模拟夫琅禾费衍射的matlab源代码

合集下载

用Matlab模拟白光夫琅和费衍射

用Matlab模拟白光夫琅和费衍射

用Matlab模拟白光夫琅和费衍射
喻平
【期刊名称】《重庆师范大学学报:自然科学版》
【年(卷),期】2007(24)2
【摘要】根据配色原理,将白光衍射分解为三基色衍射场的非相干叠加,用Matlab 模拟白光圆孔和单缝衍射场的分布图,给出程序代码,结果形象直观。

【总页数】3页(P43-45)
【关键词】夫琅和费衍射;三基色;Matlab;模拟
【作者】喻平
【作者单位】重庆师范大学物理学与信息技术学院;南京师范大学物理科学与技术学院,南京210097
【正文语种】中文
【中图分类】O436.1
【相关文献】
1.白光夫琅和费矩孔衍射实验的计算机仿真 [J], 李珏璇;蓝海江;张学科
2.白光夫琅和费衍射实验的计算机仿真 [J], 蓝海江
3.白光夫琅和费矩孔衍射实验的计算机仿真 [J], 李珏璇;蓝海江;张学科
4.基于MATLAB的矩孔夫琅和费衍射场模拟计算 [J], 郝忠秀;赵亚军;李立功;丁文革
5.用Matlab模拟白光单缝和圆孔衍射场的分布图 [J], 陈燕
因版权原因,仅展示原文概要,查看原文内容请购买。

不同形状孔的弗朗禾费衍射

不同形状孔的弗朗禾费衍射

−ⅈ
̃0 () ⅆ (2)

0
(0 )
现在假设一个坐标系,如图(1)
把坐标系带入到方程(2),则可以得到
图(1)

2
( 2 + 2)
(
)
2
(, ) =

× ∬ (0 , 0 ) − 0 +0 ⅆ0 ⅆ0

−∞
其中(0 , 0 )为衍射屏后的复振幅,为光波的波长, =
6. 正 N 变形
到此处,我们可以设想任意 N 边形衍射孔形成的衍射强度分布。
思路是这样的:将一个任意正 N 边形孔分割成 N 个分别全等的等腰三角形,然后
使每个等腰三角形所形成的衍射场相干叠加所
形成的衍射场就是这个正 N 边形所形成的衍射
场(如图(15))。
有计算机所绘制的图像和导出公式可以看出:
B(j)=pi*a*y(j)/(lmda*z);
I(i,j)=((sin(A(i)))/(A(i)+eps))^2*((sin(B(j)))/(B(j)+eps))^2;
end
end
>> figure(1)
>> imshow(I*225)
>> figure(2)
>> mesh(I)
8
图(8) 正方形孔的夫琅禾费衍射振动分布
并且用 matlab 和 mathematical 绘制出衍射强度分布的图像。由此,我们可以推
广出任意正 N 边形的夫琅禾费衍射公式。同时,我们假设任意不规则形状的夫琅
禾费衍射的计算思路。
关键字:夫琅禾费衍射,等腰三角形,正 N 变形
1. 引言

夫琅禾费矩孔衍射的特征及其MATLAB模拟_图文(精)

夫琅禾费矩孔衍射的特征及其MATLAB模拟_图文(精)
如图1,设波长为λ的平行光正入射到宽度为a (x 0轴
方向高度为b (y 0轴方向的矩孔上,若设矩孔上的光场分布均匀,则瞳函数为常数,即U 0 (x 0,y 0=A.由文献[5,6]可知,夫禾费矩孔衍射的衍射场为
U (θ1,θ2
= c e ik 0L 0
sin αα・sin
ββ
,(1
式中,θ1,θ2分别为x轴和y轴方向上的衍射角;
夫琅禾费矩孔衍射的特征及其MAT LAB模拟
蓝海江a
,潘晓明a
,吴建生
b
(柳州师范高等专科学校a .物理与信息科学系;b .数学与计算机科学系,广西柳州545004
摘 要:探讨了夫琅禾费矩孔衍射的特征,并利用MAT LAB对其进行模拟。经过比较,MAT LAB模拟结果与实验观测的结果非常吻合。
关键词:光学;夫琅禾费;矩孔;衍射;MAT LAB模拟
c =-i
λf
(ab A;k 0=
2
πλ0
为真空中的波数;L 0为光波从x 0,y 0坐标的原点出发沿着衍射方向到达场点P (x,y的光程,即参考光程,在积分过程中是不变的常量;α=πa sin θ1λ,β=πb sin θ2
λ
.
由光强公式I (θ1,θ2=U (θ1,θ2・U 3(θ1,θ2及(1式
可知,夫琅禾费矩孔衍射的光强分布为[5]
I (θ1,θ2=I 0
sin αα2・sin
ββ
2,(2式中,I 0= c c 3
=(ab 2(λf 2
A 2
.
(3
2.3夫琅禾费矩孔衍射的特征
由(2式可知,夫琅禾费矩孔衍射图样的主要特征是:衍射亮斑集中分布在两个相互垂直的方向上(x轴和y轴上,x轴方向上的亮斑宽度与矩孔的宽度a成反比,y轴方向上的亮斑宽度与矩孔的高度b成反比,即光波在哪个方向上受到的限制越大,那个方向的衍射就越明显.

衍射的Matlab 模拟

衍射的Matlab 模拟
10
二、菲涅耳-基尔霍夫衍射公式(确定了C、K()) 基尔霍夫 (Kirchhoff) 从波动方程出发,用场论得出了 比较严格的衍射公式。
A expik l expik r cosn, r cosn, l E P = d i l r 2
菲涅尔假设: 当 = 0 时,K()=Max, p/ 时,K()=0.
(实验证明是不对的) 若S发出的光源振幅为A(单位距离处),整个波面’的贡献
CA expikr ~ E P expikR K d R r
求解此公式主要问题:C、K()没有确切的表达式。

l
x sin x , f
a b
m
y sin y f
~ E x, y C 2a 2b exp ik lx1 my1 dx1 dy1
2 2
28
~ E x, y C 2a 2b exp ik lx1 my1 dx1 dy1
2 2
P0 E
17
r z1
2 2 x x1 y y1
2 z1
称为菲涅耳近似。
得到菲涅耳衍射:
e ikz1 ~ E x, y iz1

k ~ 2 2 E x1 , y1 exp i x x1 y y1 2 z1 y y
~ 和E0 abC

~ ~ sin sin E x, y E0
子波的复振幅与 cosn, r cosn, l 2 成正比,与波长成反比。 K ( )
1 p i exp[ i ] i 2 表示子波的振动位相超前于入射波90。
12
当光线接近于正入射时

基于matlab的衍射系统仿真(1)

基于matlab的衍射系统仿真(1)

《工程光学》综合性练习二题目:基于matlab的衍射系统仿真综合练习大作业二一、要求3-4人组成小组,对下面给出的各题目利用Matlab等工具进行仿真。

练习结束时每组提交一份报告及仿真程序。

在报告中应注明各仿真结果所对应的参数,如屏与衍射屏间距、孔径形状尺寸等。

二、仿真题目1.改变观察屏与衍射屏间距,观察观察屏上发生的衍射逐渐由菲涅耳衍射转为夫琅和费衍射1)原理图:S点光源发出的波长lam=500纳米S点发出光线经过单缝,缝宽a;单缝到衍射屏的距离L'2)Matlab代码clear;clcl=10; %l=input ('单缝到衍射屏的距离L=');a=0.2; %a=input('单缝的宽度(mm)a=');lam=500e-6; %lam=input('波长(nm)');x=-1:0.001:1; %接收屏边界y=x./sqrt(x.^2+l^2);z=a.*y/lam;I=1000*(sinc(z)).^2; %计算接受屏某点光强subplot(2,1,1) %绘制仿真图样及强度曲线image(2,x,I)colormap(gray(3))title('单缝衍射条纹')subplot(2,1,2)plot(x,I)title(光强分布)3)初始仿真图样(d=10)4)改变d之后的图样(d=1000)5)变化规律根据衍射屏以及接受屏的相对位置不同,由此产生菲涅尔衍射和夫琅禾费衍射的区别,根据我们模拟的情况得到菲涅尔衍射和夫琅禾费衍射的明显不同是夫琅禾费衍射条件下:中央有一条特别明亮的亮条纹,其宽度是其他亮条纹的两倍;其他亮条纹的宽度相等,亮度逐渐下降。

2.改变孔径形状、尺寸,观察图样变化1)原理图矩孔衍射:透镜焦距:1000mm;照射光波长:500nm;孔高:a(mm);孔宽:b(mm);圆孔衍射:圆孔直径:r(mm);照射光波长:500nm;照射光波长:500nm;2)matlab代码矩孔衍射:focallength=1000;lambda=500;a=2.0;b=2.0;resolution=64;center=(resolution)/2;A=zeros(resolution,resolution);for i=1:1:resolutionfor j=1:1:resolutionif abs(i-center)<a*10/2 & abs(j-center)<b*10/2 A(j,i)=255;endendendE=ones(resolution,resolution);k=2*pi*10000/focallength/lambda;imag=sqrt(-1);for m=1:1:resolutionx=m-center;for n=1:1:resolutiony=n-center;C=ones(resolution,resolution);for i=1:1:resolutionp=i-center;for j=1:1:resolutionq=j-center;C(j,i)=A(j,i)*exp(-imag*k*(x*p+y*q)); endendE(n,m)=sum(C(:));endendE=abs(E);I=E.^2;I=I.^(1/3);I=I.*255/max(max(I));L=I;I=I+256;CM=[pink(255).^(2/3);gray(255)];Colormap(CM);edge=(resolution-1)/20;[X,Y]=meshgrid([-edge:0.1:edge]);x=linspace(-edge,edge,resolution);y=linspace(-edge,edge,resolution);subplot(1,2,1);surf(x,y,L);axis([-edge,edge,-edge,edge,0,255]);caxis([0,511]);subplot(1,2,2);image(x,y,I);axis([-edge,edge,-edge,edge,0,511]);view(2);axis square;圆孔衍射:clearlmda=500e-9; %波长r=1.2e-3; %f = 1; %焦距N = 19;K = linspace(-0.1,0.1,N) ;lmda1 = lmda* ( 1 + K) ;xm = 2000* lmda* f;xs = linspace(-xm,xm,2000) ;ys = xs;z0 = zeros( 2000) ;[x,y]= meshgrid( xs) ;for i = 1: 19s = 2*pi*r*sqrt(x.^2 + y.^2)./(lmda1( i) ) ;z = 4* ( besselj( 1,s)./( s + eps) ).^2; %光强公式z0 = z0 + z;endz1 = z0 /19;subplot( 1,2,1)imshow( z1* 255) ; %平面图xlabel( 'x')ylabel( 'y')subplot( 1,2,2)mesh( x,y,z1) %三维图colormap(gray)xlabel( 'x')ylabel( 'y')zlabel( '光强')3)仿真图样:矩孔衍射:a=1,b=2a=2,b=2可知:矩孔在一个维度上展宽一定倍数将导致衍射图样在相同维度上缩短相同倍数,同时能量会更向中心亮斑集中。

实验7 衍射的Matlab模拟

实验7 衍射的Matlab模拟

实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。

二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。

基于MATLAB的矩孔夫琅和费衍射场模拟计算

基于MATLAB的矩孔夫琅和费衍射场模拟计算

第29卷 第3期2009年 5月河北大学学报(自然科学版)Journal of Hebei University(Nat ural Science Edition)Vol.29No.3May2009基于MA TL AB的矩孔夫琅和费衍射场模拟计算郝忠秀,赵亚军,李立功,丁文革(河北大学物理科学与技术学院,河北保定 071002) 摘 要:利用MA TL AB软件对夫琅和费矩孔衍射场进行模拟,得到了不同参数下各种衍射场的三维分布图样,并且采用彩色网格图的形式输出,可以方便地观察衍射图样的细节.模拟结果与实验观测的结果非常吻合.这种方法作为辅助教学手段,不仅可以观察夫琅和费矩孔衍射完整、清晰的立体图像,而且可以很容易地调节参数,观察不同的衍射现象,有助于学生更加深刻地理解夫琅和费矩孔衍射的特征和规律,提高教学质量.关键词:夫琅和费衍射;矩孔;MA TL AB中图分类号:O436.1 文献标识码:A 文章编号:1000-1565(2009)03-0266-04On Simulated C alculation of Fraunhofer Diffractionfrom R ectangular Aperture B ased on MAT LABH AO Zhong2xiu,ZH AO Y a2jun,LI Li2gong,DI NG Wen2ge(College of Physics Science and Technology,Hebei U niversity,Baoding071002,China)Abstract:Based on MA TL AB software,t he Fraunhofer diffraction field of rectangular apert ure was simulated and t he t hree2dimensional dist ributions of Fraunhofer diff raction wit h different parameters were obtained.The simulatio n result s were outp ut in t he form of color grid,which helped us to observe t he de2 tails of t he diffraction patterns.Our result s were consistent wit h t he experimental result s.As an auxiliary teaching means,t he met hod p rovids us complete and clear t hree2dimensional grap h of Fraunhofer diff rac2 tion from a rectangular apert ure,and help s us to p rofoundly understood t he diffraction p henomenon and characteristic.K ey w ords:Fraunhofer diff raction;rectangular apert ure;MA TLAB光的衍射现象是光的波动性的重要表现.所有光学系统,特别是成像光学系统,一般都将光波限制在一个特定的空间区域内,这种光波传播过程实际上是一种衍射过程.所以对光的衍射现象的研究,不仅具有重要的理论意义,而且在光学仪器研制和成像分析等诸多实际应用方面均具有重要价值.衍射现象可以利用菲涅耳2基尔霍夫衍射公式来讨论,但由于这些数学公式的复杂性,在解决具体问题时,实际的计算工作很繁杂[1].在教学过程中,为建立清晰的物理图像,加深对各种现象的理解,通常利用演示实验辅助课堂教学,但是由于衍射实验需要较复杂的演示仪器和较苛刻的实验条件,在课堂上常常难以进行,而在实验室中一般也 收稿日期:2008-11-18 基金项目:河北省自然科学基金资助项目(E2007000197) 第一作者:郝忠秀(1949-),女,河北藁城人,河北大学副教授,主要从事基础物理方面研究.第3期郝忠秀等:基于MA TL AB 的矩孔夫琅和费衍射场模拟计算只能对矩孔夫琅和费衍射结果进行定性观察.因此在分析衍射问题时,为突出物理图像,避免复杂的数学计算,利用计算机对光的衍射图像进行模拟,是一种很好的解决方法[2-4].1 矩孔夫琅和费衍射场的理论分析矩孔夫琅和费衍射是二维衍射,一般利用菲涅耳2基尔霍夫衍射公式对衍射屏上通光的矩孔面积进行双重积分得到其衍射场的分布.为突出衍射的物理实质,简化运算,将二维的矩孔衍射转化为一维微缝衍射的叠加来处理,即把矩孔划分为无限多很窄的微缝,先求出微缝的衍射场,再将所有微缝的衍射场叠加,得到矩孔的衍射场.由这种运算过程可以看到,单缝衍射场是矩孔的衍射场的一个特例.矩孔夫琅和费衍射实验装置如图1所示,设矩孔沿x ,y 轴方向的边长分别为a 和b ,透镜L 的焦距为f ,在接收屏E 上任意点P 会聚的衍射光,其方向由二维衍射角(θ1,θ2)表示.在矩孔上任取一平行于y 轴宽为d x 的微缝b dx.图1 矩孔夫琅和费衍射实验装置Fig.1 F raunhofer diffraction setup设光波在矩孔面上的初位相为零,在微缝b d x 上任取面元d x d y ,到P 点的光程为r ,该面元上的次波在P 点的振动为d E 1,根据惠更斯2菲涅耳原理[5],在傍轴条件下,该面元上的次波在P 点的振动为d E 1=C 1d x d y co s (ωt -2πλr ),(1)式中C 1为常数,和λ分别为入射光的圆频率和波长.设微缝中点(x ,0)到P 点的光程为r ′0,考虑到图中几何关系r =r ′0+y sin θ2,则微缝上所有次波在P 点的合振动为d E =C 1d x ∫b 2-b 2co s [ωt -2πλ(r ′0+y sin θ2)]d y =C 1b sin πb sin θ2λπb sin θ2λco s (ωt -2πλr ′0)d x.(2)设矩孔中心O 到P 点的光程为r 0,有r ′0=r 0+x sin θ1,则矩孔上所有次波在P 点的合振动为E =C 1b sin πb sin θ2λπb sin θ2λ∫a 2-a 2cos [ωt -2πλ(r 0+x sin θ1)]d x =C 1ab sin ααsin ββco s (ωt -2πλr 0),(3)式中,α=πa sin θ1λ,β=πb sin θ2λ.由(5)式可知,P 点的光强为I =I 0(sin αα)2(sin ββ)2,(4)其中I 0=(ab λfC 1)2为衍射场的中心强度.(3)式即为矩孔夫琅和费衍射场光场分布公式,(4)式为相应的光・762・河北大学学报(自然科学版)2009年强分布公式.2 矩孔夫琅和费衍射场的MA TL AB 模拟及分析利用MA TLAB 软件,对矩孔夫琅和费衍射场分布进行模拟.为了获得矩孔夫琅和费衍射场分布的各种特征,分别对入射光的波长λ、矩孔的边长a 和b 、会聚透镜的焦距f 对衍射场的影响进行了分析.由于MA TL AB 允许用不同格式输出图形,采用彩色网格图的形式输出了矩孔夫琅和费衍射光强分布的立体图,同时为便于和实验结果比较,还输出了矩孔夫琅和费衍射光强分布的平面图.2.1 矩孔夫琅和费衍射场分布当矩孔的边长a =b =1mm ,入射光的波长λ=500nm ,会聚透镜的焦距f =2.5m 时,衍射场分布的模拟结果如图2所示.由于光波在矩孔x ,y 轴方向上受到的限制程度相同,则接收平面上衍射图样在x ,y 轴方向的扩展情况相同.由图2可以很清晰地观察到这一衍射特征.a.光场分布;b.光强分布;c.衍射图样图2 矩孔夫琅和费衍射场Fig.2 Fraunhofer diffraction from the rectangular aperture2.2 矩孔线度对衍射场的影响保持入射光的波长与会聚透镜的焦距保持不变,当方孔的边长a =b =1.5mm 时,衍射场的光强分布模拟结果如图3所示.由图3可见,当矩孔的线度变大时,衍射图样的扩展范围变小,衍射现象不明显.同时整 图3 a =b =1.5mm 时的夫琅和费衍射场Fig.3 Fraunhofer diffraction for a =b =1.5mm 图4 b =10a =5mm 时的夫琅和费衍射场Fig.4 Fraunhofer diffraction for b =10a =5mm・862・第3期郝忠秀等:基于MA TL AB 的矩孔夫琅和费衍射场模拟计算体衍射场的光强增加,而零级衍射斑的面积显著减小.若继续增大矩孔的线度,则衍射效应越来越弱,这就说明,当光孔线度远大于光波的波长时,衍射的散射角Δθ→0,衍射场基本上集中在沿直线传播的原方向上,在透镜焦面上衍射斑收缩为几何光学像点.当矩孔的边长b =10a =5mm 时,衍射场的光强分布模拟结果如图4所示.由图可见,由于a 很小,光波在x 方向上受到的限制很大,所以光波在x 轴方向上的衍射很明显;同时,由于b 比较大,光在y 方向上受到的限制很小,y 轴方向上的衍射较弱.若继续增加b 的量值,则在y 轴方向上的衍射将越来越弱,矩孔夫琅和费衍射场过渡到单缝夫琅和费衍射场.2.3 透镜焦距对衍射场的影响当矩孔的边长与入射光的波长保持不变,而会聚透镜的焦距f =5m 时,衍射场的振幅和光强分布模拟结果如图5所示.比较图5与图2a 可见,当透镜的焦距变大时,整体衍射场的光强减小,而零级衍射斑的面积增大.实际上衍射图样的形状和零级衍射斑的半角宽度都不变,但透镜的焦距增加使得各级亮斑的面积及其间距同时被放大.图5 f =5m 时的夫琅和费衍射场Fig.5 F raunhofer diffraction for f =5m 图6 λ=800nm 时的夫琅和费衍射场Fig.6 F raunhofer diffraction for λ=800nm2.4 入射光波长对衍射场的影响当矩孔的边长与会聚透镜的焦距保持不变,而入射光的波长λ=800nm 时,衍射场的光强分布模拟结果如图6所示.比较图6与图2a 可见,当光波波长增大时,衍射图样的扩展范围变大,衍射现象更加明显.同时整体衍射场的光强减小,而零级衍射斑的面积增大.显然波长越长,衍射效应越显著;波长越短,衍射效应越可忽略,所以通常说,几何光学是短波(λ→0)极限.利用MA TLAB 软件对不同参数下的矩孔夫琅和费衍射场分布进行了大量模拟,经过比较,这些计算机模拟结果与实验观测[1,6-7]的结果非常吻合.参 考 文 献:[1]赵凯华.光学:新概念物理教程[M ].北京:高等教育出版社,2004:183-184.[2]谢嘉宁,赵建林,陈伟成,等.夫琅禾费衍射的计算机仿真[J ].大学物理,2004,23(3):51-54.[3]谢嘉宁,赵建林.光学空间滤波过程的计算机仿真[J ].光子学报,2002,31(7):847-850.[4]飞思科技产品研发中心.MA TL AB7基础与提高[M ].北京:电子工业出版社,2005:166-174.[5]梁绍荣.普通物理学:光学[M ].北京:高等教育出版社,1988:160-202.[6]章志鸣,沈元华,陈惠芬.光学[M ].北京:高等教育出版社,2000:91-101.[7]H ECH T E.Optics[M ].4th ed.New Y ork :Addision 2wesley Publishing Company ,2002:453-466.(责任编辑:孟素兰)・962・。

模拟夫琅禾费衍射的matlab源代码

模拟夫琅禾费衍射的matlab源代码

源代码:N=512;disp('衍射孔径类型1.圆孔 2.单缝3.方孔')kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型while kind~=1&kind~=2&kind~=3disp('超出选择范围,请重新输入衍射孔径类型');kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型endswitch(kind)case 1r=input('please input 衍射圆孔半径(mm):');% 输入衍射圆孔的半径I=zeros(N,N);[m,n]=meshgrid(linspace(-N/16,N/16-1,N));D=(m.^2+n.^2).^(1/2);I(find(D<=r))=1;subplot(1,2,1),imshow(I);title('生成的衍射圆孔');case 2a=input('please input 衍射缝宽:');% 输入衍射单缝的宽度b=1000;% 单缝的长度I=zeros(N,N);[m,n]=meshgrid(linspace(-N/4,N/4,N));I(-a<m&m<a&-b<n&n<b)=1;subplot(1,2,1);imshow(I);title('生成的衍射单缝');case 3a=input('please input 方孔边长:');% 输入方孔边长I=zeros(N,N);[m,n]=meshgrid(linspace(-N/4,N/4,N));I(-a/2<m&m<a/2&-a/2<n&n<a/2)=1;subplot(1,2,1),imshow(I);title('生成的方孔');otherwise kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型end% 夫琅禾费衍射的实现过程L=500;[x,y]=meshgrid(linspace(-L/2,L/2,N));lamda_1=input('please input 衍射波长(nm):');% 输入衍射波长;lamda=lamda_1/1e6k=2*pi/lamda;z=input('please input 衍射屏距离衍射孔的距离(mm):');% 衍射屏距离衍射孔的距离h=exp(1j*k*z)*exp((1j*k*(x.^2+y.^2))/(2*z))/(1j*lamda*z);%脉冲相应H =fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%孔频谱G=fftshift(ifft2(H.*B));subplot(1,2,2),imshow(log(1+abs(G)),[]);title('衍射后的图样');figuremeshz(x,y,abs(G));title('夫琅禾费衍射强度分布')实验输入:衍射孔径类型1.圆孔 2.单缝3.方孔please input 衍射孔径类型:1please input 衍射圆孔半径(mm):3please input 衍射波长(nm):632lamda =6.3200e-04please input 衍射屏距离衍射孔的距离(mm):1000000实验结果:程序说明:本实验可以选择孔径类型、孔径半径、输入波长、衍射屏和衍射孔的距离等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

源代码:
N=512;
disp('衍射孔径类型 1.圆孔 2.单缝 3.方孔')
kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型
while kind~=1&kind~=2&kind~=3
disp('超出选择范围,请重新输入衍射孔径类型');
kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型
end
switch(kind)
case 1
r=input('please input 衍射圆孔半径(mm):');% 输入衍射圆孔的半径
I=zeros(N,N);
[m,n]=meshgrid(linspace(-N/16,N/16-1,N));
D=(m.^2+n.^2).^(1/2);
I(find(D<=r))=1;
subplot(1,2,1),imshow(I);
title('生成的衍射圆孔');
case 2
a=input('please input 衍射缝宽:');% 输入衍射单缝的宽度
b=1000;% 单缝的长度
I=zeros(N,N);
[m,n]=meshgrid(linspace(-N/4,N/4,N));
I(-a<m&m<a&-b<n&n<b)=1;
subplot(1,2,1);imshow(I);
title('生成的衍射单缝');
case 3
a=input('please input 方孔边长:');% 输入方孔边长
I=zeros(N,N);
[m,n]=meshgrid(linspace(-N/4,N/4,N));
I(-a/2<m&m<a/2&-a/2<n&n<a/2)=1;
subplot(1,2,1),imshow(I);
title('生成的方孔');
otherwise kind=input('please input 衍射孔径类型:');% 输入衍射孔径类型
end
% 夫琅禾费衍射的实现过程
L=500;
[x,y]=meshgrid(linspace(-L/2,L/2,N));
lamda_1=input('please input 衍射波长(nm):');% 输入衍射波长;
lamda=lamda_1/1e6
k=2*pi/lamda;
z=input('please input 衍射屏距离衍射孔的距离(mm):');% 衍射屏距离衍射孔的距离
h=exp(1j*k*z)*exp((1j*k*(x.^2+y.^2))/(2*z))/(1j*lamda*z);%脉冲相应H =fftshift(fft2(h));%传递函数
B=fftshift(fft2(I));%孔频谱
G=fftshift(ifft2(H.*B));
subplot(1,2,2),imshow(log(1+abs(G)),[]);
title('衍射后的图样');
figure
meshz(x,y,abs(G));
title('夫琅禾费衍射强度分布')
实验输入:衍射孔径类型1.圆孔 2.单缝3.方孔
please input 衍射孔径类型:1
please input 衍射圆孔半径(mm):3
please input 衍射波长(nm):632
lamda =
please input 衍射屏距离衍射孔的距离(mm):1000000
实验结果:
程序说明:本实验可以选择孔径类型、孔径半径、输入波长、衍射屏和衍射孔的距离等。

当衍射屏和衍射孔的距离相对较小时,此衍射为菲涅耳衍射,当距离相对较大时满足夫琅禾费衍射的条件,两者的程序一样,只是距离Z的大小不一致。

又由于夫琅禾费衍射与傅里叶变换成正比,只差一个系数关系。

所以程序中的衍射既是直接对物光进行傅里叶变换即可。

相关文档
最新文档