遥感原理与应用总结

合集下载

遥感原理及应用的实验心得

遥感原理及应用的实验心得

遥感原理及应用的实验心得实验背景遥感技术是一种通过获取地面物体特征和信息的方法,通过远距离观测和记录地球表面的电磁辐射,以实现对地表物体的探测、监测和分析。

本文档旨在总结遥感原理及应用的实验心得。

实验目的1.了解遥感原理与技术2.掌握遥感数据的获取和处理方法3.分析应用遥感技术的实际案例实验内容和步骤在本次实验中,我采用以下步骤进行了遥感原理及应用的实验:1.研究遥感原理:了解遥感技术的基本原理,包括传感器的工作原理、数据获取和处理流程等。

2.数据获取与处理:通过遥感技术获取不同类型的遥感数据,包括航拍影像、遥感雷达数据等,并使用相应的软件对数据进行处理和分析。

3.应用案例研究:选择一个实际的案例,如土地利用/覆盖、环境监测、灾害管理等,通过遥感技术对该案例进行分析和解决方案的提出。

实验结果与分析1.遥感原理的了解使我对遥感技术的应用范围和潜力有了更深入的认识。

传感器的工作原理与数据获取、处理流程对于正确理解遥感数据具有重要意义。

2.在数据获取和处理方面,我学会了使用遥感软件对航拍影像和雷达数据进行处理,如图像预处理、分类和分析等。

这些技能对于遥感数据的准确解读和分析提供了基础。

3.在应用案例研究中,我选择了土地利用/覆盖作为研究对象。

通过对航拍影像的处理和分析,我得出了关于土地利用类型、空间分布和变化趋势的结论,并提出了相关的解决方案。

实验心得与体会通过本次实验,我对遥感原理及应用有了更全面、深入的了解,并掌握了相关的数据获取、处理和分析技巧。

以下是我在实验中的一些心得和体会:1.遥感技术的应用范围非常广泛,可以有效地解决许多实际问题。

例如,在土地利用/覆盖的研究中,遥感技术可以帮助我们了解土地的利用类型、分布和变化情况,为土地规划和管理提供依据。

2.遥感数据的获取和处理是遥感技术应用的关键步骤。

在实验中,我了解了不同类型遥感数据的获取方法,以及如何使用遥感软件对数据进行处理和分析。

这些技能对于准确理解和应用遥感数据具有重要意义。

简述遥感的基本原理及应用

简述遥感的基本原理及应用

简述遥感的基本原理及应用遥感是利用人造卫星、飞机、无人机或地面观测站等平台对地球表面进行观测和测量的技术。

遥感的基本原理是通过接收和记录地球表面反射和辐射的能量,并将其转化为电信号,进而提供地面信息和数据。

遥感技术主要应用于地质勘探、农业、气象、环境保护、城市规划等领域。

遥感的基本原理包括电磁波与物体相互作用、反射与辐射、传感器及数据的获取与处理等。

遥感利用电磁波来获取地面信息,电磁波通过空气、云、尘埃等自然界中的物质传播,当它与地球表面上的物体相互作用时,会发生反射、散射、吸收等过程。

利用这些过程,遥感技术可以测量并分析地球表面上的对象的光谱、热力学特性和形状等重要信息。

遥感的应用广泛,涵盖了很多领域。

在地质勘探方面,遥感可以帮助寻找地下资源,如石油、天然气和矿藏。

通过分析地质特征、土壤类型和植被覆盖等信息,可以确定矿区位置和资源储量。

在农业领域,遥感可以监测作物的生长状况、土壤湿度和病虫害等问题,提供精确的农作物管理和灾害预警信息。

在气象领域,遥感可以监测大气成分、云层和降水等,为气象预报和天气监测提供重要数据。

在环境保护方面,遥感可以检测森林覆盖变化、土地利用变化和水资源管理等问题,促进可持续发展和生态保护。

在城市规划方面,遥感可以提供城市发展和用地规划所需的数据,帮助城市规划师做出更科学的决策,在城市建设过程中提高效率和减少资源浪费。

遥感还有其他一些应用领域。

例如,遥感可以监测自然灾害,如洪水、地震、火灾等,及时提供救援和应急响应。

遥感还可以监测海洋和水质,了解海洋生态系统的变化和海洋资源的利用情况。

另外,遥感还可以用于考古学领域,帮助寻找古代文明的遗址和文化遗产等。

此外,遥感技术还可以用于导航和测绘等领域,提供高精度的地理数据。

总之,遥感技术的基本原理和应用十分重要和广泛。

通过利用遥感技术,可以获取地球表面的重要信息,提供决策支持和数据支持,促进各个领域的发展和进步。

同时,随着遥感技术的不断发展和创新,未来遥感技术的应用领域还将继续扩大,为人类社会的可持续发展做出更大的贡献。

遥感原理与应用总结

遥感原理与应用总结

第一章:1. 遥感的定义遥感是指对地观测,即从不同高度的工作平台上通过传感器,对地球表面目标的电磁波反射或辐射信息进行探测,并经信息的记录、传输、处理和解译分析,对地球的资源与环境进行探测和监测的综合性技术。

2. 遥感的分类(1)按遥感平台分类:地面遥感、航空遥感、航天遥感(2)按工作方式:主动式遥感、被动式遥感(3)按工作波段:紫外遥感、可见光遥感、红外遥感、微波遥感、多光谱和高光谱遥感(4)按记录方式:成像遥感、非成像遥感(5)按遥感应用领域分类:从大的研究领域:外层空间遥感、大气遥感、陆地遥感、海洋遥感),从具体应用领域(城市遥感、环境遥感、农业遥感和林业遥感、地质遥感、气象遥感、军事遥感)3. 遥感技术系统的组成部分:信息获取、信息记录与传输、信息处理、信息应用第二章:1.电磁波谱:将电磁波按波长或频率递增或递减顺序排列红外波段:0.76-1000um(近红外(识别植物类型,分析植物长势,监测植被的病虫害) (热红外遥感主要使用3-15um的红外线,探测地下热源、火山、森林火灾、热岛效应)2.辐射通量:电磁辐射单位时间内通过某一表面的能量辐射通量密度:通过单位面积的辐射通量辐射出射度:单位面积发射出的辐射通量辐射照度(辐照度):投射到单位面积上的辐射通量3.绝对黑体:如果一个物体对任何波长的电磁辐射都全部吸收而毫无反射和透射,则称这个物体为绝对黑体(黑体辐射与温度成正相关)4.(1)太阳辐射的特性:1地球上的能源来源于太阳,太阳是被动遥感最主要的辐射源2在距离地球一个天文单位内,太阳辐射在大气上界处的垂直入射的辐射通量密度称为太阳常数3地球大气层以外的太阳光谱辐照度曲线为平滑的连续曲线(2)地球辐射特性:1地球上的能源来源于太阳的直射能量与天空漫入射的能量2被地表吸收的太阳辐射能,又重新被地表辐射(3)比辐射率:单位面积上地物发射的某一波长的辐射通量密度与同温度下黑体在同一波长上的辐射通量密度之比,又称发射率6.电磁辐射能与地表的相互作用有三种基本物理过程:反射、吸收和透射(1)物体对电磁波的反射可表现的三种形式:镜面反射:当入射能量全部或几乎全部按相反方向反射,且反射角等于入射角漫反射:当入射能量在所有方向均匀反射,即入射能量以入射点为中心在整个半球空间内向四周各向同性反射能量的现象(即伯朗反射)一个完全的漫反射体称为伯朗体方向反射:介于伯朗表面和镜面之间的,其反射方向各不相同,而具有明显的方向性,即在某些方向上反射最强烈的现象7.光谱反射率:地物在某波段的反射通量与该波段的入射通量之比地物的反射波谱特性:地物波谱反射率随波长变化而改变的特性8.水体的反射主要在蓝绿光波段,在近红外、中红外有很强的吸收带植物在绿光附近有一个反射波峰,两侧的蓝光和红光有两个吸收带9.影像地物反射光谱特性的因素:1太阳位置即太阳高度和方位角2传感器位置即观测角和方位角3不同的地理位置、太阳位置、地理景观、海拔高度大气透明度4地物本身性质的变异5时间的变化、季节的变化10.大气对电磁辐射传输作用大气对电磁辐射传输的作用过程的影响包括:散射、吸收、反射、扰动、折射和偏振,对遥感数据,主要是散射和吸收(1)大气吸收:将电磁波辐射能量转换成分子的热运动,使能量减少,主要吸收水蒸气、二氧化碳和臭氧电磁波辐射在大气传输中透过率较高的波段称为大气窗口(2)大气散射:电磁波在传播过程中遇到微粒而使传播方向发生改变,并向各个方向散开瑞利散射:引起散射的大气粒子直径远小于入射电磁波波长(蓝天)米氏散射:。

遥感的原理与应用课程总结

遥感的原理与应用课程总结

遥感的原理与应用课程总结简介遥感是指利用卫星、飞机等远距离传感器获取地球表面信息的一种技术。

遥感的原理与应用是一门涉及光学、电磁学等学科的综合性课程,本文对遥感的原理及应用进行总结。

遥感的原理遥感技术是通过传感器测量地球表面的电磁辐射,并将其转化为数字信号。

遥感的原理主要包括以下几个方面:1.电磁辐射:地球表面物体不断向外发射电磁辐射,包括可见光、红外线、微波等各种波段。

通过测量地球表面物体的辐射能量和频率分布,可以获取相关信息。

2.传感器:遥感数据的获取依赖于特定类型的传感器。

常见的遥感传感器包括光学传感器、红外传感器、微波传感器等。

不同传感器对于不同波段的电磁辐射有不同的敏感度。

3.数字图像处理:传感器获取的电磁辐射信息将以数字图像的形式呈现。

通过数字图像处理技术,可以对遥感图像进行增强、分类、分析等操作,提取出有用的地表信息。

遥感的应用遥感技术在众多领域都有广泛的应用。

下面列举了几个常见的遥感应用领域:1.地球观测:遥感技术能够提供大范围、连续的地球观测数据。

这些数据可以用于监测自然资源的分布、环境变化的监测等。

例如,通过遥感图像可以观测到森林覆盖面积的变化、海洋温度的变化等。

2.城市规划:遥感技术可以为城市规划提供重要的数据支持。

通过获取高分辨率的遥感图像,可以分析城市的土地利用情况、交通网络、建筑物分布等信息,为城市规划提供科学依据。

3.农业管理:遥感技术可以对农业资源进行监测和管理。

通过获取农田的遥感图像,可以判断土壤质量、作物生长状况、灾害情况等,为农业生产提供有效的决策支持。

4.灾害监测与评估:遥感技术在灾害监测和评估方面具有重要的应用价值。

通过获取灾区的遥感图像,可以快速准确地评估灾害的范围和损失情况,为救援和重建工作提供参考。

总结遥感是一门应用广泛且具有重要意义的技术,它通过传感器获取地球表面的电磁辐射信息,并通过数字图像处理技术对遥感图像进行分析和应用。

遥感技术在地球观测、城市规划、农业管理、灾害监测等众多领域都有广泛的应用。

遥感的工作原理和应用

遥感的工作原理和应用

遥感的工作原理和应用工作原理遥感是利用传感器对地球表面物体的电磁辐射进行探测和测量的技术。

它基于物体对不同波段的辐射具有不同的反射、散射、吸收特性这一原理。

遥感技术主要包括被动遥感和主动遥感两种形式。

被动遥感被动遥感是指传感器接收地球表面反射和发射的自然辐射。

传感器通过不同波段(如可见光、红外线、微波等)接收地表反射出的辐射,然后进行记录和分析。

被动遥感可用于获取地表反射率、植被覆盖度、气温变化等信息。

主动遥感主动遥感是指传感器通过发射电磁波并接收其返回信号来获取地表信息。

常见的主动遥感技术包括雷达和激光雷达。

雷达利用电磁波在地表和大气中的传播特性来探测地表目标,可用于获取地表高程、地表形状等信息。

激光雷达则利用激光束对地表进行扫描,并通过接收返回的激光信号来获取地表的距离和形状等信息。

应用领域遥感技术在地球科学、农业、环境保护、城市规划等领域有着广泛的应用。

地球科学遥感技术在地球科学领域扮演着重要的角色。

通过遥感技术,科学家可以获得大范围的地表地貌、地质构造、水文等信息,从而深入研究地球的演化历史、自然灾害等。

遥感技术还可用于监测地壳的运动、火山活动、地震预警等。

农业遥感技术在农业领域的应用主要体现在农作物管理和精准农业方面。

通过遥感图像,农民和农业专家可以获得农田植被的生长状态、病虫害的发生情况,从而及时采取措施进行管理。

遥感技术还可以用于农田的土壤质量评估、水分监测等,实现农业生产的精准化管理。

环境保护遥感技术在环境保护领域的应用广泛而深入。

通过遥感技术,可以监测大气污染、水体污染、森林砍伐等环境问题。

遥感技术还可以用于监测和预测自然灾害,如洪水、干旱和森林火灾等,从而提前做出应对措施。

城市规划遥感技术在城市规划中有着重要的应用价值。

通过遥感技术,可以获取城市的土地利用情况、道路网络、建筑物分布等信息,为城市规划和管理部门提供决策支持。

遥感技术还可以用于监测城市的扩张和发展,预测城市的未来发展趋势,从而帮助规划师做出科学合理的城市规划方案。

遥感原理与应用各章节知识点总结

遥感原理与应用各章节知识点总结

遥感原理与应用各章节知识点总结
遥感原理与应用各章节知识点总结如下:
1. 遥感定义:遥感是指通过非接触的方式,远距离感知目标物体的基本属性,包括位置、形状、大小、方向、表面温度等。

2. 电磁波谱:遥感的工作基础是电磁波谱,包括可见光、红外线、微波等不同波段的电磁波。

不同的物体对不同波段的电磁波有不同的反射和吸收特性,因此通过测量这些特性,可以反演出物体的基本属性。

3. 传感器:传感器是遥感的“眼睛”,它能够接收和记录电磁波谱中特定波段的信息。

常见的传感器包括光学相机、红外扫描仪、微波雷达等。

4. 数据处理:数据处理是遥感中非常重要的环节,它包括预处理、增强、变换和分析等步骤。

通过这些步骤,可以将原始的遥感数据进行处理,提取出有用的信息,并对这些信息进行解释和识别。

5. 应用领域:遥感的应用领域非常广泛,包括资源调查、环境保护、城市规划、交通管理、气象监测、灾害预警等。

6. 发展趋势:随着科技的不断发展,遥感技术也在不断进步和完善。

未来的遥感技术将更加注重智能化、自动化和实时化,同时也会更加注重多源数据的融合和综合应用。

以上是遥感原理与应用各章节知识点总结,如需获取更具体的内容,建议查阅相关教材或权威资料。

遥感的原理与应用

遥感的原理与应用

遥感的原理与应用1. 遥感的定义遥感是通过对地球表面进行远距离观测与感知的技术,利用传感器获取地球表面物体的信息并进行分析和解释。

遥感技术利用电磁波辐射与物体相互作用的特性,通过记录、测量和解释该辐射,可以获取地表和大气的信息。

2. 遥感原理遥感的基本原理是通过感知和测量地球表面物体物理特性与光辐射之间的相互关系。

当遥感器传播出电磁波辐射时,其与物体相互作用后会发生散射、吸收或反射。

这些辐射回到传感器被接收和记录,并通过数据处理进行解释和分析。

3. 遥感的应用领域3.1 地球科学遥感技术在地球科学领域有着广泛的应用。

通过遥感技术,可以监测地球表面的变化,如环境变化、土地覆盖变化、通量变化等。

通过长期的遥感监测,可以对地球环境进行评估和预测。

3.2 城市规划和土地利用遥感技术在城市规划和土地利用方面的应用也十分重要。

通过遥感技术可以获取到城市的地形、道路、建筑、绿化等信息,进而为城市规划和土地利用提供数据支持。

3.3 农业和林业遥感技术在农业和林业领域也有着广泛的应用。

通过遥感技术可以对农作物的生长状况、土壤质量、水资源利用等进行监测和评估,能够为农业生产提供技术支持。

同时,遥感技术也可以用于林业资源的监测和保护。

3.4 海洋科学遥感技术在海洋科学研究中也发挥着重要作用。

通过遥感技术可以获取海洋的温度、盐度、色素含量等信息,能够对海洋生态环境进行监测和评估,为海洋研究提供数据支持。

3.5 灾害监测与防范遥感技术在灾害监测和防范方面也有着重要的应用。

通过遥感技术可以对洪水、干旱、地震、火灾等自然灾害进行实时监测和预警,提供及时的灾害信息,帮助相关部门进行灾害应对和救援工作。

3.6 环境监测与保护遥感技术在环境监测和保护方面扮演着重要的角色。

通过遥感技术可以监测大气污染、水体污染、土壤污染等环境问题,为环境保护提供数据支持。

4. 遥感的发展趋势随着科技的不断发展,遥感技术也在不断创新和进步。

以下是遥感技术的一些发展趋势:•高分辨率遥感技术的发展,可以获取更精准的地表信息。

遥感技术的原理优势应用

遥感技术的原理优势应用

遥感技术的原理优势应用一、遥感技术的原理•遥感技术是通过卫星、无人机等载荷设备获取地球表面信息的一种技术。

其原理主要基于电磁波的辐射、反射和传播规律。

•遥感技术利用传感器捕捉地表反射、发射或辐射的电磁能量,将其转化为数字图像或其他形式的信息。

•遥感技术利用卫星和无人机等载荷设备对地面进行全方位、多角度观测,可以获取地球上的各种信息,包括地形、植被、水文、气候、土壤等。

二、遥感技术的优势遥感技术具有以下优势:1.获取大范围、无偏差的数据:遥感技术可以覆盖广阔的地理范围,获取大量数据,而且不受人为主观因素的限制,数据具有客观性和无偏差性。

2.周期性观测和重复性观测:遥感技术可以进行周期性的观测,从而获取同一地区不同时期的数据,并可以对数据进行比较分析,研究地表变化情况。

3.高时空分辨率的数据:遥感技术可以获取高分辨率的数据,即可以观测到较小的地物和地表细节,也可以观测到瞬时的地表变化。

4.多源数据融合:遥感技术可以融合多个传感器的数据,同时获取多种地球表面信息,提高信息提取的准确性和精度。

5.非接触式观测:遥感技术不需要直接接触地面,可以在较远的距离进行观测,减少了人为干扰和对环境的破坏。

三、遥感技术的应用领域遥感技术在许多领域中都得到了广泛应用,主要包括以下几个方面:1.农业:遥感技术可以用于农作物生长监测、土壤质量评估、农作物面积统计等。

通过遥感数据,可以提前预测农作物的生长状态和产量,为农业生产提供科学依据。

2.城市规划:遥感技术可以用于城市土地利用调查、建筑物高度测量、城市扩张监测等。

通过遥感数据,可以对城市的发展进行评估和规划,提高城市规划的科学性和可行性。

3.环境保护:遥感技术可以用于环境污染监测、水体质量评估、森林覆盖监测等。

通过遥感数据,可以及时监测环境变化,评估环境质量,提供科学依据和决策支持。

4.资源调查:遥感技术可以用于矿产资源调查、能源资源勘探、水资源管理等。

通过遥感数据,可以快速获取资源信息,为资源开发和管理提供科学依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:绪论knowledge points(知识点):掌握:遥感(狭义)、遥感技术、景、分辨率;遥感技术系统的组成;遥感的特性;目前主要的遥感卫星、遥感软件了解:遥感的分类;遥感的发展史;遥感与测绘学科的关系遥感:是一门新兴的科学技术,主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。

对象:地面;载体:电磁波(主要)目的:研究地面物质的性质和运动状态(周期性、重复性)过程:成像、传输、处理、应用2.遥感技术:从地面到高空各种对地球、天体观测的综合性技术系统的总称。

1)空间信息采集2)地面接收与预处理3)地面实况调查4)信息的提取与应用1.遥感的特性:Characteristics宏观(空间)特性:Spatial视域范围大光谱特性:Spectral多波段,没有可见光的限制,扩大了观测范围时相特性:Temporal可周期成像,有利于研究和动态监测景的概念:在遥感数据的发布过程中,将获得的连续条带影像按一定的距离划分为若干幅影像。

空间分辨率:传感器瞬时视场可观察到的地面大小光谱分辨率:探测光谱辐射能量的最小波长间隔1米分辨率2.遥感的分类:Classes按遥感对象(应用)分:土地遥感;环境遥感;大气遥感;海洋遥感;农业遥感;林业遥感;水利遥感地质遥感(按接收信息方式分:主动遥感(Active);被动遥感(Passive)按遥感平台(高度)分:航天遥感(Astronautics);航空遥感(Airborne);地面遥感(Subaerial)主动方式:扫描(图像方式):像面扫描(被动型相控阵雷达);物面扫描:微波辐射计;真实孔径雷达;合成孔径雷达非扫描(非图像方式):微波散射计;微波高度计;激光光谱仪;激光高度计;激光水深计;激光测距仪被动方式:扫描(图像方式):1、像面扫描:电视摄像机;固体扫描仪(CCD)2物面扫描:光机扫描仪;固体扫描仪非扫描:1、非图像方式:微波辐射计;地磁测量仪;重力测量仪;傅立叶光谱仪2、图像方式(照相机):黑白;天然彩色;红外;彩色红外(2) 按平台(高度)分类:航天遥感Astronautics:1、轨道卫星:地球同步卫星;太阳同步卫星:长寿命(500-1000 km)(3600 km),短寿命(150-500 km)/2、载人飞船(<500 km)3、航天飞机(<300 km)4、/探空火箭(100-650 km)航空遥感Airborne:1、飞机:高空飞机(>15km);中空飞机(9-15km);低空飞机(<9km)2、气球:飘浮气球(<50km);系留气球(<5km)地面遥感Subaerial:高塔(<300m);车船(<30m);观测架(几米)§1-4 遥感与测绘的关系Relationship between RS. and Surveying & Mapping1. 遥感制图是测绘领域的发展方向:空间范围广,信息量大;成图周期短,能以一定的周期反复观测几乎全部地球表面,便于实时动态监测;能够快速获取大量的地面景物的直观的定位资料,可用作研究地物的空间分布;受地域、气候、地形等的限制小;精度提高(接图少);完成了制图自动化(软件功能强大)2.利用遥感卫星影像制图的优点:(Advantages)借助影像与地面相应点间的对应关系,确定地物的种类、形状、大小、及其平面位置;借助影像与地面相应点间的几何关系,制作各种比例尺的地形图;加速了测绘工作进度,节省了劳动力,扩大了工作的范围和领域。

空间范围广,信息量大。

3.遥感技术在测绘科学中的应用:(Application)80GIS GIS((Geographical Information System)地理信息系统以采集、贮存、管理、分析和描述整个或部分地球表面(包括大气层在内)与空间和地理分布有关的数据的空间信息系统。

2维GIS 3维GIS 3维GIS第二章遥感物理基础Physical Foundation of RS掌握:概念:电磁波与电磁波谱、多普勒效应、大气窗口、黑体、基尔霍夫辐射定律、遥感技术所用的主要电磁波及其特性、物体发射光谱特征的特点了解:大气对太阳辐射的影响、遥感器的分类、结构、主要的遥感器及其工作原理§2-1 电磁波及电磁波谱Electromagnetic Wave & Electromagnetic Spectrum1)电磁波的定义:电磁波(Electromagnetic Wave):在真空或物质中通过电磁场的振动而传输电磁能量的波。

光波、热辐射、微波、无线电波等都是由振源发出的电磁振荡在空间的传播。

电磁波是通过电场和磁场之间相互联系传播的。

根据麦克斯韦电磁场理论,空间任何一处只要存在着场,也就存在着能量,变化着的电场能够在它的周围激起磁场,而变化的磁场又会在它的周围感应出变化的电场。

这样,交变的电场和磁场相互激发并向外传播,闭合的电力线和磁力线就象链条一样,一个接一个地套连着,在空间传播开来,形成了电磁波。

2)电磁波的特性:电磁波具有波动性和粒子性两种性质。

(1)波动性电磁波是一种横波,电场和磁场的振动方向是相互垂直的,且垂直于波的传播方向。

电磁波的波长λ(wavelength) 和频率f(frequency)及波速v(velocity)之间的关系:λ=v/f电磁波在真空中以光速c(=2.998×108m/s)传播。

(1)波动性光的波动性形成了光的干涉、衍射、偏振等现象。

A 干涉(interference):干涉现象的基本原理是波的叠加原理。

一列波在空间传播时,在空间的每一点都引起振动,当两列波在同一空间传播时,空间各点的振动就是各列波单独在该点产生振动的叠加合成。

B 衍射(diffraction):光线偏离直线路径的现象称为光的衍射。

夫朗和费衍射装置的单缝衍射实验,可以观察到衍射现象。

在入射光垂直于单缝平面时的单缝衍射图样中,可以看到中央有特别明亮的亮纹,两侧对称地排列着一些强度较小的亮纹。

C 偏振(polarization):电磁波由两个相互垂直的振动矢量即电场强度E和磁场强度H来表征。

而E和H都与电磁波的传播方向相垂直,光是电磁波的特例。

如果光矢量E在一个固定平面内只沿一个固定方向作振动,则这种光称为偏振光,和振动方向相垂直且包含传播方向的面称偏振面。

(2)粒子性电磁波是由密集的光子微粒组成的,电磁辐射实际上是光子微粒流的有规则运动,波是光子微粒流的宏观统计平均状态,而粒子是波的微观量子化。

电磁辐射在传播过程中,主要表现为波动性;当电磁辐射与物质相互作用时,主要表现为粒子性,此时电磁波又叫光子(photo)或光量子。

其能量E=hf波粒二象性(wave-particle duality)(3)电磁波的四要素即频率(或波长)(frequency/wavelength)、传播方向(transmission direction)、振幅(amplitude)及偏振面(plane of polarization)。

振幅表示电场振动的强度,其平方与电磁波能量的大小成正比。

从目标物中辐射的电磁波的能量叫辐射能。

包含电场方向的平面叫偏振面,偏振面的方向一定的情况叫直线偏振。

(3)电磁波四要素电磁波四要素与电磁波具有的信息之间存在着一定的关系:多普勒效应——当波源与观测者之间有相对运动时,观测者接收到的频率和波源发出的频率是不同的一种现象。

当二者相互接近时,接收到的频率升高,反之则降低。

二者频率之差称为“多普勒频移”。

2.电磁波谱:Electromagnetic Spectrum1)电磁波谱的定义:实验证明,γ射线、χ射线、紫外线(Ultraviolet=UV)、可见光(visible light)、红外线(infrared=IR)、微波、无线电波等都是电磁波,只是波源不同,波长(频率)也各不相同。

将各种电磁波在真空中的波长(频率)按其长短,依次排列制成的图表叫做电磁波谱。

2)遥感中常用的各光谱段的主要特征及其应用紫外线:0.01—0.4μm,太阳辐射含有紫外线,只有0.3-0.4μm波长的紫外线部分能够穿过大气层,且能量很小。

主要用于探测碳酸盐岩的分布和油污染的监测。

碳酸盐岩在0.4μm以下的短波区域对紫外线的反射比其它类型的岩石强。

水面漂浮的油膜比周围水面反射的紫外线要强烈。

由于大气层中臭氧对紫外线的强烈吸收和散射作用,通常探测高度在2000米以下。

可见光:是遥感中最常用的波段。

尽管大气对它也有一定的吸收和散射作用,它仍是遥感成像所使用的主要波段之一。

在此波段大部分地物都具有良好的亮度反差特性,不同地物在此波段的图象易于区分。

红外:0.76—1000μm。

在遥感中主要利用3—15μm波段,更多的是利用3—5μm和8—14μm。

红外遥感是采用热感应方式探测地物本身的辐射(如热污染、火山、森林火灾等),所以不仅白天可以进行,夜间也可进行,能进行全天时遥感。

微波: 1mm—1m。

分为:毫米波、厘米波和分米波。

微波辐射和红外辐射都具有热辐射性质。

由于微波的波长比可见光、红外线要长,能穿透云、雾而不受天气影响,所以能进行全天时全天候的遥感探测。

微波遥感可以采用主动或被动方式成像,另外,微波对某些物质具有一定的穿透能力,能直接透过植被、冰雪、土壤等表层覆盖物。

§2-2 太阳辐射及其影响因素3)大气对太阳辐射的影响:太阳辐射进入地球之前必然通过大气层,太阳辐射与大气相互作用的结果,是使能量不断减弱。

约有30%被云层和其它大气成分反射回宇宙空间;约有17%被大气吸收,约有22%被大气散射;而仅有31%的太阳辐射到达地面。

其中反射作用影响最大,由于云层的反射对电磁波的各波段均有强烈影响,造成对遥感信息接收的严重障碍。

3.大气窗口:Atmospheric Window大气层的反射、吸收和散射作用,削弱了大气层对太阳辐射的透明度。

通常我们把太阳辐射通过大气层时较少被反射、吸收和散射的那些透射率较高的波段,称为大气窗口。

注:遥感器只能用大气窗口的电磁波段获取地面信息。

•地物的光谱特性是遥感技术的重要理论依据,因为它既为传感器工作波段的选择提供依据,又是遥感数据正确分析和判读的理论基础,同时也作为利用计算机进行数字图像处理和分类时的参考标准。

•时间特性主要是反映在不同时期被测地物光谱特性的变化。

而地物间空间特性的明显差异,主要是由被测地物的光谱特性差异所造成。

黑体:入射的全部电磁波被完全吸收,既无反射也没有透射的物体。

自然界中,黑体是不存在的。

灯烟基尔霍夫辐射定律:一定温度下的物体,对某一波长的电磁波辐射的吸收能力和发射能力相对应。

相关文档
最新文档