定积分在物理上的应用(学习资料)

合集下载

定积分在物理学上的应用

定积分在物理学上的应用

详细描述
热量传递是热力学中的基本过程,包括热传 导、热对流和热辐射。在这些过程中,热量 传递的速率通常与温度梯度、物质属性以及 边界条件等因素有关。定积分可以用来求解 这些因素对热量传递速率的影响。
热力学第一定律的推导
总结词
定积分在推导热力学第一定律中具有重要应用,通过能量守恒原理和热力学基本方程, 可以建立热力学第一定律的数学表达式。
详细描述
在推导电磁感应定律的过程中,我们需要考虑磁场的变化对导体中电子运动的影响。通过定积分,我们可以计算 出导体中的电动势,从而理解电磁感应现象的本质。定积分的应用使得我们能够准确地描述和预测电磁感应现象 。
04
定积分在热学中的应用
温度分布的计算
总结词
定积分在计算温度分布问题中具有广泛应用,通过求解偏微分方程,可以得到物体内部和表面的温度 分布情况。
此外,定积分还在相对论中的质能关系推导、引力场中的时空几何结构分析等方面发挥着重要作用。
混沌理论中的分形结构描述
混沌理论是研究非线性系统中复杂行为和现象的学科,分形结构是混沌 理论中的重要概念。分形结构具有自相似性和无穷嵌套的特点,通常用 于描述复杂系统的结构和行为。
定积分在分形结构的描述中起到关键作用。通过定积分,可以计算分形 结构的维数和面积、体积等几何属性,从而更好地理解和描述混沌系统
VS
详细描述
磁场强度是由电流产生的,而电流分布又 是随空间变化的。通过使用定积分,我们 可以计算出任意形状导电物体在空间中任 意一点的磁场强度。这对于理解和预测磁 场的行为至关重要。
电磁感应定律的推导
总结词
电磁感应定律的推导过程中,定积分起到了核心作用,该定律描述了磁场变化时会在导体中产生电动势的现象。

定积分物理应用公式

定积分物理应用公式

定积分物理应用公式定积分在物理学中有着广泛的应用,可以帮助我们计算一些重要的物理量,如质心、力矩和功等。

下面我们将分别介绍这些应用。

1. 质心的计算:质心是一个物体的平均分布位置,可以用定积分来计算。

对于一维情况下的质心计算,我们可以使用以下公式:质心位置x_c = (1/M) * ∫(x * dm)其中,M是物体的总质量,x是物体的位置,dm是质量元素。

通过对物体的质量进行微元的划分,然后对每个微元的位置乘以质量进行积分,就可以得到质心的位置。

2. 力矩的计算:力矩是一个物体受力时产生的转动效应,可以通过定积分来计算。

对于一维情况下的力矩计算,我们可以使用以下公式:力矩M = ∫(r x F) dx其中,r是力矩臂的长度,F是作用在物体上的力,dx是位置元素。

通过对物体的位置进行微元的划分,然后对每个微元的位置乘以力进行积分,再乘以力矩臂的长度,就可以得到力矩的大小。

3. 功的计算:功是一个物体在受力作用下所做的功,可以通过定积分来计算。

对于一维情况下的功计算,我们可以使用以下公式:功W = ∫(F dx)其中,F是作用在物体上的力,dx是位置元素。

通过对物体的位置进行微元的划分,然后对每个微元的位置乘以力进行积分,就可以得到功的大小。

以上是定积分在物理学中的一些应用。

通过定积分的计算,我们可以得到质心的位置,力矩的大小和功的大小,从而帮助我们更好地理解和分析物体的运动和受力情况。

这些应用不仅在理论研究中有着重要的作用,而且在工程实践中也有着广泛的应用。

在实际应用中,我们可以通过测量和实验来获取所需的物理量,然后将其代入相应的定积分公式中进行计算。

这样可以帮助我们更好地理解物体的运动和受力情况,从而指导我们的实际操作和应用。

定积分在物理学中有着重要的应用,可以帮助我们计算质心、力矩和功等物理量。

通过定积分的计算,我们可以更好地理解和分析物体的运动和受力情况,从而指导我们的实际操作和应用。

这些应用不仅在理论研究中有着重要的作用,而且在工程实践中也有着广泛的应用。

定积分在物理上的应用

定积分在物理上的应用

定积分在物理上的应用
一、变力做功
1.某质点受到F=6x2的力的作用,从x=0处移动到x=
2.0m处,求力F做了多少功
2.半径等于r的半球形水池,期中充满了水,把池内完全抽干,至少要做多少功?
3.地球质量M,半径为R,万有引力常量G,地球表面质量为m的物体具有的重力势能多大?
4.一质量为m的机动小车,以恒定速度v在半径为R的竖直圆轨道内绕“死圈”运动,已知动摩擦因数为μ,问在小车从最低点运动到最高点过程中,摩擦力做了多少功?
二、求位移或时间
5.蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心L1=1m 的A点处时,速度为v1=2cm/s。

问蚂蚁继续由A点爬到距离巢中心2m的B点需要多长时间?
三.求力
6.设有一竖直的阐门,形状是等腰梯形,尺寸如图所示,当水面齐闸门顶时,求闸门所受的水的压力
3m
7.有一密度为ρl,半径为r的半球放在盛有密度为ρ2的液体的容器底部,它与容器底部密切接触(即半球表面与容器底面间无液体),若液体深度为H,问半球体上表面所受压力是多大?
8.一根长为L的均匀直棒,其线密度为ρ在它的一端垂线上距直棒a处有质量为m的质点,求棒对质点一引力。

四、求转动动能
9.长为L,质量为m均质杆在水平面内以角速度ω绕通过杆端的竖直轴o转动,试求杆的动能
10一圆环质量为m,半径为R,绕它的一条直径为轴以角速度ω转动,求其动能
11.上题改为球壳,求球壳的动能
12.上题改为球体,求球的动能
五、证明正弦交流电的最大值的有效值的2倍。

定积分在物理中的应用上

定积分在物理中的应用上

C A
263 m/s
3.一物体以v(t)=t2-3t+8(m/s)的速度运动,则其在前30 秒内的平均速度为________.
解析 由定积分的物理意义得s=ʃ300(t2-3t+8)dx =(13t3-32t2+8t)|300 =7 890 (m), v =st=7 38090=263 (m/s).
和位移均用 v(t)dt 求解;
例: 一辆汽车的 速 度 时间曲 线 如图 1 .7 3 所 示 .求 汽 车 在 这 1 m in 行 驶 的 路 程 .
3t,
0t 10; 因此汽车1m在in行这驶的路
30,
10t 40; 程是:
1.5t 90,40 t 60. 32t21003t0140034t29t0640013m5. 0S0130td14t300d0t46001.5t9d0t
定积分在物理中的 应用
此处添加副标题内容
问题探究一 变速直线运动的路程 问题 变速直线运动的路程和位移相同吗?
(2)当 v(t)<0 时,求某一时间段内的位移用 v(t)dt 求解,
这一时段的路程是位移的相反数,即路程为-
v(t)dt.
答 不同.路程是标量,位移是矢量,路程和位移是两
个不同的概念,(1)当 v(t)≥0 时,求某一时间段内的路程
()
5 A.2g
7 B.2g
3 C.2g
D.2g 得t=30,
解析
h=ʃ21gtdt=12gt2|21=32g.
2.一列车沿直线轨道前进,刹车后列车速度v(t)=27-
0.9t,则列车刹车后前进多少米才能停车
()
A.405
B.540
C.810
D.945
∴s=ʃ300v(t)dt=ʃ300(27-0.9t)dt =(27t-0.45t2)|300=405.

定积分在物理学中的应用

定积分在物理学中的应用

定积分在物理学中的应用积分在物理学中作为一种“全局”而非局部的方法,能够用来求解许多复杂系统的总体属性,广泛地应用于物理学中各个方面,其中最常用的就是力学。

积分在力学中的应用主要有两个方面:求解力的动力学和求解位置的力学。

其中动力学通常应用导数,如布朗-特里安力学中的机械动力学,而位置力学则通常使用积分,像是拉格朗日力学的位置力学等。

布朗-特里安力学是一种建立在冯·诺依曼结构的物理学理论。

它主要用于描述与经典力相关联的系统,通过使用细分和积分来求解系统。

简而言之,使用导数和积分,就可以求出系统的运动方程。

而根据拉格朗日力学,可以得出一个系统的动力学特性,也就是说可以得出其运动轨迹方程。

积分在电磁学中也有重要的应用。

例如,世界著名的电磁学家盖伊·法拉第曾将电磁学的所有现象描述为电磁场的密度和磁场的流量,他提出了一个统一的方程——完全电磁学方程(Maxwell's equation),它将电磁波的表现形式写作∮⃗E.dt,其中⃗E为电场的强度矢量,把这个积分写成A=∫E⃗Adt⃗。

综上所述,Maxwell's equation可以用来求出电磁波在任何情况下的分布情况。

积分在物理学中也有许多应用,例如量子力学中的对称性分析。

量子力学中常使用到对称性和对称性分析,而积分正好可以帮助我们求出量子力学模型的特殊参数的值。

此外,积分还被广泛用于统计力学中,例如统计力学方程和各种热力学量的求解等。

总之,积分在物理学中有着广泛而重要的应用,使得物理学家可以更好地理解和探索现实物理世界。

历史上有着许多杰出物理学家,如爱因斯坦和爱迪生等,他们都在物理学领域有着杰出的贡献,而积分则是其中不可或缺的工具。

定积分的应用于物理学

定积分的应用于物理学

定积分的应用于物理学定积分是微积分中一个极为重要的概念,它可以描述一个函数在一定区间内的面积。

除了数学上的应用之外,定积分在物理学中也有广泛的应用。

一、定积分在物理学中的应用1.速度和加速度在物理学中,速度和加速度是两个基本的物理量。

对于一个以某个加速度运动的物体,我们可以通过求解其速度关于时间的定积分来得到运动过程中的位移。

而得到位移后,我们还可以对它进行求导来获得速度和加速度的函数式。

2.质量和质心质量是物理学中另外一个基本的物理量,而质心则是一个系统的重心。

对于一个由若干个质点组成的系统,我们可以将每个质点的质量加起来,然后用质心的坐标来描述整个系统。

这个质心的坐标可以用各个质点坐标的定积分来求解。

3.力和功在物理学中,力是另一个基本的物理量。

对于一个物体在某个力场中做功,我们可以通过对力在某段距离上的积分来得到。

与此同时,我们也可以通过对某个物体所受多个力的叠加效应进行积分来得到最终的合力。

二、例子:牛顿第二定律牛顿第二定律是经典力学中的一个基本法则,它表明力等于物体质量乘以物体的加速度。

具体而言,我们可以用定积分来解决一个常见的牛顿第二定律问题。

假设一个物体受到一个恒定的力F作用,那么根据牛顿第二定律,我们可以得到以下方程:F = ma其中,a是物体的加速度,m是物体的质量。

为了求解这个方程,我们需要将其改写为以下形式:a = F/m这个定理告诉我们,当一个物体受到一个力的作用时,它的加速度是与它的质量成反比例的。

因此,我们可以用定积分来求解运动过程中的位移。

假设我们知道物体的初始速度v0和它所受的力F(t)关于时间t 的函数式,我们可以求出物体在某段时间内的加速度函数a(t)。

一旦我们知道了加速度函数,我们就可以将它关于时间的定积分求解出来,得到物体在受到力的作用下所走过的位移。

这个过程可以用以下公式来描述:x(t) = v0t + ∫0t a(t)dt其中,v0是物体的初始速度,a(t)是物体在受到力的作用下的加速度函数。

定积分在物理中的应用上

定积分在物理中的应用上
定积分的应用可以帮助我们更好地理解物体的运动规律,为解决物理问题 提供了重要的数学工具。
03
CHAPTER
动能与势能的定积分表示
动能的定积分表示
总结词
动能的定积分表示是物体在某段时间内通过的路径与该路径上的力的乘积的积分。
详细描述
根据牛顿第二定律,物体的动能为物体质量与速度平方的一半的乘积。在定积分形式下,动能的表示为 ∫F·dx,其中F是作用在物体上的力,dx是物体在该力作用下的位移。
瞬时加速度表示物体在某一时刻的速 度变化快慢,而平均加速度表示物体 在某段时间内速度变化的平均快慢。
速度与加速度的连续变化
在物理中,物体的速度和加速度通常都是随时间连续变化的。定积分可以 用来描述这种连续变化的过程。
通过定积分,我们可以计算物体在任意时间段内的速度和加速度的变化量, 以及物体在任意时刻的速度和加速度的大小。
详细描述
在热力学中,温度场是一个连续变化的物理量,它描述 了物体内部各点的温度分布。通过定积分,可以将温度 场表示为一个连续的函数,从而方便地计算物体内部各 点的温度值。
热量传递的定积分表示
总结词
热量传递的过程可以通过定积分来描述,包括热传导、热对流和热辐射等。
详细描述
热量传递是热力学中的重要过程,包括热传导、热对流和热辐射等。这些过程都可以通过定积分来描 述。通过定积分,可以计算热量传递的速率、方向和分布,从而更好地理解和控制热量传递的过程。
VS
详细描述
在匀速直线运动中,物体的速度是恒定的 ,因此物体的位移量可以通过速度与时间 的乘积来计算。定积分可以用来计算在一 段时间内物体的总位移量。
匀加速直线运动的定积分表示
总结词
定积分在匀加速直线运动中可以表示物体的 速度和位移量。

定积分在物理上的应用-文档资料

定积分在物理上的应用-文档资料
如 果 物 体 在 运 动 的 过 程 中 所 受 的 力 是 变 化 的 , 就 不 能 直 接 使 用 此 公 式 , 而 采 用 “ 元 素 法 ” 思 想 .
例 4 把一个带 q 电量的点电荷放在r 轴上坐标原点
物理学知道,如果一个单位正电荷放在这个电场中距离原 点为 r 的地方,那么电场对它的作用力的大小为
端 面 上 所 受 的 压 力
2 2 P 2 x R x dx 0 R
2 2 2 2 R x d ( R x ) 0 R
2 2 2 3 2 3 R x R . 3 3 0


R
例 2 将直角边各为 a 及 2 a 的直角三角形薄板 垂直地浸人水中,斜边朝下,长直角边与水面 平行,且该边到水面的距离恰等于该边的边 长,求薄板所受的侧压力.
连 线 方 向 .
m 由 物 理 学 知 道 , 质 量 分 别 为 距 为 1, m 2相
如 果 要 计 算 一 根 细 棒 对 一 个 质 点 的 引 力 , 那 么 , 由 于 细 棒 上 各 点 与 该 质 点 的 距 离 是 变 化 的 , 且 各 点 对 该 质 点 的 引 力 方 向 也 是 变 化 的 , 就 不 能 用 此 公 式 计 算 .
1
功元素 dw [ r , r dr ] 取 任 一 小 区 间 ,
b
b
kq dr, 2 r
kq 1 1 1 kq 所求功为 w a 2 dr kq . r r a a b
如果要考虑将单位电荷移到无穷远处

w a
kq 1 kq dr kq . 2 a r r a
解 在端面建立坐标系如图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

授课题目定积分在物理上的应用
课时数1课时
教学目标用定积分解决物理学上的变力做功以及液体压力问题。

重点与难点教学重点:定积分方法分析变力做功和液体压力。

教学难点:定积分的元素法以及物理量的计算公式。

学情分析我所教授的学生从知识结构上来说属于好坏差别很大,有的接受新知识很快,有的很慢,有的根本听不懂,基
于这些特点,结合教学内容,我以板书教学为主,多媒
体教学为辅,把概念较强的课本知识直观化、形象化,
引导学生探索性学习。

教材分析本次课是学生学习完定积分的概念和计算方法以及定积分在几何上的应用后的学习,定积分的元素法在几何和
物理上的应用为学生尝试解决各种实际问题做了很好的
铺垫。

将来把元素法的思想推广到多元函数后,其应用
范围将会更宽更广。

所以无论从内容还是数学思想方面,
本次课在教材中都处于重要的地位。

教学方法根据对学生的学情分析,本次课主要采用案例教学法,问题驱动教学法,讲与练互相结合,以教师的引导和讲
解为主,同时充分调动学生学习的主动性和思考问题的
积极性。

教学手段传统教学与多媒体资源相结合。

课程资源 同济大学《高等数学》(第七版)上册
教学内容与过程
一、 变力沿直线所作的功
dx x F dW )(=
⎰=b a dx x F W )( ,求电场力所做的功。

处处移动到从距离点电荷直线下,一个单位正电荷沿电荷所产生的电场作用、在一个带例)(1b a b a q <+为时,由库仑定律电场力原点解:当单位正电荷距离r
2r q k F = dr r kq dW 2=则功的元素为: 所求功为
)11(]1[2b a kq r kq dr r kq W b a b
a -=-==⎰
例2、在底面积为S 的圆柱形容器中盛有一定量的气体,由于气体的膨胀,把容器中的一个面积为S 的活塞a 移动到b 处(如图),求移动过程中气体压力所做的功。

解:建立坐标系如图. 由波义耳---马略特定律知压强p 与体积V 成反比,即xS k V k p ==
,故作用在活塞上的力为 x k S p F =⋅= x
a b x x x d +q
+o r
a b r r d r +1+S
o x
a b x x d x +。

相关文档
最新文档