2.中考数学锐角三角函数实际应用
三角函数在实际生活中的应用备战2023年中考数学考点微专题

考向 5.9 三角函数在实际生活中的应用【知识要点】1、在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。
由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
2、如图1,当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角 当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角3、 如图2,坡面与水平面的夹角叫做仰角 (或叫做坡比)。
用字母i 表示,即tan h i A l ==4、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 的方位角分别为45°、135°、225°。
5、指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方位角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。
7.测量物体高度的方法:(1).利用全等三角形的知识 ;(2)利用相似三角形的对应边成比例 ;(3).利用三角函数的知识例1、如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC 的高度为153米. (1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D 都在同一平面内.参考数据:tan 7523︒=+,tan1523︒=-.计算结果保留根号)图4 图3图2 hi=h:l A BC图1解:如图1,过D 点作DH ⊥AB ,垂足为点H ,过C 点作CE ⊥DH ,垂足为点E ,可知四边形EHBC 为矩形,∴EH =CB ,CE =HB ,∵无人机测得小区楼房BC 顶端点C 处的俯角为45︒,测得操控者A 的俯角为75︒,DM ∥AB , ∴∠ECD =45°,∠DAB =75°,∴∠CDE =∠ECD =45°,∴CE =DE ,设CE =DE =HB =x ,∴AH =45-x ,DH =DE +EH =x +153在Rt △DAH 中,DH =tan75°×AH =(()2345x -, 即(()1532345x x +=-,解得:x =30,∴DH = 15330∴此时无人机的高度为()15330米;(2)如图2所示,当无人机飞行到图中F 点处时,操控者开始看不见无人机,此时AF 刚好经过点C ,过A 点作AG ⊥DF ,垂足为点G ,此时,由(1)知,AG =15330(米),∴°30153===15tan 7523AG DG ++; ∵1533tan =453BC CAB AB ∠==, ∴°=30CAB ∠∵DF ∥AB ,∴∠DF A =∠CAB =30°,∴°30345tan 30GA GF ==+, ∴=30330DF GF DG -=+,因为无人机速度为5米/秒,所以所需时间为30330=6365++(秒); 所以经过()636+秒时,无人机刚好离开了操控者的视线.本题综合考查了解直角三角形的应用,涉及到了等腰直角三角形的性质、矩形的判定与性质、特殊角的三角函数值、解直角三角形等知识,解决本题的关键是读懂题意,能从题意与图形中找出隐含条件,能构造直角三角形求解等,本题蕴含了数形结合的思想方法等.一、单选题1.(2021·广东深圳·二模)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65︒(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为()A.100sin65︒B.100cos65︒C.100tan65︒D.100 sin65︒2.(2021·浙江温州·一模)如图,小慧的眼睛离地面的距离为1.6m,她用三角尺测量广场上的旗杆高度,仰角恰与三角板60︒角的边重合,量得小慧与旗杆之间的距离BC为5m,则旗杆AD的高度(单位:m)为()A.6.6 B.11.6 C.531.63+D.1.653+3.(2021·河北唐山·二模)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.4sinα米B.4sinα米C.4cosα米D.4cosα米4.(2021·广东云浮·一模)如图,是一水库大坝横断面的一部分,坝高60mh=,迎水斜坡100mAB=,斜坡的坡角为a,则tan a的值为()A.43B.34C.35D.455.(2021·重庆市永川区教育科学研究所一模)鹅岭公园是重庆最早的私家园林,前身为礼园,是国家级AAA旅游景区,园内有一瞰胜楼,登上高楼能欣赏到重庆的优美景色.周末,李明同学游览鹅岭公园,如图,在点A观察到瞰胜楼楼底点C的仰角为12°,楼顶点D的仰角为13°,测得斜坡BC的坡面距离BC=510米,斜坡BC的坡度8:15i=.则瞰胜楼的高度CD是()米.(参考数据:tan12°≈0.2,tan13°≈0.23)A.30 B.32 C.34 D.36 6.(2021·山东·济宁学院附属中学二模)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.30海里B.203海里C.20海里D.302海里7.(2021·河北唐山·一模)如图,电线杆的高度为CD=m,两根拉线AC与BC互相垂直(A,D,B在同一条直线上),若∠CBA=α,则拉线AC的长度可以表示为()A .sin m αB .cos m αC .m cosαD .tan m α8.(2021·江苏无锡·一模)如图,胡同左右两侧是竖直的墙,一架32米长的梯子BC 斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B 恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D 处,此时测得梯子AD 与地面的夹角为60°,则胡同左侧的通道拓宽了( )A .3米B .3米C .()32-米D .()33-米 9.(2021·重庆一中三模)如图,小欢同学为了测量建筑物AB 的高度,从建筑物底端点B 出发,经过一段坡度1:2.4i =的斜坡,到达C 点,测得坡面BC 的长度为15.6米,再沿水平方向行走30米到达点D (A ,B ,C ,D 均在同一平面内).在点D 处测得建筑物顶端A 的仰角为37︒,则建筑物AB 的高度约为(参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)( )A .27.3米B .28.4米C .33.3米D .38.4米10.(2021·江苏南通·二模)如图,某大楼DE 楼顶挂着“众志成城,抗击疫情”的大型宣传牌,为了测量宣传牌的高度CD ,小江从楼底点E 向前行走30米到达点A ,在A 处测得宣传牌下端D 的仰角为60°.小江再沿斜坡AB 行走26米到达点B ,在点B 测得宣传牌的上端C 的仰角为43°,已知斜坡AB 的坡度i =1:2.4,点A 、B 、C 、D 、E 在同一平面内,CD ⊥AE ,宣传牌CD 的高度约为( )(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93,3)A .8.3米B .8.5米C .8.7米D .8.9米11.(2021·重庆八中二模)如图,一棵松树AB 挺立在斜坡CB 的顶端,斜坡CB 长为52米,坡度为i =12:5,小张从与点C 相距60米的点D 处向上爬12米到达观景台DE 的顶端点E ,在此测得松树顶端点A 的仰角为39°,则松树的高度AB 约为( )(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A .16.8米B .28.8米C .40.8米D .64.2米12.(2021·重庆·字水中学三模)白沙镇有一望夫塔,小明在与塔底中心的D 同一水平线的A 处,测得24AD =米,沿坡度0.75:1i =的斜坡AB 走到B 点,测得塔顶E 仰角为37°,再沿水平方向走22米到C 处,测得塔顶E 的仰角为22°,则塔高DE 为( )米.(结果精确到十分位)(sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,sin 220.37︒≈,cos220.93︒≈,tan220.40︒≈,)A .18.3米B .19.7米C .20.7米D .22.3米二、填空题 13.(2021·广东·深圳市南山区太子湾学校二模)如图,一楼房AB 后有一假山,其斜面坡度为i =13E 处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,则楼房AB 的高为_____米.14.(2021·广东·广州市第六十五中学一模)小颖家住在甲楼,她所居住的楼房前面有一座乙楼.冬天,阳光入射角是30°,两楼距离20米,小颖家的阳台距地面7米,乙楼高18米,那么影子的顶端距她家阳台还有_________米.(精确到0.1米)15.(2021·山东·郓城县教学研究室一模)如图,在一笔直的海岸线l上有相距2km的A、B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是__km.16.(2021·吉林长春·二模)如图,在A处看建筑物CD的顶端C的仰角为α,且tanα=0.8,向前行进3米到达B处,从B处看顶端C的仰角为45°(图中各点均在同一平面内,A、B、D三点在同一条直线上,CD⊥AD,则建筑物CD的高度为_____米.17.(2021·广东·佛山市华英学校一模)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC,CD.测得BC=9m,CD=6m,斜坡CD的坡度i=1:3,在D处测得电线杆顶端A的仰角为30°,则电线杆AB的高度为_____.18.(2021·湖南·长沙市开福区青竹湖湘一外国语学校二模)如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端点D与点C,B在同一直线上,已知楼房AC =32米,CD=16米,则荷塘的宽BD为________米.19.(2021·山东·庆云县渤海中学一模)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D 处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.则大楼AB的高度_____.(结果保留根号)20.(2021·湖北咸宁·模拟预测)如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53︒,观测旗杆底部B的仰角为45︒,则建筑物BC的高约为_____m(结果保留小数点后一位).(参考数据sin530.80︒≈)︒≈,cos530.60︒≈,tan53 1.33三、解答题21.(2021·贵州六盘水·模拟预测)位于我市的北盘江大桥是世界第一高桥,大桥采用低塔斜拉桥桥型(如图1),桥长1341.4米,桥面至江面垂直距离565.4米.图2是从图1中抽象出的平面图,测得拉索AB 与水平桥面的夹角是30°,拉索DE 与水平桥面的夹角是60°,两拉索顶端的距离BE 为55米,两拉索底端距离AD 为240米.(1)求DC EC的值;(结果保留根号) (2)求立柱BC 的长.(结果精确到0.1米,3≈1.732)22.(2021·贵州·仁怀市教育研究室一模)如图,两座建筑物AD 与BC ,其地面距离CD 为60m ,从AD 的顶点A 测得BC 顶部B 的仰角30α=︒,测得其底部C 的俯角45β=︒,求建筑物BC 的高(结果保留根号).23.(2021·河南商丘·三模)在一次实弹演习中,我国参演红军需轰炸蓝军的一个桥梁,如图,红军飞行员驾驶战机飞到A 处时发现桥梁BC 并测得B 、C 两点的俯角分别为45°、35°.已知飞机、桥梁BC 与地面在同一水平面上,其桥梁BC 长度为800m .请求出此时飞机离地面的高度.(结果保留整数.参考数据:sin35°≈712,c os35°≈56,tan35°≈710)一、单选题1.(2021·吉林长春·中考真题)如图是净月潭国家森林公园一段索道的示意图.已知A 、B两点间的距离为30米,A α∠=,则缆车从A 点到达B 点,上升的高度(BC 的长)为( )A .30sin α米B .30sin α米C .30cos α米D .30cos α米 2.(2021·福建·中考真题)如图,某研究性学习小组为测量学校A 与河对岸工厂B 之间的距离,在学校附近选一点C ,利用测量仪器测得60,90,2km A C AC ∠=︒∠=︒=.据此,可求得学校与工厂之间的距离AB 等于( )A .2kmB .3kmC .23kmD .4km3.(2021·湖南衡阳·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米4.(2021·山东济南·中考真题)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m 的A 处测得试验田右侧出界N 处俯角为43︒,无人机垂直下降40m 至B 处,又测得试验田左侧边界M 处俯角为35︒,则M ,N 之间的距离为(参考数据:tan 430.9︒≈,sin 430.7︒≈,cos350.8︒≈,tan350.7︒≈,结果保留整数)( )A .188mB .269mC .286mD .312m5.(2021·浙江金华·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 6.(2021·广东深圳·中考真题)如图,在点F 处,看建筑物顶端D 的仰角为32°,向前走了15米到达点E 即15EF =米,在点E 处看点D 的仰角为64°,则CD 的长用三角函数表示为( )A .15sin32︒B .15tan64︒C .15sin64︒D .15tan32︒ 7.(2021·山东日照·中考真题)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点B 处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i 1:3=,且点A ,B ,C ,D ,E 在同一平面内,小明同学测得古塔AB 的高度是( )A .()320mB .()310mC .203mD .40m8.(2021·贵州毕节·中考真题)如图,拦水坝的横断面为梯形ABCD .其中//AD BC ,45ABC ∠=︒,30DCB ∠=︒,斜坡AB 长8m .则斜坡CD 的长为( )A .62mB .82mC .46mD .3m9.(2021·湖北十堰·中考真题)如图,小明利用一个锐角是30的三角板测量操场旗杆的高度,已知他与旗杆之间的水平距离BC 为15m ,AB 为1.5m (即小明的眼睛与地面的距离),那么旗杆的高度是( )A .3153m 2⎛⎫+ ⎪⎝⎭B .53mC .153mD .353m 2⎛⎫+ ⎪⎝⎭ 10.(2021·湖北随州·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( )A .1米B .1.5米C .2米D .2.5米11.(2021·重庆·中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A.69.2米B.73.1米C.80.0米D.85.7米12.(2021·山东泰安·中考真题)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D 处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=.根据小颖的测量数据,计算出建筑物BC的高度约为()(参考数据:1:2.4≈)3 1.732A.136.6米B.86.7米C.186.7米D.86.6米二、填空题13.(2021·广西百色·中考真题)数学活动小组为测量山顶电视塔的高度,在塔的椭圆平台遥控无人机.当无人机飞到点P处时,与平台中心O点的水平距离为15米,测得塔顶A点的仰角为30°,塔底B点的俯角为60°,则电视塔的高度为_________米.14.(2021·广西梧州·中考真题)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A到桥的距离是40米,测得∠A=83°,则大桥BC的长度是___米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)15.(2021·江苏无锡·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.16.(2021·四川乐山·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)17.(2021·贵州遵义·中考真题)小明用一块含有60°(∠DAE =60°)的直角三角尺测量校园内某棵树的高度,示意图如图所示,若小明的眼睛与地面之间的垂直高度AB 为1.62m ,小明与树之间的水平距离BC 为4m ,则这棵树的高度约为 ___m .(结果精确到0.1m ,参考数据:3≈1.73)18.(2021·内蒙古赤峰·中考真题)某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C 测一段水平雪道一端A 处的俯角为50°,另一端B 处的俯角为45°,若无人机镜头C 处的高度CD 为238米,点A ,D ,B 在同一直线上,则通道AB 的长度为_________米.(结果保留整数,参考数据sin500.77︒≈,cos500.64︒≈,tan50 1.19︒≈)19.(2021·广西来宾·中考真题)如图,从楼顶A 处看楼下荷塘C 处的俯角为45︒,看楼下荷塘D 处的俯角为60︒,已知楼高AB 为30米,则荷塘的宽CD 为__________米.(结果保留根号)20.(2021·湖北黄石·中考真题)如图,直立于地面上的电线杆AB ,在阳光下落在水平地面和坡面上的影子分别是BC 、CD ,测得5BC =米,4CD =米,150BCD ∠=︒,在D 处测得电线杆顶端A 的仰角为45︒,则电线杆AB 的高度约为______米.(参考数据:2 1.414≈,3 1.732≈,结果按四舍五入保留一位小数)21.(2021·湖北荆州·中考真题)如图1是一台手机支架,图2是其侧面示意图,AB ,BC 可分别绕点A ,B 转动,测量知8cm BC =,16cm AB =.当AB ,BC 转动到60=︒∠BAE ,50ABC ∠=︒时,点C 到AE 的距离为_____________cm .(结果保留小数点后一位,参考数据:sin700.94︒≈,3 1.73≈)22.(2021·湖北武汉·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile 3 1.73≈,结果用四舍五入法精确到0.1).三、解答题23.(2021·山东青岛·中考真题)某校数学社团开展“探索生活中的数学”研学活动,准备测量一栋大楼BC 的高度.如图所示,其中观景平台斜坡DE 的长是20米,坡角为37︒,斜坡DE 底部D 与大楼底端C 的距离CD 为74米,与地面CD 垂直的路灯AE 的高度是3米,从楼顶B 测得路灯AE 项端A 处的俯角是42.6︒.试求大楼BC 的高度. (参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈,17sin 42.625︒≈,34cos 42.645︒≈,9tan 42.610︒≈)24.(2021·广西河池·中考真题)如图,小明同学在民族广场A 处放风筝,风筝位于B 处,风筝线AB 长为100m ,从A 处看风筝的仰角为30,小明的父母从C 处看风筝的仰角为50︒.(1)风筝离地面多少m ?(2)AC 相距多少m ?(结果保留小数点后一位,参考数据:sin300.5︒=,cos300.8660︒=,tan300.5774︒=,sin500.7760︒=,cos500.6428︒=,tan50 1.1918︒=)25.(2021·四川巴中·中考真题)学校运动场的四角各有一盏探照灯,其中一盏探照灯B 的位置如图所示,已知坡长AC =12m ,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C 处,且与地面的夹角为60°,A 、B 、C 、D 在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.50,3 1.73.)(1)求灯杆AB的高度;(2)求CD的长度.1.A【解析】【分析】过点A作AC⊥BC于C,根据正弦的定义解答即可.【详解】解:如图,过点A作AC⊥BC于C,在Rt △ABC 中,sin B =AC AB, 则AC =AB •sin B =100sin65°(米),故选:A .【点拨】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.2.D【解析】【分析】根据题意可知 1.6BE CD ==米,60ABC ∠=︒.再利用特殊角的三角函数解直角三角形即可求出AC 长,从而求出AD 长.【详解】根据题意可知 1.6BE CD ==米,60ABC ∠=︒.∵60ABC ∠=︒,∴在Rt ABC 中,tan 6053AC BC =︒=米. ∴(53 1.6)AD AC CD =+=米.故选D .【点拨】本题考查解直角三角形的实际应用.掌握特殊角的三角函数值是解答本题的关键.3.B【解析】【分析】过点A′作A′C ⊥AB 于点C ,根据锐角三角函数的定义即可求出答案.【详解】解:如答图,过点A′作A′C ⊥AB 于点C .在Rt △OCA′,sinα=A C A O '',所以A′C =A′O·sinα.由题意得A′O =AO =4,所以A′C =4sinα,因此本题选B .【点拨】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.4.B【解析】【分析】直接利用勾股定理得出BC ,再利用锐角三角函数关系得出答案.【详解】解:过点A 作AC ⊥BD ,垂足为C ,∵坝高h =60m ,迎水斜坡AB =100m ,∴BC 222210060AB AC --=80(m ),则tanα=603804= . 故选:B .【点拨】此题主要考查了解直角三角形的应用,正确掌握边角关系是解题关键. 5.D【解析】【分析】由斜坡BC 的坡度8:15i =,设8CE x =、15BE x =,由勾股定理可知17BC x =,BC =510,求得30x =,据此可知AE 、DE 的长,再根据DC DE CE =-可得答案.【详解】由斜坡BC 的坡度8:15i =,设8CE x =、15BE x =,在Rt BCE 中,2222(8)(15)17BC BE CE x x x =+=+=,由17510BC x ==求得30x =,∴240CE =米、450BE =米,在Rt ACE △中,2401200tan tan12CE AE CAE ===∠︒(米), 在Rt ADE △中,tan 1200tan13276DE AE DAE =∠=⨯︒=(米),则27624036DC DE CE =-=-=(米).故选:D .【点拨】本题主要考查解直角三角形的应用能力,注意能借助仰角和俯角构造直角三角形并解直角三角形是解决本题的关键.6.D【解析】【分析】根据时间、速度、距离之间的关系求出AC ,根据等腰直角三角形的性质解答即可.【详解】解:如图:由题意得,AC =60×0.5=30海里,∵CD ∥BF ,∴∠CBF =∠DCB =60°,又∠ABF =15°,∴∠ABC =45°,∵AE ∥BF ,∴∠EAB =∠FBA =15°,又∠EAC =75°,∴∠CAB =90°,∴2sin 45AC BC ︒=, ∴BC 2=2故选:D .【点拨】本题考查的是解直角三角形的应用−方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.7.B【解析】【分析】根据同角的余角相等得∠ACD =∠CBD ,由cos ∠ACD =CD AC ,即可求出AC 的长度.【详解】解:∵∠ACD +∠BCD =90°,∠CBD +∠BCD =90°,∴∠ACD =∠CBD ,在Rt △ACD 中,∵cos ∠ACD =CD AC, ∴AC =cos cos CD m ACD α=∠. 故选:B .【点拨】本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.8.D【解析】【分析】根据等腰直角三角形的性质分别求出E C 、EB ,根据正切的定义求出DE ,结合图形计算得到答案.【详解】解:在Rt EBC 中,45BCE ∠=︒,3EC EB ∴=(米), 在Rt BDE △中,tan BE BDE DE ∠=,tan BE DE BDE ∴=∠),(3CD EC DE ∴=-=米,故选:D .【点拨】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.9.A【解析】【分析】延长AB 与DC 相交与点E ,由题意和三角函数可求得EC 的长度,根据37°角的三角函数求得AE 的长度,进而可求出建筑物AB 的高度.【详解】如图,延长AB 与DC 相交于点E ,∵15.6BC =,斜坡BC 的坡度i =1:2.4=512, ∴12cos 13BCE =∠,5sin 13BCE =∠, ∴12cos 15.6=14.413EC BC BCE =•=⨯∠,5sin 15.6613BE BC BCE =•=⨯=∠, ∴==14.430=44.4ED EC CD ++,又∵D ∠=37°,∴=tan37=44.40.75=33.3AE ED •︒⨯,∴33.3627.3AB AE BE =-=-=,故选:A .【点拨】此题考查了三角函数应用题,仰角和坡度的概念,做出辅助线是解答本题的关键.10.A【解析】【分析】过B 分别作AE 、DE 的垂线,设垂足为F 、G .分别在Rt △ABF 和Rt △ADE 中,通过解直角三角形求出BF 、AF 、DE 的长,再求出EF 即BG 的长;在Rt △CBG 中求出CG 的长,根据CD =CG +GE -DE 即可求出宣传牌的高度.【详解】解:过B 作BF ⊥AE ,交EA 的延长线于F ,作BG ⊥DE 于G .Rt△ABF中,i=tan∠BAF=BFAF=12.4,AB=26米,∴BF=10(米),AF=24(米),∴BG=AF+AE=54(米),Rt△BGC中,∠CBG=43°,∴CG=BG•tan43°≈54×0.93=50.22(米),Rt△ADE中,∠DAE=60°,AE=30米,∴DE=3AE=303(米),∴CD=CG+GE-DE=50.22+10-303≈8.3(米).故选:A.【点拨】此题考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.11.B【解析】【分析】延长AB交DC的延长线于H,作EF⊥AH于F,根据矩形的性质得到FH=DE=12,EF=DH,根据坡度的概念分别求出CH、BH,根据正切的定义求出AF,结合图形计算即可.【详解】解:延长AB交DC的延长线于H,作EF⊥AH于F,则四边形EDHF为矩形,∴FH=DE=12米,EF=DH,∵斜坡CB的坡度为t=12:5,∴设BH=12x,CH=5x,由勾股定理得,(5x)2+(12x)2=522,解得,x=4,则BH=12x=48米,CH=5x=20米,则EF=DH=DC+CH=60+20=80(米),在Rt△AEF中,tan∠AEF=AF EF,则AF=EF•tan∠AEF≈80×0.81=64.8(米),∴AB=AF+HF﹣BH=64.8+12﹣48=28.8(米),【点拨】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角、坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.12.B【解析】【分析】连接DE ,作BF ⊥DE 于F ,BG ⊥DA 于G ,设BG =3x m ,则AG =4x m ,BF =DG =24+4x (m ),CF =BF +BC =46+4x (m ),由三角函数定义得出EF =tan 37°(24+4x ),EF =tan 22°(46+4x ),得出0.75(24+4x )=0.40(46+4x ),解得27x =,求出DF 、EF ,即可得出答案.【详解】解:连接DE ,作BF ⊥DE 于F ,BG ⊥DA 于G ,如图:则DF =BG ,BF =DG =AD +AG ,∵AB =斜坡AB 的坡度0.75BG i AG==, ∴设BG =3x m ,则AG =4x m ,BF =DG =24+4x (m ),CF =BF +BC =24+4x +22=46+4x (m ), 由题意得:∠EBF =37°,∠ECF =22°,∵tan ∠BEF =244EF EF BF x =+,tan ∠ECF =464EF EF CF x=+, ∴EF =tan 37°(24+4x ),EF =tan 22°(46+4x ),∴0.75(24+4x )=0.40(46+4x ), 解得:27x =,∴DF =BG =3x =67(m ), EF =0.40(46+4x )=1327(m ), ∴DE =DF +EF =613213819.7777+=≈; 故选:B .【点拨】本题考查的是解直角三角形的应用-仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度坡角分概念、熟记锐角三角函数的定义是解题的关键.13.(3【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,解直角三角形即可求解.【详解】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i=EFCF3=tan∠ECF,∴∠ECF=30°,∴EF=12CE=10米,CF=3∴BH=EF=10米,HE=BF=BC+CF=(3在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(3∴AB=AH+HB=(3答:楼房AB的高为(3)米,故答案为:(3【点拨】本题考查了解直角三角形的应用,涉及俯角及坡度的知识,构造直角三角形是解题的关键.14.0.6【解析】【分析】如图,解直角三角形ABC可以求得AB的长,求出乙楼的影子在甲楼上的高度CD,再求影子的顶端距她家阳台的距离.【详解】解:如图,△ABC中,∠ABC=90°,∠ACB=30°,BC=20米,所以AB=BC•tan∠ACB=20•tan30°=20×3(米),CD=18-11.55=6.45(米),∴影子的顶端距她家阳台还有7-6.45≈0.6(米).故答案为0.6.【点拨】本题考查特殊角的三角函数值,解直角三角形,根据BC求出AB的值是解题的关键.15.3【解析】【分析】根据题意可证得△ABC为等腰三角形,即可求出BC的长,然后再解直角三角形CBD即可求得.【详解】解:如图,过点C作CD⊥AB于点D,根据题意得:∠CAD=90°−60°=30°,∠CBD=90°−30°=60°,∴∠ACB=∠CBD−∠CAD=60°-30°=30°,∴∠CAB=∠ACB,∴BC=AB=2km,在Rt△CBD中,3sin6023CD BC=⋅︒==,3【点拨】本题考查了等腰三角形的判定与性质及解直角三角形的应用,解决本题的关键是证出△ABC是等腰三角形.16.12【解析】【分析】根据∠DBC =45°可得BD CD =,根据tan α=0.8,可得3810CD CD =+,进而即可求得CD 的长. 【详解】∵∠DBC =45°,∴BD =CD tan 45⨯︒=CD , tanα=,3AD AB BD CD =+=+,则3810CD CD =+,解得CD =12.经检验:符合题意 故答案为12.【点拨】本题考查了解直角三角形的应用,掌握正切的意义是解题的关键.17.()633m + 【解析】【分析】延长AD 交BC 的延长线于F ,作DG ⊥BF 于G ,根据直角三角形的性质和勾股定理求出DC 、CG 的长,根据正切的定义解答即可.【详解】解:如图,延长AD 交BC 的延长线于F ,作DG ⊥BF 于G ,∵∠ADE =30°,∴∠AFB =30°,∵CD =6m ,斜坡CD 的坡度i =13∴tan ∠DCG =DG CG 33 ∴∠DCG =30°,∴DG =3m ,CG =3,∴∠DFC =∠DCF =30°,∴DF =DC ,∵DG ⊥BF ,∴FG =CG =3,∴FC =3,∴FB =FC +BC =()m ,∴AB =BF ×tan ∠AFB =()m . 故答案为:(m .【点拨】本题主要考查了勾股定理,坡比和解直角三角形,解题的关键在于能够熟练掌握相关知识进行求解.18.16【解析】【分析】根据已知条件转化为直角三角形ABC 中的有关量,由锐角三角函数的定义可求出BC ,根据BD =BC -CD 可得出答案.【详解】解:由题意知,∠ABC =30°,∠ACB =90°,AC =32米,tan tan 30,AC ABC BC ︒∠==tan 30AC BC ︒∴=== ∵CD =16米,∴BD =BC -CD=16米.故答案为:16.【点拨】本题考查了解直角三角形的应用,解题的关键是利用仰俯角的定义将题目中的相关量转化为直角三角形ABC 中的有关元素.19.(【解析】【分析】在直角三角形DCE 中,利用锐角三角函数定义求出DE 的长,过D 作DF 垂直于AB ,交AB 于点F ,可得出三角形BDF 为等腰直角三角形,设BF =DF =x (米),表示出BC ,BD ,DC ,由题意得到三角形BCD 为直角三角形,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即可确定出AB 的长.【详解】解:在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°,∴DE 12=DC =2(米), 过D 作DF ⊥AB ,交AB 于点F ,∵∠BFD =90°,∠BDF =45°,∴∠FBD =45°,即△BFD 为等腰直角三角形,设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米,在Rt △ABC 中,∠ABC =30°, ∴)324cos30333x B AB C +====︒(米), BD 2=2=米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°,在Rt △BCD 中,根据勾股定理得:22(24)2163x x +=+ , 解得:x =3则AB =(3故答案为:(3【点拨】此题考查了解直角三角形的实际应用--仰角俯角问题,坡度坡角问题,熟练掌握解直角三角形的方法是解本题的关键.20.24.2【解析】【分析】先根据等腰直角三角形的判定与性质可得BC CD =,设m BC CD x ==,从而可得(8)m AC x =+,再在Rt ACD △中,利用正切三角函数解直角三角形即可得.【详解】解:由题意得:,8m,53,45AC CD AB ADC BDC ⊥=∠=︒∠=︒,Rt BCD ∴是等腰直角三角形,BC CD ∴=,设m BC CD x ==,则(8)m AC x =+,。
【中考数学考点复习】第六节 锐角三角函数及其应用 课件(共33张PPT)

返回目录
第1题图
第六节 锐角三角函数及其应用
返回目录
改编条件:题干改变“测量点的高度”;“两个非特殊角”改为“两个 特殊角” 2.(2020 贺州)如图,小丽站在电子显示屏正前方 5 m 远的 A1 处看“防溺 水六不准”,她看显示屏顶端 B 的仰角为 60°,显示屏底端 C 的仰角为 45°,已知小丽的眼睛与地面距离 AA1=1.6 m, 3.求电子显示屏高 BC 的值.(结果保留一位小数. 4.参考数据: 2≈1.414, 3≈1.732).
第 6 题图
第六节 锐角三角函数及其应用
解:如解图,延长 BC 交 MN 于点 F, 由题意得 AD=BE=3.5 米,AB=DE=FN=1.6 米,
在 Rt△MFE 中,∠MEF=45°,∴MF=EF,
在 Rt△MFB 中,∠MBF=33°,
∴MF=BF·tan33°=(MF+3.5)·tan33°,
第六节 锐角三角函数及其应用
返回目录
3. .如图,为测量电视塔观景台 A 处的高度,某数学兴趣小组在电视塔 附近一建筑物楼顶 D 处测得塔 A 处的仰角为 45°,塔底部 B 处的俯角为 22°.已知建筑物的高 CD 约为 61 米,请计算观景台的高 AB 的值.(结果 精确到 1 米,参考数据:sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)
形的边角 1. 三边关系:a2+b2=c2
关系
2. 两锐角关系:∠A+∠B=90° 3. 边角关系:sinA=cosB= a ;cosA=sinB= b;
tanA=
a
c
;tanB=
b
c
图②用
返回思维导图
返回目录
1.仰角、俯角:如图③,当从低处观测高处的目标时,视线与水平线 锐角三角 所成的锐角称为__仰__角____,当从高处观测低处的目标时,视线与水平 函数的实 线所成的锐角称为___俯__角___ 际应用 2.坡度(坡比)、坡角:如图④,坡面的铅直高度h和水平宽度l的比叫坡
中考数学专题讲练 锐角三角函数的实际应用三大模型

度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(
精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,
tan55°≈1.43)
[思维方法]过点N作EF∥AC交AB于点E,交CD于
点F,构造Rt△BEN、Rt△DNF和矩形AEFC,分别解
两个直角三角形可得DF、BE的长,进而可得AB的高
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
总
62m,100m,200m.若管道AB与水平线AA2的夹角为30°,管道BC与水
目 录
平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).
回 首 页
总 目 录
回 首 页
总 目 录
模型三 拥抱型
分别解两个直角三角形,其中公共边BC是解题的关键.在
Rt△ABC和Rt△DCB中,BC=BC.图形演变及对应的数量关系
回 首 页
总 目 录
模 型 一 背靠背型
通过在三角形内作高CD,构造出两个直角三角形求解,其中
公共边CD是解题的关键.在Rt△ACD和Rt△BCD中,CD为公共
回
边,AD+BD=AB.图形演变及对应的数量关系如下:
首 页
总 目 录
经典母题
如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口
C测得教学楼楼顶D的仰角为18°,教学楼底部B的俯角为20°
总 目
录
回 首 页
总 目 录
3.(2020·邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划
2023中考一轮复习:锐角三角函数及其应用

考点16锐角三角函数及其应用【命题趋势】中考数学中,对锐角三角函数的考察主要以特殊角的三角函数值及其有关计算、解直角三角形、解直角三角形的应用三个方面为主。
其中,锐角三角函数的性质及解直角三角形多以选择填空题为主,解直角三角形的应用多以解答题为主。
整体难度不大,但是所占分值有3~12分,还是需要考生对这块易拿分的考点多加重视。
【中考考查重点】一、锐角三角函数的定义及其性质二、特殊角的三角函数值三、解直角三角形四、解直角三角形的应用考向一:锐角三角函数的定义及其性质一.锐角三角函数的定义:在Rt △AABC 中,∠C=90°,AB=c ,BC=a ,AC=b 则:∠A 正弦:caA A =∠=斜边的对边sin ;∠A 余弦:c bA A =∠=斜边的邻边cos ;∠A 正切:baA A A =∠∠=的邻边的对边tan ;二.锐角三角函数的函数关系当∠A +∠B=90°时,有以下两种关系:(1).同角三角函数的关系:AAA cos sin tan =;1cos sin 22=+A A (2)互余两角的三角函数的关系:B A B A sin cos ;cos sin ==;)90(1tan tan ︒=∠+∠=∙B A B A 【同步练习】1.(2021•句容市模拟)在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则()A .c =b sin BB .b =c sin BC .a =b tan BD .b =c tan BACBabc2.(2021•饶平县校级模拟)如图,在Rt△ABC中,∠C=90°,BC=m,∠B=β,那么AB=()A.m⋅sinβB.C.m⋅cosβD.3.(2021•张湾区模拟)如图,小正方形的边长均为1,有格点△ABC,则sin C=()A.B.C.D.4.(2021•商河县校级模拟)当A为锐角,且<cos∠A<时,∠A的范围是()A.0°<∠A<30°B.30A<60°C.60°<∠A<90°D.30°<∠A<45°5.(2021•桓台县一模)在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.6.(2021•蒙阴县模拟)如图,在△ABC中,∠ACB=∠ADC=90°,若sin A=,则cos∠BCD的值为.考向二:特殊角的三角函数值特殊角的三角函数值表αsin αcos αtan α30°21233345°2222160°23213【同步练习】1.(2021•宜兴市模拟)已知cos α=,且α是锐角,则α=()A .30°B .45°C .60°D .90°2.(2022•龙岗区一模)Rt △ABC 中∠C =90°,sin A =,则tan A 的值是()A .B .C .D .3.(2021•邵阳模拟)在△ABC 中,若|sin A ﹣|+(cos B ﹣)2=0,则∠C 的度数是()A .30°B .45°C .60°D .90°4.(2022•无为市校级一模)计算:(1)sin60°•cos30°﹣1;(2)2sin30°+3cos60°﹣4tan45°.考向三:解直角三角形解直角三角形相关:在Rt△ABC中,∠C=90°AB=c,BC=a,AC=b 三边关系:222cba=+两锐角关系:︒=∠∠90BA+边与角关系:caBA==cossin,cbBA==sincos,baanA=t,abanB=t锐角α是a、b的夹角面积:αsin21abS=【方法提炼】与三角函数有关的倍半角问题倍半角模型①知“半角”求“倍角”→知θ,截取使相等(或中垂线),得2θ②知“倍角”求“半角”→知2θ,延长使相等(或做角平分线),得θ(等腰出,半角现)解题主要思想特别记忆:1.“倍半角”模型也可用于“角平分线”类问题2.“倍半角模型”常常转化为“θ”的正切值来计算3.☆【同步练习】1.(2021•樊城区一模)如图,A 、B 、C 是3×1的正方形网格的三个格点,则tan ∠ABC 的值为()A .B .C .D .2.(2021•滨江区校级三模)如图,点A 为∠B 边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示tan B 的值,错误的是()A .B .C .D .3.(2021•榆阳区模拟)如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是的中点,若tan ∠ACB =2,AC=,则BC 的长为()A .B .2C .1D .2时,③当时,②当时,①当7242tan 43tan 432tan 31tan 342tan 21tan ======θθθθθθ相等角倍角半角常构造(或选择)Rt △延长直角边=斜边,得半角作斜边的中垂线,得2倍角可构造K 型相似,得矩形当有特殊tan α值时,可转化为“倍半角”问题主要思想变“求点的坐标”为“求直线与函数图象交点”抓本质——对称全等+l 1⊥l 2此处k 型相似比已知,矩形对边相等是列方程的等量关系4.(2021•阿城区模拟)如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足是D,设∠CAB=α,CD=h,那么BC的长度为()A.B.C.D.h•cosα考向四:解直角三角形的应用解直角三角形的应用:仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作lhi=坡角:坡面与水平面的夹角叫做坡角,记作α,αtan=i坡度越大,坡角越大,坡面越陡【方法提炼】1.在实际测量高度、宽度、距离等问题中,常结合平面几何知识构造直角三角形,利用三角函数或相似三角形来解决问题,常见的构造的基本图形有如下几种:(1)不同地点看同一点,如图①(2)同一地点看不同点,如图②(3)利用反射构造相似,如图③2.常用结论:【同步练习】1.(2022•鹿城区校级一模)如图,在Rt△ABC中,∠CAB=90°,点A,B分别在墙面ED和地面FD上,且斜边BC∥ED,若AC=1,∠CBA=α,则AD的长为()A.cosα×tanαB.C.D.2.(2022•无为市校级一模)如图,给出了一种机器零件的示意图,其中CE=1米,BF=米,则AB=()A.(1+)米B.(﹣1)米C.(2﹣)米D.(2+)米3.(2020•秦皇岛一模)如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼上钩的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m1.在直角△ABC中,∠C=90°,AB=3,AC=2,则sin A的值为()A.B.C.D.2.如图所示,△ABC的顶点是正方形网格的格点,则sin B的值为()A.B.C.D.13.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°4.下列计算错误的个数是()①sin60°﹣sin30°=sin30°;②sin245°+cos245°=1;③;④.A.1B.2C.3D.45.如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在交点处,则∠ABC的正弦值为()A.B.C.D.6.把直尺、三角尺和圆形螺母按如图所示的方式放置于桌面上,AB与螺母相切,D为螺母与桌面的切点,∠CAB=60°.若量出AD=6cm,则圆形螺母的外直径是()A.cm B.12cm C.cm D.cm7.计算tan30°•sin60°的结果是.8.如图所示,在一次数学活动课上,初三1班的同学们利用长杆来测量某段城墙的倾斜角α,把一根长为6.6米的长杆AC斜靠在城墙旁,量出杆长2米处在地面投影AE的长约为1米,长杆的底端与墙角的距离AB约为2.7米,则倾斜角α的正切值约为.(结果精确到0.01,参考数据≈1.73)9.如图1是我们经常看到的一种折叠桌子,它是由下面的支架AD,BC与桌面构成如图2,已知OA=OB=OC=OD=20cm,∠COD=60°,则点A到地面(CD所在的平面)的距离是cm.10.计算:tan30°sin60°﹣cos245°+tan45°.11.计算:(1)sin60°•cos30°﹣1;(2)2sin30°+3cos60°﹣4tan45°.12.如图,在△ABC中,BC=4,∠B=45°,∠A=30°,求AB.13.如图1,2分别是某款篮球架的实物图与示意图,已知支架AB与支架AC所成的角∠BAC=15°,点A、H、F在同一条直线上,支架AH段的长为0.5米,HF段的长为1.50米,篮板底部水平支架HE的长为0.75米,篮板顶端F到地面的距离为4.4米.(1)则篮板底部支架HE与支架AF所成的角∠FHE的度数为;(2)求底座BC的长(结果精确到0.1米;参考数据:sin15°≈026,cos15°≈097,tan15°≈027,≈1.732,≈1.414).1.(2021·浙江湖州)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是.2.(2021·浙江金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米3.(2021·浙江丽水)如图,AB是⊙O的直径,弦CD⊥OA于点E,连结OC,OD.若⊙O的半径为m,∠AOD =∠α,则下列结论一定成立的是()A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=m2•sinα4.(2021·浙江温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+15.(2021·浙江绍兴)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.26.(2021·浙江杭州)计算:sin30°=.7.(2021·浙江金华)计算:(﹣1)2021+﹣4sin45°+|﹣2|.8.(2021·浙江嘉兴)计算:2﹣1+﹣sin30°;9.(2021·浙江绍兴)计算:4sin60°﹣+(2﹣)0.10.(2021·浙江衢州)计算:+()0﹣|﹣3|+2cos60°.11.(2021·浙江金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.12.(2021·浙江台州)图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地面l,活动杆CD固定在支撑杆上的点E处.若∠AED=48°,BE=110cm,DE=80cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)13.(2021·浙江嘉兴)一酒精消毒瓶如图1,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=6cm,BE=4cm.当按压柄△BCD按压到底时,BD转动到BD′,此时BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)14.(2021·浙江宁波)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D'的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC =140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)15.(2021·浙江绍兴)拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内.(1)转动连杆BC,手臂CD,使∠ABC=143°,CD∥l,如图2,求手臂端点D离操作台l的高度DE的长(精确到1cm,参考数据:sin53°≈0.8,cos53°≈0.6).(2)物品在操作台l上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.16.(2021·浙江衢州)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得FA=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)1.(2021•余杭区二模)若sinα=,则锐角α=()A.30°B.45°C.50°D.60°2.(2021•吴兴区一模)如图,已知Rt△ABC中,∠ACB=90°,AC:AB=3:5,则tan A的值为()A.B.C.D.3.(2021•杭州二模)如图,在Rt△ACB中,∠C=90°,sin B=0.5,若AC=6,则AB的长为()A.8B.12C.6D.124.(2021•婺城区模拟)若∠A,∠B都是锐角,且tan A=1,sin B=,则△ABC不可能是()A.等腰三角形B.等腰直角三角形C.锐角三角形D.直角三角形5.(2021•余杭区一模)在Rt△ABC中,∠C=90°,cos B=,则tan A的值为()A.B.C.D.6.(2021•宁波模拟)如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为()A.3B.2C.2D.37.(2021•北仑区一模)如图,点A在半径为6的⊙O内,OA=2,P为⊙O上一动点,当∠OPA取最大值时,PA的长等于()A.3B.2C.D.28.(2021•吴兴区二模)如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.2B.C.D.9.(2021•金华模拟)如图,点A(x,4)在第一象限,OA与x轴所夹的锐角为α,cosα=,则tanα的值为()A.B.C.D.10.(2021•越秀区校级三模)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠BAC的值为()A.B.C.D.11.(2021•拱墅区二模)如图,△ABC中,∠A=120°,若BM,CM分别是△ABC的外角平分线,则∠M的余弦值是()A.B.C.D.12.(2022•温州模拟)一个长方体木箱放置在斜面上,其端点A落在水平地面上,相关数据如图所示,则木箱端点C距地面m的高度是()A.a•cosα+b•sinαB.a•sinα+b•cosαC.a•sinα+b•sinαD.a•cosα+b•cosα13.(2021•下城区校级四模)在直角三角形ABC中,若cos C=,则=.14.(2022•温州模拟)如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm),且AC=BD,AF∥BE,sin∠BAF=0.8,箱盖开起过程中,点A,C,F不随箱盖转动,点B,D,E 绕点A沿逆时针方向转动相同角度,分别到点B′,D′,E′的位置,气簧活塞杆CD随之伸长CD′.已知直线BE⊥B′E′,CD′=2CD,那么AB的长为cm,CD′的长为cm.15.(2021•杭州校级模拟)计算:tan45°﹣sin30°cos60°﹣cos245°.16.(2021•鹿城区校级三模)如图,△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,DB=3.(1)求BE的长;(2)若sin∠DAB=,求△CAD的面积.17.(2021•宁波模拟)把矩形纸片ABCD,先沿AE折叠使点B落在AD边上的B',再沿AC折叠,恰好点E也落到AD上,记为E'.求:(1)∠B'EE'的度数;(2)∠DAC的正切值.18.(2022•宁波模拟)如图①,一台灯放置在水平桌面上,底座AB与桌面垂直,底座高AB=5cm,连杆BC=CD=20cm,BC,CD与AB始终在同一平面内.(1)如图②,转动连杆BC,CD,使∠BCD成平角,∠ABC=143°,求连杆端点D离桌面l的高度DE.(2)将图②中的连杆CD再绕点C逆时针旋转16°,如图③,此时连杆端点D离桌面l的高度减小了多少cm?(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75)19.(2021•宁波模拟)小甬要外出参加“建党100周年”庆祝活动,需网购一个拉杆箱,图①,图②分别是他上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求DE的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).。
九年级数学中考分类训练:锐角三角函数实际应用 必刷题

2021年九年级数学中考分类训练:锐角三角函数实际应用必刷题1.如图1是一个手机的支架,由底座、连杆和托架组成,如图2是它的平面示意图,底座AD,连杆AB和托架BC始终在一个平面内.连杆AB可以绕着点A在5°﹣120°范围内旋转,托架BC可以绕着点B在5°﹣90°范围内旋转,连杆BA的长度为18厘米,托架CB的长度为8厘米.当连杆AB和托架BC旋转至图3位置,∠DAB=∠ABC =60°,请你计算此时点C到底座AD的距离CM的长.(结果保留根号)2.如图,在一条笔直公路BD的正上方A处有一探测仪,AD=24m,∠D=90°,一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°.(参考数据:tan31°≈0.6,tan50°≈1.2)(1)求B,C两点间的距离(结果精确到1m);(2)若规定该路段的速度不得超过15m/s,判断此轿车是否超速.3.小强洗漱时的侧面示意图如图所示,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时身体前倾,下半身与地面的夹角∠FGK=80°,上半身与下半身所成夹角∠EFG=125°,脚与洗漱台距离GC=15cm,点D,C,G,K在同一直线上.(1)求此时小强腰部点F到墙AD的距离.(2)此时小强头部点E是否恰好在洗漱盆AB的中点O的正上方?若是,请说明理由;若不是,则他应向前还是向后移动多少厘米,使头部点E恰好在洗漱盆AB的中点O的正上方?(计算过程及结果的长度均精确到1cm.参考数据;sin80°≈0.98,cos80°≈0.17,≈1.41)4.如图①,在我国古建筑的大门上常常悬挂着巨大的匾额,图②中的线段BC就是悬挂在墙壁AM上的某块匾额的截面示意图.已知BC=1米,∠MBC=37°.从水平地面点D处看点C的仰角∠ADC=45°,从点E处看点B的仰角∠AEB=53°,且DE=2.4米.(1)求点C到墙壁AM的距离;(2)求匾额悬挂的高度AB的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)5.某学习小组,为了测量旗杆AB的高度,他们在大楼MN第10层D点测得旗杆底端B 的俯角是32°,又上到第35层,在C点测得旗杆顶端A的俯角是60°,每层楼高度是2.8米,请你根据以上数据计算旗杆AB的高度.(精确到0.1米,已知:sin32°≈0.37,cos32°≈0.93,tan32°≈0.62,≈1.73)6.如图是某堤坝经过改造后的横断面梯形ABCD,高DH=10米,斜坡CD的坡度是1:1,此处,堤坝的正上方有高压线通过,点P,D,H在一条直线上,点P是高压线上离堤面AD最近的点,测得∠PCD=26°.(1)求斜坡CD的坡角α.(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,此次改造是否达到了安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)7.如图,已知在Rt△ABC中,∠C=90°,sin∠ABC=,点D在边BC上,BD=4,联结AD,tan∠DAC=.(1)求边AC的长;(2)求cot∠BAD的值.8.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处(点A、B、C在同一直线上).某测量员从悬崖底C点出发沿水平方向前行60米到D点,再沿斜坡DE方向前行65米到E点(点A、B、C、D、E在同一平面内),在点E处测得5G 信号塔顶端A的仰角为37°,悬崖BC的高为92米,斜坡DE的坡度i=1:2.4.(1)求斜坡DE的高EH的长;(2)求信号塔AB的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)9.为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某高架路有一段限速每小时60千米的道路AB(如图所示),当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行220米到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°(注:即四边形ABDC 是梯形).(1)求限速道路AB的长(精确到1米);(2)如果李师傅在道路AB上行驶的时间是1分20秒,请判断他是否超速?并说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)10.吴兴区某中学开展研学实践活动,来到了“两山”理论发源地﹣﹣安吉余村,看到了“两山”纪念碑.如图,想测量纪念碑AB的高度,小明在纪念碑前D处用测角仪测得顶端A的仰角为60°,底端B的俯角为45°;小明又在同一水平线上的E处用测角仪测得顶端A的仰角为30°,已知DE=8m,求该纪念碑AB的高度.(≈1.7,结果精确到0.1m)11.某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图.身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°.如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:额头到地面的距离以身高计,sin53°≈0.8,cos53°=0.6,cot53°≈0.75,≈1.73.)12.为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速.如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的终点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度i=1:2时,求电子眼区间测速路段AB的长(结果保留根号).13.如图,是小明家房屋的纵截面图,其中线段AB为屋内地面,线段AE、BC为房屋两侧的墙,线段CD、DE为屋顶的斜坡.已知AB=6米,AE=BC=3.2米,斜坡CD、DE的坡比均为1:2.(1)求屋顶点D到地面AB的距离;(2)已知在墙AE距离地面1.1米处装有窗ST,如果阳光与地面的夹角∠MNP=β=53°,为了防止阳光通过窗ST照射到屋内,所以小明请门窗公司在墙AE端点E处安装一个旋转式遮阳棚(如图中线段EF),公司设计的遮阳棚可作90°旋转,即0°<∠FET=α≤90°,长度为1.4米,即EF=1.4米.试问:公司设计的遮阳棚是否能达到小明的要求?说说你的理由.(参考数据:≈1.41,≈1.73,≈2.24,≈3.16,sin53°=0.8,cos53°=0.6,tan53°=).14.如图,海中有一个小岛A,它的周围25海里内有暗礁,今有货船由西向东航行,开始在A岛南偏西60°的B处,往东航行20海里后到达该岛南偏西45°的C处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.15.如图,为了测量河宽,在河的一边沿岸选取B、C两点,对岸岸边有一块石头A,在△ABC中,测得∠B=64°,∠C=45°,BC=50米,求河宽(即点A到边BC的距离)(结果精确到0.1米).(参考数据:≈1.41,sin64°=0.90,cos64°=0.44,tan64°=2.05)参考答案1.解:延长AM、BC交于E,由题意得BC=8厘米,BA=18厘米,∵∠DAB=∠ABC=60°,∴△ABE是等边三角形,∴∠E=60°,BE=BA=18厘米,∴CE=BE﹣BC=10,∵CM⊥AD,∴∠CME=90°,∴∠ECM=90°﹣60°=30°,∴EM=CE=5,∴CM===5(厘米),答:此时点C到底座AD的距离CM的长是5厘米.2.解:(1)在Rt△ACD中,,∴,在Rt△ABD中,,∴.∴BC=BD﹣CD=20(m);∴B,C两点间的距离为BD﹣CD=20(m);(2)此轿车的速度,所以此轿车在该路段没有超速.3.解:(1)如图,过点F作FN⊥DK于点N,作FM⊥AD于点M.在Rt△FGN中,∵∠FGK=80°,FG=100cm,∴GN=FG⋅cos∠FGK=100⋅cos80°≈17(cm).∴DN=DC+CG+GN=48+15+17=80(cm).∵FN⊥DK,FM⊥AD,∴∠FMD=∠FND=90°,∵四边形ABCD是矩形,∴∠D=90°.∴四边形MDNF是矩形.∵MF=DN=80(cm).∴此时小强腰部点F到墙AD的距离为80cm.(2)此时小强头部点E没有在洗漱盆AB中点O的正上方.如图,过点E作EP⊥AB于点P,延长OB交FN于点H.∵∠EFG=125°,∴∠EFM=125°+10°﹣90°=45°.∵EF=166﹣FG=166﹣100=66(cm),∴FQ=66⋅sin45°≈47(cm).∴PH≈47(cm).∵AB=48cm,点O为AB的中点,∴AO=BO=24(cm).∵GN≈17cm,CG=15cm,∴OH=24+15+17=56(cm).∵56>47.∴此时小强头部点E没有在洗漱盆AB中点O的正上方.∴OP=OH﹣PH=56﹣47≈9(cm).∴他应向前移动9cm.4.解:(1)过C作CF⊥AM于F,过C作CH⊥AD于H,则四边形AHCF是矩形,∴AF=CH,CF=AH.在Rt△BCF中,BC=1米,∠CBF=37°.∴BF=BC cos37°≈0.8(米),CF=BC sin37°≈0.6(米);答:点C到墙壁AM的距离为0.6米;(2)在Rt△BAE中,∠BEA=53°,∴AE=AB,在Rt△CDH中,∠CDH=45°,。
考点20 锐角三角函数及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点20 锐角三角函数及其应用锐角三角函数及其应用是数学中考中比较重要的考点,其考察内容主要包括①正弦、余弦、正切三函数、②特殊角的三角函数值、③解直角三角形与其应用等。
而且,因为锐角三角函数的性质的特点,出题时除了会单独出题以外,还常和四边形、圆、网格图形等结合考察。
特别是三角函数的应用,是近几年中考填空压轴题常考题型。
学生在复习这块考点时,需要付出更多的努力,已达到熟练掌握这块考点的要求。
一、锐角三角函数的定义及其性质二、特殊角的三角函数值三、解直角三角形四、解直角三角形的应用考向一:锐角三角函数的定义及其性质一.锐角三角函数的定义:在Rt △AABC 中,∠C=90°,AB=c ,BC=a ,AC=b则:∠A 正弦:;ACBabc∠A余弦:;∠A正切:;二.锐角三角函数的函数关系当∠A+∠B=90°时,有以下两种关系:(1).同角三角函数的关系:;(2)互余两角的三角函数的关系:;1.如图,在Rt△ABC中,∠C=90°,AB=5,AC=3,则cos B的值为( )A.B.C.D.【分析】先根据勾股定理计算出BC,再根据三角函数的定义,即可得解.【解答】解:根据勾股定理可得,则cos B==.故选:B.2.Rt△ABC中,∠C=90°,AC=1,BC=2,tan A的值为( )A.B.C.D.2【分析】根据勾股定理求出AB的值,代入正切公式即可得到答案;【解答】解:∵∠C=90°,AC=1,BC=2,∴.故选:D.3.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AC=( )A.10B.8C.5D.4【分析】在Rt△ABC中,利用锐角三角函数的定义求出AB,再根据勾股定理进行计算即可解答.【解答】解:在Rt△ABC中,∠C=90°,sin A=,BC=6,∴sin A===,∴AB=10,∴AC===8.故选:B.4.已知0°<θ<45°,则下列各式中正确的是( )A.cosθ<B.tanθ>1C.sinθ>cosθD.sinθ<tanθ【分析】根据逐项进行判断即可.【解答】解:A.由于一个锐角的余弦值随着锐角的增大而减小,而0°<θ<45°,所以cosθ>cos60°,即cosθ>,因此选项A不符合题意;B.由于一个锐角的正切值随着锐角的增大而增大,而所以tanθ<tan45°,即tanθ<1,因此选项B不符合题意;C.由于cosθ=sin(90°﹣θ),而0°<θ<45°,即45°<90°﹣θ<90°,所以sinθ<sin(90°﹣θ),即sinθ<cosθ,因此选项C不符合题意;D.由于sinθ=,tanθ=,而锐角的邻边小于斜边,所以sinθ<tanθ,因此选项D符合题意.故选:D.5.如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,则下列结论中不正确的是( )A.a2+b2=c2B.sin B=cos A C.tan A=D.sin B=【分析】根据直角三角形的边角关系逐项进行判断即可.【解答】解:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,由勾股定理可得a2+b2=c2,因此选项A不符合题意;由锐角三角函数的定义可得sin B==cos A,因此选项B不符合题意;由锐角三角函数的定义可知,tan A=,因此选项C符合题意;由于sin2A+cos2A=()2+()2===1,因此选项D不符合题意;故选:C.考向二:特殊角的三角函数值特殊角的三角函数值表αsinαcosαtanα30°45°60°1.下列三角函数中,值为的是( )A.cos45°B.tan30°C.sin5°D.cos60°【分析】根据特殊锐角三角函数值逐项进行判断即可.【解答】解:A.由于cos45°=,因此选项A不符合题意;B.由于tan30°=,因此选项B不符合题意;C.sin5°<sin30°,即sin5°<,因此选项C不符合题意;D.由于cos60°=sin30°=,因此选项D符合题意;故选:D.2.计算tan45°+tan30°cos30°的值为( )A.B.1C.D.2【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=1+×=1+=,故选:C.3.4sin260°的值为( )A.3B.1C.D.【分析】根据特殊角的三角函数值计算即可得出答案.【解答】解:.故选:A.4.若sin(x+15°)=,则锐角x= 45 °.【分析】根据特殊角的三角函数值,即可解答.【解答】解:∵sin(x+15°)=,∴x+15°=60°,解得:x=45°,故答案为:45.5.计算:tan60°﹣sin245°+tan45°﹣2cos30°= .【分析】直接利用特殊角的三角函数值代入,进而得出答案.【解答】解:原式=﹣()2+1﹣2×=﹣+1﹣=.故答案为:.6.在△ABC中,,则△ABC的形状是 等边三角形 .【分析】非负数的和为0,则每个加数都等于0,求得相应的三角函数,进而求得∠A,∠B的度数.根据三角形的内角和定理求得∠C的度数.【解答】解:由题意得:2cos A﹣1=0,﹣tan B=0,解得cos A=,tan B=,∴∠A=60°,∠B=60°.∴∠C=180°﹣60°﹣60°=60°,∴△ABC是等边三角形.故答案为:等边三角形.7.计算:.【分析】根据特殊角三角函数值的混合计算法则求解即可.【解答】解:=====.考向三:解直角三角形解直角三角形相关:三边关系:在Rt△ABC中,∠C=90°两锐角关系:AB=c,BC=a,AC=b边与角关系:,,,锐角α是a、b的夹角面积:1.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是( )A.2B.1C.0.5D.2.5【分析】连接格点AE,BE.根据题图和勾股定理先判断△ABE的形状,再求出∠APD的正切,利用平行线的性质可得结论.【解答】解:如图,连接格点AE,BE.由网格和勾股定理可求得;,,,∴BE2+AE2=AB2,∴△ABE是直角三角形.在Rt△ABE中,.∵BE∥CD,∴∠APD=∠ABE,∴tan∠APD=2,故选:A.2.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若tan∠BDC =,则BC的长是( )A.6cm B.5cm C.4cm D.2cm【分析】设CD为xcm,则有AD为(8﹣x)cm,根据垂直平分线得到AD=BD,根据得到BC,最后根据勾股定理即可得到答案.【解答】解:设CD为xcm,则有AD为(8﹣x)cm,∵AB的垂直平分线MN交AC于D,∴AD=BD=8﹣x,∵,∴,∴,∵∠C=90°,∴,解得:x1=3,x2=﹣12(不符合题意舍去),∴,故答案为:C.3.如图,在Rt△ABC中,∠CAB=90°,sin C=,AC=8,BD平分∠CBA交AC边于点D.求:(1)线段AB的长;(2)tan∠DBA的值.【分析】(1)先解Rt△ABC,得出sin C==,设出AB=3k,则BC=5k,由BC2﹣AB2=AC2,得出方程(5k)2﹣(3k)2=82,解方程求出k的值,进而得到AB;(2)过D点作DE⊥BC于E,设AD=x,则CD=8﹣x.根据角平分线的性质得出DE=AD=x,利用HL 证明Rt△BDE≌Rt△BDA,得到BE=BA=6,那么CE=BC﹣BE=4.然后在Rt△CDE中利用勾股定理得出DE2+CE2=CD2,即x2+42=(8﹣x)2,解方程求出x的值,即为AD的长,再根据正切函数的定义即可求解.【解答】解:(1)∵在Rt△ABC中,∠CAB=90°,∴sin C==,BC2﹣AB2=AC2,∴可设AB=3k,则BC=5k,∵AC=8,∴(5k)2﹣(3k)2=82,∴k=2(负值舍去),∴AB=3×2=6;(2)过D点作DE⊥BC于E,设AD=x,则CD=8﹣x.∵BD平分∠CBA交AC边于点D,∠CAB=90°,∴DE=AD=x.在Rt△BDE与Rt△BDA中,,∴Rt△BDE≌Rt△BDA(HL),∴BE=BA=6,∴CE=BC﹣BE=5×2﹣6=4.在Rt△CDE中,∵∠CED=90°,∴DE2+CE2=CD2,∴x2+42=(8﹣x)2,解得x=3,∴AD=3,∴tan∠DBA===.4.如图,⊙O是△ABC的外接圆,点D在BC延长线上,且满足∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若AC是∠BAD的平分线,sin B=,BC=4,求⊙O的半径.【分析】(1)连接OA,OC与AB相交于点E,如图,由OA=OC,可得∠OAC=∠OCA,根据圆周角定理可得,由已知∠CAD=∠B,可得∠AOC=2∠CAD,根据三角形内角和定理可得∠OCA+∠CAO+∠AOC=180°,等量代换可得∠CAO+∠CAD=90°,即可得出答案;(2)根据角平分线的定义可得∠BAC=∠DAC,由已知可得∠BAC=∠B,根据垂径定理可得,OC⊥AB,BE=AE,在Rt△BEC中,根据正弦定理可得sin B===,即可算出CE的长度,根据勾股定理可算出BE=的长度,设⊙O的半径为r,则CE=OC﹣CE=r﹣,在Rt△AOE中,OA2=OE2+AE2,代入计算即可得出答案.【解答】证明:(1)连接OA,OC与AB相交于点E,如图,∵OA=OC,∴∠OAC=∠OCA,∵,∴,∵∠CAD=∠B,∴∠AOC=2∠CAD,∵∠OCA+∠CAO+∠AOC=180°,∴2∠CAO+2∠CAD=180°,∴∠CAO+∠CAD=90°,∴∠OAD=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;解:(2)∵AC是∠BAD的平分线,∴∠BAC=∠DAC,∵∠CAD=∠B,∴∠BAC=∠B,∴OC⊥AB,BE=AE,在Rt△BEC中,∵BC=4,∴sin B===,∴CE=,∴BE===,设⊙O的半径为r,则CE=OC﹣CE=r﹣,在Rt△AOE中,OA2=OE2+AE2,r2=(r﹣)2+,解得:r=.5.如图,△ABC中,AB=AC=6cm,BC=8cm,点P从点B出发,沿线段BC以2cm/s的速度向终点C运动,点Q从点C出发,沿着C→A→B的方向以3cm/s的速度向终点B运动,P,Q同时出发,设点P运动的时间为t(s),△CPQ的面积为S(cm2).(1)sin B= ;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.【分析】(1)过点A作AD⊥BC,垂足为D,利用等腰三角形的三线合一性质求出BD的长,再利用勾股定理求出AD的长即可解答;(2)分两种情况,当0<t≤1时,当1<t<2时.【解答】解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=6cm,AD⊥BC,∴BD=BC=4cm,在Rt△ABD中,AB=6cm,BD=4cm,∴AD==2,∴sin B==;故答案为:.(2)过点Q作QE⊥BC,垂足为E,∵AB=AC,∴∠B=∠C,∴sin B=sin C=,分两种情况:当0<t≤1时,由题意得:CQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,在Rt△CQE中,QE=CQ sin C=3t•=t,∴S=CP•QE=•(8﹣2t)•t=4t﹣t2=﹣t2+4t,当1<t<2时,由题意得:CA+AQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,BQ=AB+AC﹣(CA+AQ)=12﹣3t,在Rt△BQE中,QE=BQ sin B=(12﹣3t)•=4﹣t,∴S=CP•QE=•(8﹣2t)•(4﹣t)=,∴S=.考向四:解直角三角形的应用解直角三角形的应用:仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作坡度和坡角坡度越大,坡角越大,坡面越陡1. 在实际测量高度、宽度、距离等问题中,常结合平面几何知识构造直角三角形,利用三角函数或相似三角形来解决问题,常见的构造的基本图形有如下几种:(1)不同地点看同一点,如图①(2)同一地点看不同点,如图②(3)利用反射构造相似,如图③2. 常用结论:1.在山坡上植树,要求两棵树间的坡面距离是3,测得斜坡的倾斜角为27°,则斜坡上相邻两棵树的水平距离是( )A.3sin27°B.3cos27°C.D.3tan27°【分析】根据坡角的定义、余弦的概念列式计算即可.【解答】解:如图,过点A作AB⊥BC于B,∴∠ABC=90°,cos∠BAC=,∵AC=3,∠BAC=27°,∴AB=AC cos∠BAC=3cos27°;故选:B.2.如图,在天定山滑雪场滑雪,需从山脚下A处乘缆车上山顶B处,缆车索道与水平线所成的∠BAC=α,若山的高度BC=800米,则缆车索道AB的长为( )A.800sinα米B.800cosα米C.米D.米【分析】利用直角三角形的边角关系定理列出关系式即可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,sin BAC=,∴AB=.∵∠BAC=α,BC=800米,∴AB=(米).故选:C.3.如图,为了估算某河流的宽度,在该河流的对岸选取一点A,在近岸取点D,C,使得A、D、C在一条直线上,且与河流的边沿垂直,测得CD=15m,然后又在垂直AC的直线上取点B,并量得BC=30m,若cos B=,则该河流的宽AD为 25 m.【分析】根据三角形函数的定义可得AB的长,利用勾股定理可得AC的长,由线段的和差关系可得答案.【解答】解:∵∠C=90°,BC=30m,cos B==,∴AB=50m,∴AC==40(m),∵CD=15m,∴AD=AC﹣CD=25(m),故答案为:25.4.某古村落为方便游客泊车,准备利用长方形晒谷场长60m一侧,规划一个停车场,已知每个停车位需确保有如长5.5m,宽2.5m的长方形AEDF供停车,如图平行四边形ABCD是其中一个停车位,所有停车位都平行排列,∠ABD为60°,则每个体车位的面积大约为 17 m2(结果保留整数),这个晒谷场按规划最多可容纳 20 个停车位.()【分析】由题意,在Rt△ABF中,由直角三角形的边角关系得出AB,BF的长,讲而可以解决问题.【解答】解:由题意,在Rt△ABF中,∠AFB=90°,∠ABF=60°,AF=2.5m,∴AB===≈2.94(m),∴BF=AB≈1.47(m),∴BD=DF+BF≈5.5+1.47=6.97(m),∵CD=AB≈2.94m,∴S平行四边形ABDC=BD•AF≈6.97×2.5≈17 (m2),∴每个停车位的面积大约为17m2;∵60÷2.94≈20.4,∴这个晒谷场按规划最多可容纳20个停车位.故答案为:17;20.5.夏秋季节,许多露营爱好者晚间会在湖边露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处(EF⊥BF),使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,幕布宽AC=AD=2m,CD⊥AB 于点O,支杆AB与树干EF的横向距离BF=2.2m.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)(1)天晴时打开“天幕”,若∠CAE=140°,求遮阳宽度CD.(2)下雨时收拢“天幕”,∠CAE由140°减小到90°,求点E下降的高度.【分析】(1)根据在Rt△AOD中,,先算出OD的长,再根据AD=2OD即可得到答案;(2)过点E作EH⊥AB于H,在Rt△AHE中,,得,当∠CAE=140°时和当∠CAE=90°时,分别求出AH的值,作差即可得到答案.【解答】解:(1)∵∠CAE=140°,AC=AD,AO⊥CD,∴,CD=2DO,在Rt△AOD中,,即,解得:OD≈1.88m,∴CD=2OD≈3.76m,答:遮阳宽度CD约为3.76m;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=2.2m,在Rt△AHE中,,∴,当∠CAE=140°时,∠EAO=70°,m,当∠CAE=90°时,∠EAO=45°,AH=2.2m,2.2﹣0.8=1.4m,答:点E下降的高度为1.4m.6.近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=31cm,灯罩DE=24cm,BC⊥AB,CD、DE分别可以绕点C、D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:cos50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.【解答】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如右图所示,∵CB⊥AB,FG⊥AB,CF⊥FG,∴∠B=∠BGF=∠GFC=90°,∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18cm,又∵∠DCB=140°,∴∠DCF=50°,∵CD=31cm,∠DFC=90°,∴DF=CD•sin50°≈31×0.77=23.87(cm),∴DG≈23.87+18≈41.9(cm),答:点D到桌面AB的距离约为41.9cm.1.(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为 . .【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.2.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )A.B.C.D.3【分析】根据OP∥AB,证明出△OCP∽△BCA,得到CP:AC=OC:BC=1:2,过点P作PQ⊥x轴于点Q,根据∠AOC=∠AQP=90°,得到CO∥PQ,根据平行线分线段成比例定理得到OQ:AO=CP:AC=1:2,根据P(1,1),得到PQ=OQ=1,得到AO=2,根据正切的定义即可得到tan∠OAP的值.【解答】解:如图,过点P作PQ⊥x轴于点Q,∵OP∥AB,∴△OCP∽△BCA,∴CP:AC=OC:BC=1:2,∵∠AOC=∠AQP=90°,∴CO∥PQ,∴OQ:AO=CP:AC=1:2,∵P(1,1),∴PQ=OQ=1,∴AO=2,∴tan∠OAP===.故选:C.3.(2022•天津)tan45°的值等于( )A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.4.(2022•荆门)计算:+cos60°﹣(﹣2022)0= ﹣1 .【分析】先化简各式,然后再进行计算即可解答.【解答】解:+cos60°﹣(﹣2022)0=﹣+﹣1=0﹣1=﹣1,故答案为:﹣1.5.(2022•金华)计算:(﹣2022)0﹣2tan45°+|﹣2|+.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质、算术平方根分别化简,进而计算得出答案.【解答】解:原式=1﹣2×1+2+3=1﹣2+2+3=4.6.(2022•贵港)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是( )A.B.C.D.【分析】延长AC到D,连接BD,由网格可得AD2+BD2=AB2,即得∠ADB=90°,可求出答案.【解答】解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴cos∠BAC===,故选:C.7.(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC 是( )A.12sinα米B.12cosα米C.米D.米【分析】直接根据∠A的正弦可得结论.【解答】解:Rt△ABC中,sinα=,∵AB=12米,∴BC=12sinα(米).故选:A.8.(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE 交AB于点F,则cos∠ADF的值为( )A.B.C.D.【分析】利用矩形和折叠的性质可得BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中利用勾股定理列方程,即可求出x的值,进而可得cos∠ADF.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.9.(2022•广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB 与CD相交于点P,则cos∠APC的值为( )A.B.C.D.【分析】把AB向上平移一个单位到DE,连接CE,则DE∥AB,由勾股定理逆定理可以证明△DCE为直角三角形,所以sin∠APC=sin∠EDC即可得答案.【解答】解:把AB向上平移一个单位到DE,连接CE,如图.则DE∥AB,∴∠APC=∠EDC.在△DCE中,有EC==,DC==2,DE==5,∵EC2+DC2=DE2,故△DCE为直角三角形,∠DCE=90°.∴cos∠APC=cos∠EDC==.故选:B.10.(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为( )A.3B.3C.3D.6【分析】利用三角函数求出AD=6,在Rt△ABD中,利用勾股定理可得AB的长.【解答】解:∵2CD=6,∴CD=3,∵tan C=2,∴=2,∴AD=6,在Rt△ABD中,由勾股定理得,AB=,故选:D.11.(2022•常州)如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD= .【分析】过点D作DE⊥BC,垂足为E,如图,由已知∠A=∠ABC=90°,可得AD∥BC,由平行线的性质可得∠ADB=∠CBD,根据角平分线的定义可得∠ADB=∠CDB,则可得CD=CB=3,根据矩形的性质可得AD=BE,即可得CE=BC﹣BE,在Rt△CDE中,根据勾股定理DE=,在Rt△ADB中,根据勾股定理可得,根据正弦三角函数的定义进行求解即可得出答案.【解答】解:过点D作DE⊥BC,垂足为E,如图,∵∠A=∠ABC=90°,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠ADB=∠CDB,∴CD=CB=3,∵AD=BE=1,∴CE=BC﹣BE=3﹣1=2,在Rt△CDE中,DE===,∵DE=AB,在Rt△ADB中,==,∴sin∠ABD==.故答案为:.12.(2022•齐齐哈尔)在△ABC中,AB=3,AC=6,∠B=45°,则BC= 3+3或3﹣3 .【分析】利用分类讨论的思想方法,画出图形,过点A作AD⊥BC于点D,利用勾股定理解答即可.【解答】解:①当△ABC为锐角三角形时,过点A作AD⊥BC于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD+CD=3+3;②当△ABC为钝角三角形时,过点A作AD⊥BC交BC延长线于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD﹣CD=3﹣3;综上,BC的长为3+3或3﹣3.13.(2022•连云港)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sin A= .【分析】先构造直角三角形,然后即可求出sin A的值.【解答】解:设每个小正方形的边长为a,作CD⊥AB于点D,由图可得:CD=4a,AD=3a,∴AC===5a,∴sin∠CAB===,故答案为:.14.(2022•长春)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,AD垂直地面,垂足为点D,BC⊥AD,垂足为点C.设∠ABC =α,下列关系式正确的是( )A.sinα=B.sinα=C.sinα=D.sinα=【分析】根据直角三角形的边角关系进行判断即可.【解答】解:在Rt△ABC中,∠ACB=90°,∠ABC=α,由锐角三角函数的定义可知,sinα=sin∠ABC=,故选:D.15.(2022•沈阳)如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为( )A.m sinαB.m cosαC.m tanαD.【分析】根据垂直定义可得PT⊥PQ,然后在Rt△PQT中,利用锐角三角函数的定义进行计算即可解答.【解答】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ•tanα=m tanα(米),∴河宽PT的长度是m tanα米,故选:C.16.(2022•福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为( )(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm【分析】根据等腰三角形性质求出BD,根据角度的正切值可求出AD.【解答】解:∵AB=AC,BC=44cm,∴BD=CD=22cm,AD⊥BC,∵∠ABC=27°,∴tan∠ABC=≈0.51,∴AD≈0.51×22=11.22cm,故选:B.17.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E 处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)【分析】(1)根据对称性得出AD=2m,再根据锐角三角函数求出OD,即可求出答案;(2)过点E作EH⊥AB于H,得出EH=BF=3m,再分别求出∠α=65°和45°时,AH的值,即可求出答案.【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.18.(2022•盐城)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC =143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)【分析】(1)过点A作AE⊥CB,垂足为E,在Rt△ABE中,由AB=5m,∠ABE=37°,可求AE和BE,即可得出AC的长;(2)过点A作AF⊥CD,垂足为F,在Rt△ACF中,由勾股定理可求出AF,即OD的长.【解答】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.1.(2022•滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为 .【分析】根据题意画出图形,进而利用勾股定理得出AB的长,再利用锐角三角函数关系,即可得出答案.【解答】解:如图所示:∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.故答案为:.2.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.【分析】根据勾股定理求AC的长,根据正弦的定义求sin A的值.【解答】解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.3.(2022•广东)sin30°= .【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.4.(2022•绥化)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .【分析】把15°看成是45°与30°的差,再代入公式计算得结论.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=﹣=.故答案为:.5.(2022•张家界)计算:2cos45°+(π﹣3.14)0+|1﹣|+()﹣1.【分析】根据特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂的性质进行计算即可.【解答】解:原式==.6.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0=3﹣2×1+1﹣1=3﹣2+1﹣1=1.7.(2022•通辽)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为( )A.B.C.D.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.8.(2022•乐山)如图,在Rt△ABC中,∠C=90°,BC=,点D是AC上一点,连结BD.若tan∠A=,tan∠ABD=,则CD的长为( )A.2B.3C.D.2【分析】过D点作DE⊥AB于E,由锐角三角函数的定义可得5DE=AB,再解直角三角形可求得AC的长,利用勾股定理可求解AB的长,进而求解AD的长.【解答】解:过D点作DE⊥AB于E,∵tan∠A==,tan∠ABD==,∴AE=2DE,BE=3DE,∴2DE+3DE=5DE=AB,在Rt△ABC中,tan∠A=,BC=,∴,解得AC=,∴AB=,∴DE=1,∴AE=2,∴AD=,∴CD=AC﹣AD=,故选:C.9.(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )A.y=3x B.y=﹣x+C.y=﹣2x+11D.y=﹣2x+12【分析】分别求出矩形OABC和菱形ABEF的中心的坐标,利用待定系数法求经过两中心的直线即可得出结论.【解答】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,则直线MN为符合条件的直线l,如图,∵四边形OABC是矩形,∴OM=BM.∵B的坐标为(10,4),∴M(5,2),AB=10,BC=4.∵四边形ABEF为菱形,BE=AB=10.过点E作EG⊥AB于点G,在Rt△BEG中,∵tan∠ABE=,∴,设EG=4k,则BG=3k,∴BE==5k,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4.∴E(4,12).∵B的坐标为(10,4),AB∥x轴,∴A(0,4).∵点N为AE的中点,∴N(2,8).设直线l的解析式为y=ax+b,∴,解得:,∴直线l的解析式为y=﹣2x+12,故选:D.10.(2022•益阳)如图,在Rt△ABC中,∠C=90°,若sin A=,则cos B= .【分析】根据三角函数的定义即可得到cos B=sin A=.【解答】解:在Rt△ABC中,∠C=90°,∵sin A==,∴cos B==.故答案为:.11.(2022•西宁)在Rt△ABC中,∠C=90°,AC=1,BC=,则cos A= .【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出cos A即可.【解答】解:由勾股定理得:AB===,所以cos A===,故答案为:.12.(2022•通辽)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE= ﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.13.(2022•张家界)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD的面积是100,小正方形EFGH的面积是4,那么tan∠ADF= .【分析】根据两个正方形的面积可得AD=10,DF﹣AF=2,设AF=x,则DF=x+2,由勾股定理得,x2+(x+2)2=102,解方程可得x的值,从而解决问题.【解答】解:∵大正方形ABCD的面积是100,∴AD=10,∵小正方形EFGH的面积是4,∴小正方形EFGH的边长为2,∴DF﹣AF=2,设AF=x,则DF=x+2,由勾股定理得,x2+(x+2)2=102,解得x=6或﹣8(负值舍去),∴AF=6,DF=8,∴tan∠ADF=,故答案为:.14.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A 离地面EF的高度为( )A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m【分析】过点A作AD⊥BC于点D,利用直角三角形的边角关系定理求得AD,.用AD+BE即可表示出房顶A离地面EF的高度.【解答】解:过点A作AD⊥BC于点D,如图,∵它是一个轴对称图形,∴AB=AC,∵AD⊥BC,∴BD=BC=3m,在Rt△ADB中,∵tan∠ABC=,∴AD=BD•tanα=3tanαm.∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,故选:B.15.(2022•枣庄)北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan∠ABE= .【分析】由正六边形的性质得AB=BC=AC,BE垂直平分AC,再由等边三角形的性质得∠ABC=60°,则∠ABE=∠ABC=30°,即可得出结论.【解答】解:如图,连接AB、BC、AC、BE,∵点A,F,B,D,C,E是正六边形的六个顶点,∴AB=BC=AC,BE垂直平分AC,∴△ABC是等边三角形,∴∠ABC=60°,∵BE⊥AC,∴∠ABE=∠ABC=30°,∴tan∠ABE=tan30°=,故答案为:.16.(2022•绵阳)如图,测量船以20海里每小时的速度沿正东方向航行并对某海岛进行测量,测量船在A 处测得海岛上观测点D位于北偏东15°方向上,观测点C位于北偏东45°方向上.航行半个小时到达B 点,这时测得海岛上观测点C位于北偏西45°方向上,若CD与AB平行,则CD= (5﹣5) 海里(计算结果不取近似值).【分析】过点D作DE⊥AB,垂足为E,根据题意可得:AB=10海里,∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=45°,从而可得∠DAC=30°,∠CAB=45°,进而利用三角形内角和定理求出∠ACB=90°,然后在Rt△ACB中,利用锐角三角函数的定义求出AC的长,设DE=x海里,再在Rt△ADE 中,利用锐角三角函数的定义求出AE的长,在Rt△DEC中,利用锐角三角函数的定义求出EC,DC的长,最后根据AC=5海里,列出关于x的方程,进行计算即可解答.【解答】解:如图:过点D作DE⊥AB,垂足为E,由题意得:AB=20×=10(海里),∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=90°﹣45°=45°,∴∠DAC=∠FAC﹣∠FAD=30°,∠CAB=∠FAB﹣∠FAC=45°,∴∠ACB=180°﹣∠CAB﹣∠CBA=90°,在Rt△ACB中,AC=AB•sin45°=10×=5(海里),设DE=x海里,在Rt△ADE中,AE===x(海里),∵DC∥AB,∴∠DCA=∠CAB=45°,在Rt△DEC中,CE==x(海里),DC===x(海里),∵AE+EC=AC,∴x+x=5,∴x=,∴DC=x=(5﹣5)海里,故答案为:(5﹣5).17.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t= (1+) 小时.【分析】根据题意可得:∠PAC=45°,∠PBA=30°,AP=100海里,然后在Rt△APC中,利用锐角三角函数的定义求出AC,PC的长,再在Rt△BCP中,利用锐角三角函数的定义求出BC的长,从而求出AB的长,最后根据时间=路程÷速度,进行计算即可解答.【解答】解:如图:由题意得:∠PAC=45°,∠PBA=30°,AP=100海里,在Rt△APC中,AC=AP•cos45°=100×=50(海里),PC=AP•sin45°=100×=50(海里),在Rt△BCP中,BC===50(海里),∴AB=AC+BC=(50+50)海里,∴t==(1+)小时,故答案为:(1+).18.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 20 米.【分析】先证OB是⊙F的切线,切点为E,当点P与点E重合时,观景视角∠MPN最大,由直角三角形的性质可求解.【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,∵MN=2OM=40m,点F是MN的中点,∴MF=FN=20m,OF=40m,∵∠AOB=30°,EF⊥OB,∴EF=20m,OE=EF=20m,∴EF=MF,又∵EF⊥OB,∴OB是⊙F的切线,切点为E,∴当点P与点E重合时,观景视角∠MPN最大,此时OP=20m,故答案为:20.19.(2022•内江)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)【分析】(1)过点A作AE⊥l,垂足为E,设CE=x米,则DE=(x+60)米,先利用平角定义求出∠ACE =45°,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,再在Rt△ADE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答;(2)过点B作BF⊥l,垂足为F,CE=AE=BF=(30+30)米,AB=EF,先利用平角定义求出∠BCF =60°,然后在Rt△BCF中,利用锐角三角函数的定义求出CF的长,进行计算即可解答.【解答】解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,。
2024年中考数学考点必备知识必备13 锐角三角函数及其应用(原卷版)

知识必备13锐角三角函数及其应用易错点1.涉及锐角三角函数的概念时,是否明确“对边”“邻边”“斜边”都是在“直角三角形”中.一.选择题(共3小题)1.(2023•青岛三模)如图,在正方形网格中,每个小正方形的边长均是1,ABC 的顶点均在小正方形的顶点上,则sin BAC 的值为()A .34B .45C .35D .432.(2023•泉港区模拟)已知A 是锐角ABC 的内角,3sin 5A,则cos A 的值是()A .25B .35C .45D .533.(2023•宿城区校级模拟)如图,点A 、B 、C 均在44 的正方形网格的格点上,则tan (BAC )A .13B .14C .15D 5二.填空题(共5小题)4.(2023•茂南区校级模拟)如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则OAB 的正弦值是.5.(2023•西城区校级模拟)在正方形网格中,ABC 的位置如图所示,则sin ABC 为.6.(2023•广陵区校级一模)如图,在ABC 中,1sin 4B ,1tan 2C ,4AB ,则AC 的长为.7.(2023•鼓楼区校级二模)我们给出定义:如果两个锐角的和为45 ,那么称这两个角互为半余角.如图,在ABC 中,A ,B 互为半余角,且223BC AC ,则tan A .8.(2023•富锦市校级一模)等边ABC 中,点D 在射线CA 上,且2AB AD ,则tan DBC 的值为.易错点2.实际问题中对坡角、俯角、仰角与方位角等找不准无法准确理解题意易出错.一.选择题(共3小题)1.(2023•石狮市模拟)如图,线段AB 、CD 分别表示甲、乙建筑物的高,AB MN 于点B ,CD MN 于点D ,两座建筑物间的距离BD 为40m .若甲建筑物的高AB 为20m ,在点A 处测得点C 的仰角 为25 ,则乙建筑物的高CD 约为()(参考数据:sin 250.42 ,cos 250.91 ,tan 250.47)A .36.8mB .38.8mC .40.8mD .56.4m2.(2023•龙岗区二模)港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”,某校九年级学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60 ,然后向后走160米(160BC 米),到达C 处,此时看塔顶A ,仰角为30 ,则该主塔的高度是()A .80米B .3C .160米D .8023.(2023•任丘市模拟)如图,一艘海轮位于灯塔P 的北偏东55 方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 的长是()A .2sin 55 海里B .2sin 55 海里C .2cos55 海里D .2cos55 海里二.填空题(共4小题)4.(2023•香洲区校级三模)如图,无人机A 的探测器显示,从无人机看树顶B 的仰角为30 ,看树底部C 的俯角为60 ,无人机与树的水平距离为6m ,则树高BC 为m (结果保留根号).5.(2023•江汉区校级模拟)如图载人飞船从地面O 处成功发射,当飞船到达点A 时,地面D 处的雷达站测得4000AD 米,仰角为30 ,3秒后,飞船直线上升到达点B 处,此时地面C 处的雷达站测得B 处的仰角为45 .点O ,C ,D 在同一直线上,已知C ,D 两处相距460米,则飞船从A 到B 处的平均速度为米/秒.(结果精确到1米;参考数据:3 1.732 ,2 1.414)6.(2023•石峰区二模)如图,为了测量河宽CD ,先在A 处测得对岸C 点在其北偏东30 方向,然后沿河岸直行到点B ,在B 点测得对岸C 点在其北偏西45 方向,经过计算河宽CD 是30米,则从A 点到B 点的距离为米.(结果保留根号)7.(2023•肇东市模拟)如图,轮船B在码头A的正东方向,与码头A的距离为100海里,轮船B向北航行40海里到达C处时,接到D处一艘渔船发来的求救信号,于是沿北偏西45 方向航行到D处,解救渔船后轮船沿南偏西32 返回到码头A,那么码头A与D的距离为海里.(结果保留整数,参考数据:sin320.5,,cos320.8 .)tan320.6三.解答题(共5小题)8.(2023•扶余市二模)如图,利用板子往卡车里装货,板子与地面成20 ,车高 1.5AB 米.在装货时,突然板子的D处折了,板子的端点D落在地面上的D 处,与地面成32 .(1)求AD 的长度;(2)求被折断的板子CD的长度.(精确到0.1米,参考数据:sin200.34,,cos200.94,tan200.36sin320.53,tan320.62),cos320.859.(2023•仁寿县模拟)为增强体质,小明和小强相约周末去登山,小明同学从北坡山脚C处出发,小强同学同时从南坡山脚B处出发,如图所示.已知小山北坡长为240米,坡度3i 45 .(出发点B和C在同一水平高度,将山路AB、AC看成线段)(1)求小山南坡AB的长;(2)如果小明以每分钟24米的速度攀登,小强若要和小明同时到达山顶A,求小强攀登的速度.(结果保留根号)10.(2023•武陟县三模)金水区开展了“安全行车,方便大家”的活动,某大型连锁超市为了购物者行车安全,对地下车库进行改造.如图,AB BCADCBC 米,现将斜坡的坡角改为15 ,即15(此AB 米,12,测得5时点B、C、D在同一直线上),求斜坡改进后的起点D与原起点C的距离.(参考数据:sin150.26,,cos150.97 ,结果精确到0.1)mtan150.2711.(2023•许昌二模)如图所示,一梯子AC斜靠着墙OD,梯子与地面夹角为45 .若梯子底端A向右水平移动1m 至点B,梯子顶端随之向上移动至点D,此时DBO,2OB m,求CD的长度.(用含 的式子表示)12.(2023•东阿县一模)如图,某巡逻艇在海上例行巡逻,上午10时在C处接到海上搜救中心从B处发来的救援任务,此时事故船位于B处的南偏东25 方向上的A处,巡逻艇位于B处的南偏西28 方向上1260米处,事故船位于巡逻艇的北偏东58 方向上,巡逻艇立刻前往A处救援,已知巡逻艇每分钟行驶120米,请估计几分钟可以到达事故船A处. 1.73,4sin535,3cos535,4tan533.一.解直角三角形(共7小题)1.(2023•陕西)如图,在67 的网格中,每个小正方形的边长均为1.若点A,B,C都在格点上,则sin B的值为()A .21313B .31313C .23D .542.(2023•常州)如图,在Rt ABC 中,90A ,点D 在边AB 上,连接CD .若BD CD ,13AD BD ,则tan B .3.(2023•攀枝花)ABC 中,A 、B 、C 的对边分别为a 、b 、c .已知6a ,8b ,10c ,则cos A 的值为()A .35B .34C .45D .434.(2023•武汉)如图,将45 的AOB 按下面的方式放置在一把刻度尺上,顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为2cm ,若按相同的方式将37 的AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数是cm (结果精确到0.1cm ,参考数据sin 370.60 ,cos 370.80 ,tan 370.75) .5.(2023•牡丹江)如图,将45 的AOB 按下面的方式放置在一把刻度尺上;顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数恰为2cm ,若按相同的方式将22.5 的AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数为cm .6.(2023•丹东)如图,在平面直角坐标系中,点O 是坐标原点,已知点(3,0)A ,(0,4)B ,点C 在x 轴负半轴上,连接AB ,BC ,若tan 2ABC ,以BC 为边作等边三角形BCD ,则点C 的坐标为;点D 的坐标为.7.(2023•广元)如图,在平面直角坐标系中,已知点(1,0)A ,点(0,3)B ,点C 在x 轴上,且点C 在点A 右方,连接AB ,BC ,若1tan 3ABC ,则点C 的坐标为.二.解直角三角形的应用(共16小题)8.(2023•内蒙古)如图源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形.若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为 ,则cos 的值为()A .34B .43C .35D .459.(2023•南充)如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知BAC ,则A ,C 两处相距()A .sin x 米B .cos x 米C .sin x 米D .cos x 米10.(2023•达州)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m ,当摆角BOC 恰为26 时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角AOC 为50 ,求座板距地面的最大高度为多少m ?(结果精确到0.1m ;参考数据:sin 260.44 ,cos 260.9 ,tan 260.49 ,sin 500.77 ,cos500.64 ,tan 50 1.2)11.(2023•湘潭)问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保.明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r的O.如图②,OM始终垂直于水平面,设筒车半径为2米.当0t 时,某盛水筒恰好位于水面A处,此时30,经过95秒后该盛水筒运动到点B处.AOM问题解决:(1)求该盛水筒从A处逆时针旋转到B处时,BOM的度数;(2)求该盛水筒旋转至B处时,它到水面的距离.(结果精确到0.1米)(参考数据2 1.414,3 1.732)12.(2023•成都)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16 ,且靠墙端离地高BC为4米,当太阳光线AD 与地面CE的夹角为45 时,求阴影CD的长.(结果精确到0.1米;参考数据:sin160.28,,cos160.96tan160.29)13.(2023•呼和浩特)如图所示,小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB.小明想知道A,B两地间的距离,测得50B,请帮小明求出两地间,40A,45AC m距离AB的长.(结果用含非特殊角的三角函数和根式表示即可)14.(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,30,AB cm 顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交.求树EG的高度(结果精确到0.1)m.BH cm,20BC于点H.经测量,点A距地面1.8m,到树EG的距离11AF m15.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上, 2.5.AGCOA 米,0.8AD 米.32(1)求GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin320.53,tan320.62),cos320.8516.(2023•贵州)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15 ,CD与水平线夹角为45 ,A、B两处的水平距离AE为576m,DF AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)(1)求索道AB的长(结果精确到1)m;(2)求水平距离AF的长(结果精确到1)m.(参考数据:sin150.25,2 1.41),cos150.96,tan150.2617.(2023•大连)图1是小明家在利用车载云梯搬运装修垃圾,将其抽象成如图2所示的示意图.已知AB BE,,10.4AC m.求云梯顶端A到地面的CE m, 1.25,垂足分别为B,E,//CD EB,测得70ACDCE BE距离AB的长.(结果取整数.参考数据:sin700.94,tan70 2.75),cos700.3418.(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为)H,在B,C处与篮板连接(BC所在直线垂直于)MN,EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD BCGAE,208,测得60DH cm时,点C离地面的高度为288cm.调节伸缩臂EF,将GAE由60 调节为54 ,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8,cos540.6)19.(2023•鞍山)某商店窗前计划安装如图1所示的遮阳棚,其截面图如图2所示,在截面图中,墙面BC 垂直于地面CE ,遮阳棚与墙面连接处点B 距地面高3m ,即3BC m ,遮阳棚AB 与窗户所在墙面BC 垂直,即90ABC BCE ,假设此地正午时太阳光与地面的夹角恰为60 (若经过点A 的光线恰好照射在地面点D 处,则60)ADE ,为使正午时窗前地面上能有1m 宽的阴影区域,即1CD m ,求遮阳棚的宽度AB .(结果精确到0.1m ,参考数据:3 1.73) 20.(2023•锦州)如图1,是某校教学楼正厅一角处摆放的“教学楼平面示意图”展板,数学学习小组想要测量此展板的最高点到地面的高度.他们绘制了图2所示的展板侧面的截面图,并测得120AB cm ,80BD cm ,105ABD ,60BDQ ,底座四边形EFPQ 为矩形,5EF cm .请帮助该数学学习小组求出展板最高点A 到地面PF 的距离.(结果精确到1cm .参考数据:2 1.41 ,3 1.73)21.(2023•威海)如图,某育苗基地为了能够最大限度地遮挡夏季炎热的阳光和充分利用冬天的光照,计划在苗圃正上方搭建一个平行于地面的遮阳篷.已知苗圃的(南北)宽 6.5AB 米,该地区一年中正午时刻太阳光与地平面的最大夹角是76.5DAE,最小夹角是29.5DBE.求遮阳蓬的宽CD和到地面的距离CB.参考数据:49sin29.5100,87cos29.5100,14tan29.525,97sin76.5100,23cos76.5100,21tan76.55.22.(2023•兰州)如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”,“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动,具体过程如下.如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得38BAC,53BAD,18AB m,求“龙”字雕塑CD的高度.B,C,D三点共线,BD AB,结果精确到0.1)m(参考数据:sin380.62,cos380.79,tan380.78,sin530.80,cos530.60,tan53 1.33)23.(2023•常德)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,EBC是等腰三角形且BC CE,114.2FBA,靠背57FC cm,支架43AN cm,扶手的一部分16.4BE cm.这时她问小余同学,你能算出靠背顶端F点距地面()MN的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.80.91,cos65.80.41,tan65.8 2.23)三.解直角三角形的应用-坡度坡角问题(共4小题)24.(2023•威海)如图,某商场有一自动扶梯,其倾斜角为28 ,高为7米.用计算器求AB 的长,下列按键顺序正确的是()A .B .C .D .25.(2023•深圳)爬坡时坡面与水平面夹角为 ,则每爬1m 耗能(1.025cos )J ,若某人爬了1000m ,该坡角为30 ,则他耗能()(参考数据:3 1.732 ,2 1.414)A .58JB .159JC .1025JD .1732J26.(2023•济南)图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1AB m ,0.6BC m ,123ABC ,该车的高度 1.7AO m .如图2,打开后备箱,车后盖ABC 落在AB C 处,AB 与水平面的夹角27B AD .(1)求打开后备箱后,车后盖最高点B 到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C 处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m ,参考数据:sin 270.454 ,cos 270.891 ,tan 270.510 ,3 1.732)27.(2023•宁夏)如图,粮库用传送带传送粮袋,大转动轮的半径为10cm ,传送带与水平面成30 角.假设传送带与转动轮之间无滑动,当大转动轮转140 时,传送带上点A 处的粮袋上升的高度是多少?(传送带厚度忽略不计)四.解直角三角形的应用-仰角俯角问题(共20小题)28.(2023•湖北)综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为45 ,尚美楼顶部F的俯角为30 ,已知博雅楼高度CE为15米,则尚美楼高度DF为米.(结果保留根号)29.(2023•岳阳)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A处用仪器测得赛场一宣传气球顶部E处的仰角为21.8 ,仪器与气球的水平距离BC为20米,且距地面高度AB为1.5米,则气球顶部离地面的高度EC是米(结果精确到0.1米,sin21.80.3714.,cos21.80.9285,tan21.80.4000)30.(2023•宁波)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为 ,设仰角为 ,请直接用含 的代数式表示 .(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角ABD为37 ,ACD,求气球A离地面的高 为45 ,地面上点B,C,D在同一水平直线上,20BC m 度AD.(参考数据:sin370.60,cos370.80,tan370.75)31.(2023•新疆)烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图1).某数学兴趣小组利用无人机测量该烽燧的高度,如图2,无人机飞至距地面高度31.5米的A 处,测得烽燧BC 的顶部C 处的俯角为50 ,测得烽燧BC 的底部B 处的俯角为65 ,试根据提供的数据计算烽燧BC 的高度.(参考数据:sin 500.8 ,cos500.6 ,tan 50 1.2 ,sin 650.9 ,cos 650.4 ,tan 65 2.1)32.(2023•长沙)2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O 处发射,当飞船到达A 点时,从位于地面C 处的雷达站测得AC 的距离是8km ,仰角为30 ;10s 后飞船到达B 处,此时测得仰角为45 .(1)求点A 离地面的高度AO ;(2)求飞船从A 处到B 处的平均速度.(结果精确到0.1/km s 3 1.73)33.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处的俯角为60 ,楼顶C 点处的俯角为30 ,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号).34.(2023•德州)如图,某校综合实践小组在两栋楼之间的水平地面E 处放置一个测角仪,经测量,53AEB ,45CED ,已知60BE 米,20ED 米.求两栋楼楼顶A ,C 之间的距离(参考数据:4sin 535 ,3cos535,4tan 533 ,测角仪的高度忽略不计).35.(2023•襄阳)在襄阳市诸葛亮广场上矗立着一尊诸葛亮铜像.某校数学兴趣小组利用热气球开展综合实践活动,测量诸葛亮铜像的高度.如图,在点C 处,探测器显示,热气球到铜像底座底部所在水平面的距离CE 为32m ,从热气球C 看铜像顶部A 的俯角为45 ,看铜像底部B 的俯角为63.4 .已知底座BD 的高度为4m ,求铜像AB 的高度.(结果保留整数.参考数据:sin 63.40.89 ,cos63.40.45 ,tan 63.4 2.00 2 1.41) .36.(2023•张家界)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB 的高度,测量方案如图:先将无人机垂直上升至距水平地面225m 的P 点,测得奇楼顶端A 的俯角为15 ,再将无人机沿水平方向飞行200m 到达点Q ,测得奇楼底端B 的俯角为45 ,求奇楼AB 的高度.(结果精确到1m ,参考数据:sin150.26 ,cos150.97 ,tan150.27)37.(2023•陕西)小华想利用所学知识测量自家对面的两栋楼AB 与CD 的高度差.如图所示,她站在自家阳台上发现,在阳台的点E 处恰好可经过楼CD 的顶端C 看到楼AB 的底端B ,即点E ,C ,B 在同一直线上.此时,测得点B 的俯角22 ,点A 的仰角16.7 ,并测得48EF m ,50FD m .已知,EF FB ,CD FB ,AB FB ,点F ,D ,B 在同一水平直线上.求楼AB 与CD 的高度差.(参考数据:sin16.70.29 ,cos16.70.96 ,tan16.70.30 ,sin 220.37 ,cos 220.93 ,tan 220.40)38.(2023•青岛)太阳能路灯的使用,既方便了人们夜间出行,又有利于节能减排.某校组织学生进行综合实践活动——测量太阳能路灯电池板的宽度.如图,太阳能电池板宽为AB ,点O 是AB 的中点,OC 是灯杆.地面上三点D ,E 与C 在一条直线上, 1.5DE m ,5EC m .该校学生在D 处测得电池板边缘点B 的仰角为37 ,在E 处测得电池板边缘点B 的仰角为45 .此时点A 、B 与E 在一条直线上.求太阳能电池板宽AB 的长度.(结果精确到0.1m .参考数据:3sin 375 ,4cos375 ,3tan 374 2 1.41)39.(2023•内蒙古)某数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A处测得河流左岸C处的俯角为 ,无人机沿水平线AF方向继续飞行12米至B处,测得河流右岸D处的俯角为30 ,.求河流的宽度CD 线段243AM 米为无人机距地面的铅直高度,点M,C,D在同一条直线上,其中tan2(结果精确到1米,参考数据:3 1.7).40.(2023•盘锦)如图,一人在道路上骑行,BD段是坡路,其余为平路,当他路过A,B两点时,一架无人机从空中的C点处测得A,B两点的俯角分别为30 和45 ,40BDF,159,点A,B,C,D,AB m,20BD mE,F在同一平面内,CE是无人机到平路DF的距离,求CE的长.(结果精确到整数,参考数据:3 1.73,,tan210.38),cos210.93sin210.3641.(2023•南京)如图,为了测量无人机的飞行高度,在水平地面上选择观测点A,B.无人机悬停在C处,此时在A处测得C的仰角为3652AB m, ;无人机垂直上升5m悬停在D处,此时在B处测得D的仰角为6326.10点A,B,C,D在同一平面内,A,B两点在CD的同侧.求无人机在C处时离地面的高度.(参考数据:tan36520.75.),tan6326 2.0042.(2023•永州)永州市道县陈树湘纪念馆中陈列的陈树湘雕像高2.9米(如图1所示).寓意陈树湘为中国革命“断肠明志”牺牲时的年龄为29岁.如图2,以线段AB代表陈树湘雕像,一参观者在水平地面BN上D处为陈树湘雕像拍照,相机支架CD高0.9米,在相机C处观测雕像顶端A的仰角为45 ,然后将相机支架移到MN处拍照,在相机M处观测雕像顶端A的仰角为30 ,求D、N两点间的距离(结果精确到0.1米,参考数据:3 1.732).43.(2023•阜新)如图,小颖家所在居民楼高AB为46m.从楼顶A处测得另一座大厦顶部C的仰角 是45 ,而大厦底部D的俯角 是37 .(1)求两楼之间的距离BD.(2)求大厦的高度CD.(结果精确到0.1m,参考数据:sin370.60,tan370.75),cos370.8044.(2023•恩施州)小王同学学习了锐角三角函数后,通过观察广场的台阶与信号塔之间的相对位置,他认为利用台阶的可测数据与在点A,B处测出点D的仰角度数,可以求出信号塔DE的高.如图,AB的长为5m,高BC为3m.他在点A处测得点D的仰角为45 ,在点B处测得点D的仰角为38.7 .A,B,C,D,E在同一平面内.你认为小王同学能求出信号塔DE的高吗?若能,请求出信号塔DE的高;若不能,请说明理由.(参考数据:,结果保留整数),tan38.70.80,cos38.70.780sin38.70.62545.(2023•鄂州)鄂州市莲花山是国家4A 级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G 处挂一条大型竖直条幅到点E 处,挂好后,小明进行实地测量,从元明塔底部F 点沿水平方向步行30米到达自动扶梯底端A 点,在A 点用仪器测得条幅下端E 的仰角为30 ;接着他沿自动扶梯AD 到达扶梯顶端D 点,测得点A 和点D 的水平距离为15米,且4tan 3DAB ;然后他从D 点又沿水平方向行走了45米到达C 点,在C 点测得条幅上端G 的仰角为45 .(图上各点均在同一个平面内,且G ,C ,B 共线,F ,A ,B 共线,G 、E 、F 共线,//CD AB ,)GF FB .(1)求自动扶梯AD 的长度;(2)求大型条幅GE 的长度.(结果保留根号)46.(2023•吉林)某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告时间:2023年4月20日活动任务:测量古树高度活动过程自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图②所示.准备皮尺.【步骤三】实地测量并记录数据如图③,王朵同学站在离古树一定距离的地方,将这个仪器用手托起,拿到眼前,使视线沿着仪器的直径刚好到达古树的最高点.如图④,利用测角仪,测量后计算得出仰角 .测出眼睛到地面的距离AB.测出所站地方到古树底部的距离BD.40 ..1.54AB mBD m10.请结合图①、图④和相关数据写出 的度数并完成【步骤四】.47.(2023•徐州)徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C处,用测角仪测得塔顶A的仰角36,他在平地上沿正对电视塔的方向后退至点D处,测得塔顶A的仰角AFECD m,求电视塔的高度AB(精确到0.1)m.(参考数FC GD m,7030AGE.若测角仪距地面的高度 1.6据:sin360.59,tan300.58),cos300.87,cos360.81,tan360.73,sin300.50五.解直角三角形的应用-方向角问题(共6小题)48.(2023•郴州)某次军事演习中,一艘船以40/km h的速度向正东航行,在出发地A测得小岛C在它的北偏东60 方向,2小时后到达B处,测得小岛C在它的北偏西45 方向,求该船在航行过程中与小岛C的最近距离(参考数 .结果精确到0.1)3 1.732 1.41km.49.(2023•西藏)如图,轮船甲和轮船乙同时离开海港O,轮船甲沿北偏东60 的方向航行,轮船乙沿东南方向航行,2小时后,轮船甲到达A处,轮船乙到达B处,此时轮船甲正好在轮船乙的正北方向.已知轮船甲的速度为每小时25海里,求轮船乙的速度.(结果保留根号)50.(2023•海南)如图,一艘轮船在A处测得灯塔M位于A的北偏东30 方向上,轮船沿着正北方向航行20海里到达B处,测得灯塔M位于B的北偏东60 方向上,测得港口C位于B的北偏东45 方向上.已知港口C在灯塔M 的正北方向上.(1)填空:AMB度,BCM度;(2)求灯塔M到轮船航线AB的距离(结果保留根号);(3)求港口C与灯塔M的距离(结果保留根号).51.(2023•重庆)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60 方向,B在灯塔C的南偏东45 方向,且在A的正东方向,3600AC 米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:2 1.414,3 1.732)52.(2023•株洲)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”,一辆轿车从被山峰POQ遮挡的道路②的点B处由南向北行驶.已知30POQ,//BC OQ,OC OQ,AO OP,线段AO的延长线交直线BC于点D.(1)求COD的大小;(2)若在点B处测得点O在北偏西 方向上,其中3tan5,12OD 米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点A处的货车)。
2020年中考数学复习微专题 锐角三角函数的实际应用三大模型(无答案)

2020年中考数学复习微专题锐角三角函数的实际应用三大模型模型一背靠背型一.模型分析1.若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边CD是解题的关键.等量关系:CD为公共边,AD+BD=AB.2.模型变式如图①,CE=DA,CD=EA,CE+BD=AB;如图②,CD=EF,CE=DF,AD+CE+BF =AB.二.练习反馈1.某条道路上通行车辆限速为72千米/时,在离道路50米的点P处建一个监测点,道路AB段为检测区(如图).在△ABP中,已知∠PAB=30°,∠PBA=37°,那么车辆通过AB段的时间在多少秒以内时,可认定为超速?(结果精确到0.1秒,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,.模型二母子型一.模型分析1.若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键.等量关系:BC为公共边,如图①,AD+DC=AC;如图②,DC-BC=DB.2.模型变形(1):等量关系:.模型变形(2):如图③,DF=EC,DE=FC,BF+DE=BC,AE+DF=AC;如图④,AF=CE,AC=FE,BC+AF=BE.等量关系:如图⑤,BE+EC=BC;如图⑥,EC-BC=BE;如图⑦,AC=FG,AF=CG,AD+DC=FG,BC+AF=BG..模型变形(3):等量关系:如图⑧,BC=FG,BF=CG,AC+BF=AG,EF+BC=EG;如图⑨,BC=FG,BF=CG,EF+BC=EG,BD+DF=BF,AC+BD+DF=AG.二.练习反馈1.如图,一枚运载火箭从距雷达站C处5 km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上,求A,B两点间的距离.(结果精确到0.1 km,参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)2.如图,一幢楼的楼顶端挂着一幅长10米的宣传条幅AB,某数学兴趣小组在一次活动中,准备测量该楼的高度,但被建筑物FGHM挡住,不能直接到达楼的底部,他们在点D处测得条幅顶端A的仰角∠CDA=45°,向后退8米到达点E 处,测得条幅底端B的仰角∠CEB=30°(点C,D,E在同一直线上,EC⊥AC).请你根据以上数据,帮助该兴趣小组计算楼高AC.(结果精确到0.01米,参考数据:√ 3 ≈1.732,√ 2 ≈1.414)模型三拥抱型一.模型分析:1.分别解两个直角三角形,其中公共边BC是解题的关键.等量关系:BC为公共边2.模型变形:等量关系:如图①,BF+FC+CE=BE;如图②,BC+CE=BE;如图③,AB=GE,AG=BE,BC+CE=AG,DG+AB=DE.二.练习反馈1.如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15 m,CD=20 m.AB和CD 之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1 m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考复习——锐角三角函数的实际应用1、在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距 km 的C 处. (1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.2、如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45)3、如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.( 取73.1)(1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.第25题图DBAC东l4,图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE 为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)5.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)6.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于▲度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).7.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.41,≈1.73)8、如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:≈1.4,≈1.7,结果保留整数.)9、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).10、如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).11、如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.73)12.如图,小莉的家在锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测量大厦的高度,小莉在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D处测得大厦顶部B的仰角为30°,已知电梯公寓高82米,请你帮助小莉计算出大厦的高度BC及大厦与电梯公寓间的距离AC.13.如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD 为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)14.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)15.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC 的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)16.小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)17.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).18.为给人们的生活带来方便,2017年兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离(结果保留整数).(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)图1 图219.如图2,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,展开小桌板使桌面保持水平时如图1,小桌板的边沿O点与收起时桌面顶端A点的距离OA=75厘米,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与支架长BC的长度之和等于OA的长度.(1)求∠CBO的度数;(2)求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)20.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.求:(1)P到OC的距离.(2)山坡的坡度tanα.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)21.(2017湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.414,≈1.732)22.如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯。
已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m。
矩形面与地面所成的角为。
李师傅的身高为1.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方面。
(1)求每条踏板间的垂直高度。
(2)请问他站立在梯子的第几级踏板上安装比较方便?请你通过计算判断说明。