程个人二次备课一、分组实验、探索规律小组活动方法:准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2,从每组牌中各摸出一张,称为一次实验。

合作探究问题:(1)一次实验中两张牌的牌面数字和可能有哪些值?(2)每人做30次实验,根据实验结果填写下面表格:牌面数字积 2 3 4频数频率(3)根据上表,制作相应的频数分布直方图。

(4)你认为哪种情况的频率最大?(5)两张牌的牌面数字和等于3的频率是多少?(6)六个同学组成一个小组,分别汇总其中的两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌的数字和等于3的频率,填写下表,并绘制相应的折线统计图。

实验次数60 90 120 150 180 两张牌的牌面数字和等于3的频数两张牌的牌面数字和等于3的频率学生合作探讨,小组实验,发现规律。

二、巩固深化、拓展思维议一议(1)在上面的实验中,你发现了什么?增加实验数据后频率渐趋于哪一个稳定值?(2)与其他小组交流所绘制的图表和发现的结论。

学生小组合作与全班性合作相结合,积极探究。

做一做(1)将各组的数据集中起来,求出两张牌的牌面数字和等于3的频率,它与你们的估计相近吗?(2)计算两张牌的牌面数字和等于3的概率。

学生小组合作实验,发现规律。

想一想两张牌的牌面数字和等于3的频率与两张牌的牌面数字和等于3的概率有什么关系?学生归纳、小结规律。

结论:当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此可以通过多次实验,用一个事件发生的频率来估计这一事件发生的概率三、随堂练习P46课本随堂练习四、课堂总结学生自我小结。

八年级数学下册第八章认识概率8.3频率与概率1教案苏科版.docx

苏科版 2018 届八年级数学下册教案频率与概率主备人用案人授课时间__年 __月 __日总第课时课题8.3频率与概率(1)课型新授教学1、理解随机事件发生的可能性有大有小,概率的定义;目标2.概率是随机事件自身的属性,它反映随机事件发生的可能性大小;3.在多次重复试验中,体会频率的稳定性.重点频率稳定性的理解.难点频率稳定性的理解.教法教自主先学当堂检测交流展示检测反馈小结反思具教具:多媒体等教学内容个案调整学生主体活教师主导活动动一、情境引入飞机失事会给旅客造成意外伤害.一家保险公司要为购买机票的旅客进行保险,应该向旅客收取多少保费呢?为此,保险公司必须精确计算出飞机失事的可能性有多大.类似这样的问题在我们的日常生活中也经常遇教到.例如:抛掷 1 枚均匀硬币,正面朝上.在装有彩球的袋子中,任意摸出的 1 个球恰好是红球.明天将会下雨.抛掷 1 枚均匀骰子, 6 点朝上.学二、自主先学1 、自学内容: P44--462、自学指导:(1)随机事件的发生的可能性有大有小。

过( 2)概率:指一个事件发生可能性大小的数值。

(3)必然事件发生的概率是 1;不可能事件发生的概率是 0;随机事件生的概率是0 和 1 之的一个数。

自学教材内3、自学:容程( 1). 在一次抽活中,中概率是0.12 ,不中的概率是 _______.( 2)小明与父母从广州乘火回梅州参叶念,他到的火票是同一排相的三个座位,那么小明恰好坐在父母中的概率是_______.(3)疑,提出学中存在的。

三、交流展示(一)展示一完成分展示自主先学中的,所学知。

交流1概率的定。

2 、随机事件有概率,确定事件也有概率。

3、概率的求解方法。

(二)展示二(例)做“抛地均匀的硬”,每人 10 次.1.分 5 人、 10 人、 15 人、⋯、 50 人⋯⋯的果,并将数据填入下表:教分组展示板演并讲解学学生讲解过(三)展示三(拓展)试试看。

某批足球产品质量检验获得的数据.程抽取的足球数5010020050010002000n优等品频数m4693194 472 9531903优等品频数mn(1)计算并填写表中“抽到优等品”的频率;(2)画出“抽到优等品”的频率的折线统计图;(3)当抽到的足球数很大时,你认为“抽到优等品”的频率在哪个常数附近摆动?四、检测反馈1、有大小、形状、颜色完全相同的 5 个乒乓球,每个球上分别标有数字1、 2、 3、 4、 5 中的一个,将这 5 个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是_______.教2、一个口袋中有 5 粒糖, 1 粒红色, 2 色黄色, 2 粒白色,今从中任取一粒,是白色的概率为 _________.3、有 5 个零件,已知其中混入了一个不合格产品现取其中一个,是正品的概率是 _________.学4、投掷两枚硬币,都是反面的概率为_________.五、小结反思有什么收获?有什么疑惑和遗憾?过小组讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论的起源与发展
一、概率的起源:
三四百年前在欧洲许多国家,贵族之间盛行赌博之风。

掷骰子是他们常用的一种赌博方式。

因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。

有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大?
17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。

这是什么原因呢?后人称此为著名的德·梅耳问题。

二、数学家们参与赌博:
又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得5局便算赢家。

如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。

参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。

他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。

后来,这些问题被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。

帕斯卡和费尔马两人一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”—— 正确的答案是:赢了4局的拿这个钱的4
3,赢了3局的拿这个钱的4
1。

为什么呢?假定他们俩再赌一局,或者 A 赢,或者 B 赢。

若是 A 赢满了5局,钱应该全归他;A 如果输了,即 A 、B 各赢4局,这个钱应该对半分。

现在,A 赢、输的可能性都是21,所以,他拿的钱应该是21×1+21×21=43;当然,B 就应该得4
1。

他们将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。

三、概率论的初步形成:
惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。

1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。

这本书迄今为止被认为是概率论中最早的论著。

因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。

这一时期被称为组合概率时期,计算各种古典概率。

在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。

雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。

大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。

雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。

四、著名的“圣彼得堡问题”:
1713年,雅可布的著作《猜度术》出版。

遗憾的是在他的大作问世之时,雅可布已谢世8年之久。

雅可布的侄子尼古拉·贝努利也真正地参与了“赌博”。

他提出了著名的“圣彼得堡问题”:甲乙两人赌博,甲掷一枚硬币到掷出正面为一局。

若甲掷一次出现正面,则乙付给甲一个卢布;若甲第一次掷得反面,第二次掷得正面,乙付给甲2个卢布;若甲前两次掷得反面,第三次得到正面,乙付给甲5个卢布。

一般地,若甲前n-1次掷得反面,第n次掷得正面,则乙需付给甲2n-1个卢布。

问在赌博开始前甲应付给乙多少卢布才有权参加赌博而不致亏损乙方?尼古拉同时代的许多数学家研究了这个问题,并给出了一些不同的解法。

但其结果是很奇特的,所付的款数竟为无限大。

即不管甲事先拿出多少钱给乙,只要赌博不断地进行,乙肯定是要赔钱的。

五、走出赌博——概率的发展:
随着18、19世纪科学的发展,人们注意到某些生物、物理和社会现象与机会游戏相似,从而由机会游戏起源的概率论被应用到这些领域中,同时也大大推动了概率论本身的发展。

法国数学家拉普拉斯将古典概率论向近代概率论进行推进,他首先明确给出了概率的古典定义,并在概率论中引入了更有力的数学分析工具,将概率论推向一个新的发展阶段。

他还证明了“棣莫弗——拉普拉斯定理”,把棣莫弗的结论推广到一般场合,还建立了观测误差理论和最小二乘法。

拉普拉斯于1812年出版了他的著作《分析的概率理论》,这是一部继往开来的作品。

这时候人们最想知道的就是概率论是否会有更大的应用价值?是否能有更大的发展成为严谨的学科。

概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。

1906年,俄国数学家马尔科夫提出了所谓“马尔科夫链”的数学模型。

1934年,前苏联数学家辛钦又提出一种在时间中均匀进行着的平稳过程理论。

如何把概率论建立在严格的逻辑基础上,这是从概率诞生时起人们就关注的问题,这些年来,好多数学家进行过尝试,终因条件不成熟,一直拖了三百年才得以解决。

六、概率体系正式建立与应用:
20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。

在这种背景下柯尔莫哥洛夫1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。

他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。

现在,概率论与以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及工农业生产等诸多领域中都起着不可或缺的作用。

直观地说,卫星上天,导弹巡航,飞机制造,宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报,海洋探险,考古研究等更离不开概率论与数理统计;电子技术发展,影视文化的进步,人口普查及教育等同概率论与数理统计也是密不可分的。

根据概率论中用投针试验估计π值的思想产生的蒙特卡罗方法,是一种建立在概率论与数理统计基础上的计算方法。

借助于电子计算机这一工具,使这种方法在核物理、表面物理、电子学、生物学、高分子化学等学科的研究中起着重要的作用。

概率论作为理论严谨、应用广泛的数学分支正日益受到人们的重视,并将随着科学技术的发展而得到发展。

相关文档
最新文档