应用Matlab模拟光的夫琅禾费衍射的研究

合集下载

基于MATLAB的夫琅和费衍射实验的计算机仿真

基于MATLAB的夫琅和费衍射实验的计算机仿真
学 物 理 实 验 .0 2r)6 —6 2 0 : 46 . 4
式 中 J x是 一 阶 贝塞 尔 函 数 , 拟 时 令 f l h 6 0m, ,) ( 模 = m,= 0 n
a 0O 1 利用 MAT A = .0 m, L B编程 , 程序运行完毕后 , 依次得到 以 下图形 7 。圆孔衍射和矩孔衍射的三维 图形基本相 同, 二维 图
平 面 上 会 聚 点 Q(,) xy 的和 振 动 的 相 对 强 度 为 : I I u) Sl ) ( Q) ds (lP m r


() 1
于学生的理解 。同时通过 多种元 件的夫琅和费衍射 计算机仿
真, 能够动态直观地呈现光学衍射 中各种物 理量之间 的关 系,
有利于大学物理实验中光学部分教学的开展 。因此 , 我们应 当 充分利用计算机软件功 能为教学增添活力 ,为 学生理解复杂
Z agZ i n S uig J n e gh n YagK n L ne g Yag njn h n hf g uY l i g n cu n u iu f n gu e n a F J n Ho
(】潘 柏 根 , 施群 , 志 建 . 于 V +的 夫 琅 和 费 衍 射 仿 真 [] 5 金 刘 基 c+ J.
仪 器 仪表 用 户 ,0 O4: 66 . 2 l()6 —9
[]夏 静 , 6 陆训 毅 , 德 君 . 杨 圆孔 、 方 孔 和 双 矩 孔 夫琅 和 赞 衍 射 的
I tr ̄inN nfr n e n nen o Co ee c o M e s rn Te h lg a d M e h to is a ui g c noo y n c ar nc
Au o a i n Co f r n e o I EE: 0 — 0 . t m to , n e e c f E 9 2 9 5

实验7 衍射的Matlab模拟

实验7 衍射的Matlab模拟

实验7衍射的Matlab模拟一、实验目的:掌握衍射的matlab模拟。

二、实验内容:1)单个圆孔夫朗和费衍射的matlab模拟2)双圆孔夫朗和费衍射的matlab模拟3)同一波长,狭缝数量分别为1、2、3、6、9、10时候的夫朗和费衍射的matlab模拟4)对4个不同波长的光照射时,狭缝数量分别为1、3时候的夫朗和费衍射的matlab 模拟5)单个圆孔菲涅尔衍射的matlab模拟6)模拟圆孔(或者单缝)衍射时,衍射屏到接收屏距离不同的时候衍射的图样1)clearclclam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;hh=(2*BESSELJ(1,x)).^2./x.^2;b(:,i)=(hh)'.*5000;B=b/max(b);endimage(xs,ys,b);colormap(gray(n));figure;plot(xs,B);colormap(green);-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-3-3-2-10123x 10-300.10.20.30.40.50.60.70.80.912)%双圆孔夫琅禾费衍射clear all close all clc %lam=632.8e-9;a=0.0005;f=1;m=300;ym=4000*lam*f;ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:m r=xs(i)^2+ys.^2;sinth=sqrt(r./(r+f^2));x=2*pi*a*sinth./lam;h=(2*BESSELJ(1,x)).^2./x.^2;d=10*a;deltaphi=2*pi*d*xs(i)/lam;hh=4*h*(cos(deltaphi/2))^2;b(:,i)=(hh)'.*5000;end image(xs,ys,b);colormap(gray(n));-2.5-2-1.5-1-0.500.51 1.52 2.5x 10-3-2.5-2-1.5-1-0.50.511.522.5x 10-33)lamda=500e-9;%波长N=[1236910];for j=1:6a=2e-4;D=5;d=5*a;ym=2*lamda*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(j)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure(j);subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);plot(B1,ys,'k');end-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为2-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为3-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025狭缝数为9狭缝数为6-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.0254)lamda=400e-9:100e-9:700e-9;%波长N=[13];a=2e-4;D=5;d=5*a;for j=1:4ym=2*lamda(j)*D/a;xs=ym;%屏幕上y 的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for k=1:2for i=1:n sinphi=ys(i)/D;alpha=pi*a*sinphi/lamda(j);beta=pi*d*sinphi/lamda(j);B(i,:)=(sin(alpha)./alpha).^2.*(sin(N(k)*beta)./sin(beta)).^2;B1=B/max(B);end NC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1);image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2);狭缝数为10plot(B1,ys,'k');end end-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02Lamda=400nm,N=1-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025Lamda=400nm,N=3Lamda=500nm,N=1-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03Lamda=500nm,N=3Lamda=600nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04Lamda=600nm,N=3Lamda=700nm,N=1-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.045)clearclcN=300;r=15;a=1;b=1;I=zeros(N,N);[m,n]=meshgrid(linspace(-N/2,N/2-1,N));D=((m-a).^2+(n-b).^2).^(1/2);i=find(D<=r);I(i)=1;subplot(2,2,1);imagesc(I)colormap([000;111])axis imagetitle('衍射前的图样')L=300;M=300;[x,y]=meshgrid(linspace(-L/2,L/2,M));lamda=632.8e-6;k=2*pi/lamda;z=1000000;Lamda=700nm,N=3h=exp(j*k*z)*exp((j*k*(x.^2+y.^2))/(2*z))/(j*lamda*z); H=fftshift(fft2(h));%传递函数B=fftshift(fft2(I));%圆孔频谱G=H.*B;U=fftshift(ifft2(G));Br=(U/max(U));subplot(2,2,2);imshow(abs(U));axis image;colormap(hot)%figure,imshow(C);title('衍射后的图样');subplot(2,2,3);mesh(x,y,abs(U));subplot(2,2,4);plot(abs(Br))6)lamda=500e-9;%波长N=1;%缝数,可以随意更改变换a=2e-4;D=3:7;d=5*a;for j=1:5ym=2*lamda*D(j)/a;xs=ym;%屏幕上y的范围n=1001;%屏幕上的点数ys=linspace(-ym,ym,n);%定义区域for i=1:nsinphi=ys(i)/D(j);alpha=pi*a*sinphi/lamda;beta=pi*d*sinphi/lamda;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2;B1=B/max(B);endNC=256;%确定灰度的等级Br=(B/max(B))*NC;figure();subplot(1,2,1)image(xs,ys,Br);colormap(hot(NC));%色调处理subplot(1,2,2)plot(B1,ys,'k');end-0.4-0.200.20.4-0.015-0.01-0.00500.0050.010.01500.51-0.015-0.01-0.0050.0050.010.015D=3m-0.4-0.200.20.4-0.02-0.015-0.01-0.00500.0050.010.0150.0200.51-0.02-0.015-0.01-0.0050.0050.010.0150.02-0.4-0.200.20.4-0.025-0.02-0.015-0.01-0.00500.0050.010.0150.020.02500.51-0.025-0.02-0.015-0.01-0.0050.0050.010.0150.020.025D=5m D=4m-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.03-0.02-0.010.010.020.03-0.4-0.200.20.4-0.03-0.02-0.0100.010.020.0300.51-0.04-0.03-0.02-0.010.010.020.030.04D=7m D=6m。

夫琅禾费矩孔衍射的特征及其MATLAB模拟

夫琅禾费矩孔衍射的特征及其MATLAB模拟
对于夫琅禾费衍射实验由于受到实验课时等因素的限制即便是刚出版的大学物理实验教材也只是要求学生对夫琅禾费单逢衍射进行观测和研究而对夫琅禾费矩孔衍射实验则不做具体要求其实夫琅禾费单逢衍射只不过是矩孔衍射的特例而已对夫琅禾费矩孔衍射进行探讨和研究可加深对夫琅禾费衍射的认识和理解本文利用强大的运算及作图功能模拟夫琅禾费矩孔衍射不仅参数很容易调节模拟结果直观而且与实验观测结果也非常吻合夫琅禾费矩孔衍射实验装置夫琅禾费矩孔衍射实验装置如图所示费矩孔衍射实验的光源为单色光源实验时让平行光垂直入射到矩孔上在矩孔后置一焦距为的会聚透镜在透镜的象方焦平面上放置观测屏则在屏上会观测到夫琅禾费矩孔衍射图样夫琅禾费矩孔衍射的衍射场及其光强分布如图设波长为坐标的原点出发沿着衍射方向到达场点的光程即参考光程在积分过程中是不变的常量
##!
万方数据
蓝海江, 潘晓明, 吴建生: 夫琅禾费矩孔衍射的特征及其 %&’(&) 模拟
光强变小, 中央亮斑的面积增大! 这与 (!) 、 (") 式的结果是 一致的! ! ! ! ! ! 矩孔大小对夫琅禾费矩孔衍射的影响 在人机对话窗口中输入数据: " # # ! $ $$, % # # ! $ $$, ! # # ! ###$ $$, 则夫琅禾费矩孔衍射的 %&’(&) 模拟结果如 图 $ 所示! 何光学! ! ! ! ! - 从矩孔衍射到单缝衍射的 %&’(&) 模拟 在人机对话窗口中输入数据: " # # ! " $$, % # " $$, !# # ! ###$ $$, 夫琅禾费矩孔衍射的 %&’(&) 模拟结果如图 , 所示!
[-] 衍射是矩孔衍射的特例 !
! ! " ! ( 衍射反比律及其意义 由 ()) 式可知, ( 或 $!! 与 % 成反比) , $!# 与 $ 成反比 这一反比律具有普遍意义! 若设限制波前的光孔在某方向上 的几何线度为 #, 光波在该方向上的衍射发散角为 $!, 则衍

matlab实现夫朗和费矩形和圆孔衍射

matlab实现夫朗和费矩形和圆孔衍射

2、用MATLAB仿真平行光束的衍射强度分布图样。

(夫朗和费矩形孔衍射、夫朗和费圆孔衍射、夫朗和费单缝和多缝衍射。

)理论推导部分2.(1)夫朗和费矩形孔衍射若衍射孔为矩形则在透镜焦平面上得到的衍射图样如图,衍射图样的主要特征为衍射亮斑集中分布在两个相互垂直的方向上,并且x轴上的亮斑宽度与y轴亮斑宽度之比,恰与矩形孔在两个轴上的宽度相反。

其中的θ为θx,同样的β中的θ为θy,利用θx=x/f,θy=y/f进行求解。

(2)夫朗和费圆形孔衍射夫朗和费圆孔衍射的讨论方法和矩形孔衍射的讨论方法相同,只是由于圆孔的几何对称性,采用极坐标更为方便。

Ф=kaθ2.(1)夫朗和费矩形孔衍射clear all;lamda=500e-9;a=1e-3;b=1e-3;f=1;m=500;ym=8000*lamda*f;ys=linspace(-ym,ym,m)xs=ys;n=255;for i=1:msinth2=ys./sqrt(ys.^2+f^2);%相当于x/fsinth1=xs(i)/sqrt(xs(i).^2+f^2);%xs(i)作用每给一个ys值,要遍历到所有的x值angleA=pi*a*sinth1/lamda;%相当于书上的alfa=kax/2f k=2*pi/lamdaangleB=pi*b*sinth2./lamda;B(:,i)=(sin(angleA).^2.*sin(angleB).^2.*5000./(angleA.^2.*a ngleB.^2));%光强度公式endsubplot(1,2,1)image(xs,ys,B)colormap(gray(n))subplot(1,2,2)plot(B(m/2,:),ys)(2)夫朗和费圆孔衍射clearlam=500e-9a=1e-3f=1m=300;ym=5*0.61*lam*f/a;%取爱里光斑半径的5倍ys=linspace(-ym,ym,m);xs=ys;n=200;for i=1:mr=xs(i)^2+ys.^2;%相当于r的平方sinth=sqrt(r./(r+f^2));%角度fai=2*pi*a*sinth./lam;%fai=k*a*sinthhh=(2*BESSELJ(1,fai)).^2./fai.^2;%贝塞尔函数 b(:,i)=hh.*5000;endsubplot(1,2,1)image(xs,ys,b)colormap(gray(n))subplot(1,2,2)b(:,m/2)plot(ys,b(:,m/2))。

光的干涉和衍射的matlab模拟

光的干涉和衍射的matlab模拟

光的干涉和衍射的matlab模拟单缝夫琅和费衍射是光的衍射现象之一,如图2所示。

当单色光波通过一个狭缝时,光波会向周围扩散,形成一系列同心圆环。

这些圆环的亮度分布是由夫琅和费衍射公式描述的,即。

其中为入射光波长,为狭缝宽度,为衍射角。

夫琅和费衍射公式表明,随着衍射角的增大,圆环的半径会减小,而亮度则会逐渐减弱。

在MATLAB中,可以通过输入实验参数,如光波长和狭缝宽度,来观察圆环的亮度分布和半径随衍射角的变化情况。

同时,还可以探讨不同波长和狭缝宽度对圆环亮度和半径的影响。

4双缝衍射双缝衍射是光的干涉和衍射现象的结合,如图3所示。

当一束单色光波通过两个狭缝时,光波会在屏幕上形成一系列干涉条纹和衍射环。

干涉条纹的亮度分布与___双缝干涉相同,而衍射环的亮度分布则由夫琅和费衍射公式描述。

在MATLAB中,可以通过输入实验参数,如光波长、双缝间距和双缝宽度,来观察干涉条纹和衍射环的亮度分布和条纹间距、环半径随实验参数的变化情况。

同时,还可以探讨不同实验参数对干涉条纹和衍射环的影响。

5衍射光栅衍射光栅是一种利用衍射现象制成的光学元件,如图4所示。

当一束单色光波通过光栅时,光波会被分为多个衍射光束,形成一系列亮度不同的衍射条纹。

衍射条纹的亮度分布与夫琅和费衍射公式描述的圆环类似,但是条纹间距和亮度分布会受到光栅常数的影响。

在MATLAB中,可以通过输入实验参数,如光波长和光栅常数,来观察衍射条纹的亮度分布和条纹间距随实验参数的变化情况。

同时,还可以探讨不同实验参数对衍射条纹的影响。

总之,通过MATLAB模拟光的干涉和衍射现象,可以更加直观地理解和掌握这些重要的光学现象,同时也可以为实验设计和数据分析提供有力的工具和支持。

本文介绍了___双缝干涉、单缝夫琅禾费衍射和衍射光栅光谱的计算机模拟。

当一束单色平行光通过宽度可调的狭缝,射到其后的光屏上时,形成一系列亮暗相间的条纹。

单缝夫琅禾费衍射的光强分布可以通过惠更斯-费涅耳原理计算。

应用Matlab模拟光的夫琅禾费衍射的研究

应用Matlab模拟光的夫琅禾费衍射的研究

应用Matlab模拟光的夫琅禾费衍射的研究摘要:光的衍射是一种非常重要的光的物理现象。

它指的是:光将障碍物绕过,偏离直线传播路径,然后进入阴影区里的现象。

它也是光的波动表现的一种现象。

衍射系统的组成有三个部分,它们分别是:光源、衍射屏、接收屏(用来接收衍射图样的屏幕)。

通常情况下,我们根据衍射系统当中三个组成部分之间相互距离的大小,将衍射现象分为两类:一类叫做菲涅耳(Fresnel)衍射,剩下的一类叫做夫琅禾费(Fraunhofer,)衍射。

此文通过Matlab软件,进行编程,进而对夫琅禾费衍射过程进行模拟。

然后给出衍射光强分布图形,又通过对光的波长、焦距、缝宽等因素的改变,得到了衍射光强的分布和它的变化规律,并在理论上作出了合理的解释。

从而帮助我们更深刻的理解光的波动性原理。

关键词:Matlab;衍射;光学实验目录1 绪论 (1)1.1光的衍射现象 (1)1.2 Matlab模拟的意义 (1)2 光的衍射理论 (3)2.1 惠更斯原理 (3)2.2 惠更斯——菲涅耳原理 (3)3夫琅禾费衍射原理 (4)3.1 夫琅禾费单缝衍射 (4)3.2 夫琅禾费双缝衍射 (5)4 夫琅禾费衍射模拟 (6)4.1 单缝 (6)4.2 矩孔 (12)5 总结 (15)参考文献 (15)1 绪论1.1光的衍射现象自然界之中有一些光的现象,它们与人们已经发现的光的直线传播现象并不是百分百符合。

这些现象相继在17世纪之后被科学家们发现。

这就是由光的波动性表现出来的。

在这些现象之中,人们第一个发现的光的现象便是衍射现象,而且还在发现的同时做了些实验与理论的研究和探讨。

第一次成功发现衍射现象的科学家是意大利的物理学者格里马第。

在他的一部著作里描写了这样一个实验:让光通过很小的一个孔后射入到一个暗室里面,利用这种方法来形成点光源,然后在光路上面放置根直杆。

这时发现了两个特殊的现象:一个是影子,它投在白色的屏幕之上,以光的直线传播理论假定的影子要比它的宽度要小;另一个就是在这个影子的边缘还呈现出大约2、3个条带,条带是彩色的,随着光的增强,增强到很强的时候,这些条带甚至进入影子里。

基于Matlab的光学衍射实验仿真

基于Matlab的光学衍射实验仿真

基于Matlab的光学衍射实验仿真()摘要通过Matlab软件编程,实现对矩孔夫琅和费衍射的计算机仿真,结果表明:该方法直观正确的展示了衍射这一光学现象,操作性强,仿真度高,取得了较好的仿真效果。

关键词夫琅和费衍射;Matlab;仿真1引言物理光学是高校物理学专业的必修课,其中,光的衍射既是该门课程的重点内容,也是人们研究的热点。

然而由于光学衍射部分公式繁多,规律抽象,学生对相应的光学图像和物理过程的理解有一定的困难,大大影响了教学效果。

当然,在实际中可以通过加强实验教学来改善教学效果,但是光学实验对仪器设备和人员掌握的技术水平要求都较高,同时实验中物理现象容易受外界因素的影响,这给光学教学带来了较大的困难1【-5】。

随着计算机技术的迅速发展,现代化的教育模式走进了课堂,利用计算机对光学现象进行仿真也成为一种可能。

Matlab是一款集数值分析、符号运算、图形处理、系统仿真等功能于一体的科学与工程计算软件,它具有编程效率高、简单易学、人机交互好、可视化功能、拓展性强等优点[6-8],利用Matlab编程仿真光学现象只需改变程序中的参数,就可以生成不同实验条件下的光学图像,使实验效果更为形象逼真。

在课堂教学中,能快速的验证实验理论,使学生更直观的理解理论知识,接受科学事实。

本文以矩孔夫琅和费衍射为例,介绍了Matlab在光学衍射实验仿真中的应用。

2 衍射基本原理衍射是光波在空间或物质中传播的基本方式。

实际上,光波在传播的过程中,只要光波波面受到某种限制,光波会绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象,称为光的衍射。

根据障碍物到光源和考察点的距离,把衍射现象分为两类:菲涅尔衍射和夫琅和费衍射。

研究不同孔径在不同实验条件下的光学衍射特性,对现代光学有重要的意义。

如图1所示,衍射规律可用菲涅尔衍射积分表示,其合振幅为[9]:(1)其中,K是孔径平面,E是观察平面,r是衍射孔径平面Q到观察平面P的距离,d是衍射孔径平面O到观察平面P0的距离,cosθ是倾斜因子,k=2π/λ是光波波数,λ是光波波长,x1,y1和x,y分别是孔径平面和观察平面的坐标。

基于MATLAB光学衍射之矩形孔的夫琅禾费衍射

基于MATLAB光学衍射之矩形孔的夫琅禾费衍射

MATLAB的课程报告项目名称:基于MATLAB光学衍射之矩型孔的夫琅和费衍射一,MATLAB 基础:MatlaB是功能强大的科学及工程计算软件,它不但表现具有以矩阵计算为基础的强大数学计算和分析功能,而且还具有丰富的可视化图形表现功能和方便的程序设计能力。

Matlab是一款集数值分析、符号运算、图形处理、系统仿真等功能于一体的科学与工程计算软件,它具有编程效率高、简单易学、人机交互好、可视化功能、拓展性强等优点。

MatlAB是面向21世纪的计算机程序设计及科学计算语言。

MatlAB系统包括5个部分:开发环境,MAtlAB数学函数库,MAtlAB语言,图形功能,应用程序接口。

二,光的衍射的原理:光的衍射是光波在物质或空间里传播的基本发式,实际上,光波在传播的过程中,只要光波波面受到某种限制,光波会绕过障碍物偏离直线传播而进入几何阴影,并在屏幕上出现光强分布不均匀的现象,称为光的衍射。

根据障碍物到光源和考察点的距离,把衍射现象分为两类:菲涅尔衍射和夫琅和费衍射。

此次课程报告主要是围绕夫琅和费衍射展开的。

在光学上,夫琅和费衍射在场波通过圆孔或狭缝时发生,导致观测到的成像大小有所改变,成因是观测点的远场位置,及通过圆孔向外的衍射波有渐趋平面波的性质。

1,惠更斯原理:根据惠更斯-菲涅耳原理,单缝后面空间任一点P 的光振动是单缝处波阵面上所有子波波源发出的子波传到P 点的振动的相干叠加。

2. 菲涅耳-基尔霍夫衍射公式:由于菲涅耳理论本身的缺陷,所以从波动微分方程出发,利用场论中的Green 定理及电磁场的边值条件,其中倾斜因子为()k θ和常数C 均在下面所设。

~exp()exp()cos(,)cos(,)()[]2A ikl ikr n r n l E P d i l r σλ-=∑⎰⎰ 若设 1C i λ=; ~exp()()A ikl E Q l= ;cos(,)cos(,)()2n r n l K θ-= 则上式可化为:~~exp ikr E()()()P C E Q K d θσ=∑⎰⎰()r3. 基尔霍夫衍射公式的近似 菲涅耳衍射近似满足:2222221111111121111()()11[]222x x y y xx yy x y x y r z z z z z z ⎧⎫-+-+++=+=+-+⎨⎬⎩⎭ 当上式中1z 很大而使得第四项相对相位的贡献远小于π时,即满足:221()2x y k z π+<< 随着1z 的逐渐增大,从而可推得夫琅和费衍射公式如下: ~~2211,1111111exp()(,)exp[()]()exp[()]2ikz ik ik E x y x y E x y xx yy dx dy i z z z λ=+-+∑⎰⎰以上是矩孔的矩孔夫琅和费衍射复振幅计算公式的推导过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用Matlab模拟光的夫琅禾费衍射的研究摘要:光的衍射是一种非常重要的光的物理现象。

它指的是:光将障碍物绕过,偏离直线传播路径,然后进入阴影区里的现象。

它也是光的波动表现的一种现象。

衍射系统的组成有三个部分,它们分别是:光源、衍射屏、接收屏(用来接收衍射图样的屏幕)。

通常情况下,我们根据衍射系统当中三个组成部分之间相互距离的大小,将衍射现象分为两类:一类叫做菲涅耳(Fresnel)衍射,剩下的一类叫做夫琅禾费(Fraunhofer,)衍射。

此文通过Matlab软件,进行编程,进而对夫琅禾费衍射过程进行模拟。

然后给出衍射光强分布图形,又通过对光的波长、焦距、缝宽等因素的改变,得到了衍射光强的分布和它的变化规律,并在理论上作出了合理的解释。

从而帮助我们更深刻的理解光的波动性原理。

关键词:Matlab;衍射;光学实验目录1 绪论 (1)1.1光的衍射现象 (1)1.2 Matlab模拟的意义 (1)2 光的衍射理论 (3)2.1 惠更斯原理 (3)2.2 惠更斯——菲涅耳原理 (3)3夫琅禾费衍射原理 (4)3.1 夫琅禾费单缝衍射 (4)3.2 夫琅禾费双缝衍射 (5)4 夫琅禾费衍射模拟 (6)4.1 单缝 (6)4.2 矩孔 (12)5 总结 (15)参考文献 (15)1 绪论1.1光的衍射现象自然界之中有一些光的现象,它们与人们已经发现的光的直线传播现象并不是百分百符合。

这些现象相继在17世纪之后被科学家们发现。

这就是由光的波动性表现出来的。

在这些现象之中,人们第一个发现的光的现象便是衍射现象,而且还在发现的同时做了些实验与理论的研究和探讨。

第一次成功发现衍射现象的科学家是意大利的物理学者格里马第。

在他的一部著作里描写了这样一个实验:让光通过很小的一个孔后射入到一个暗室里面,利用这种方法来形成点光源,然后在光路上面放置根直杆。

这时发现了两个特殊的现象:一个是影子,它投在白色的屏幕之上,以光的直线传播理论假定的影子要比它的宽度要小;另一个就是在这个影子的边缘还呈现出大约2、3个条带,条带是彩色的,随着光的增强,增强到很强的时候,这些条带甚至进入影子里。

此后,格里马第还在一个不透明的板上面挖一个圆孔,用它来代替直杆,这样就会在屏幕上就呈现一亮斑出来,然而亮斑的大小要比光线沿直线传播的时候稍微大一些。

“衍射”这个词汇就是在这个时候正式被定义到光学当中,格里马第用它来命名光线会绕过障碍物边缘的现象。

可惜的是,格里马第并没有能够正确解释这一现象。

一方面,他知道他所观察出的衍射现象与光的直线传播和光的微粒说两中当时处在统治地位的学说相矛盾;另一方面,他自己认为的观点是,光是一种稀薄而且感觉不到的光流体,在光遇到障碍物的时候,就会引起流体波动。

除此之外,有关与光的衍射的现象,胡克前辈也曾观察到。

《显微术》是一个物理光学的初始建立的标志,它就是胡克著作的。

在这本书中,写了在几何阴影中光衍射的现象。

另外一个重复衍射实验的学者是牛顿。

他的实验是仔细观察屏幕边缘、毛发影子等。

在这些实验中,他得出了这样的结论:粒子能够同物体的粒子相互作用,且在它们通过这些物体的边缘时发生倾斜。

最终,光的衍射的正式定义为:光在传播过程中,遇到障碍物或小孔(窄缝)时,它有离开直线路径绕道障碍物阴影里去的现象。

1.2 Matlab模拟的意义在工程设计的领域之中,我们在理论的分析、物理上做实验后面,观察客观世界的规律性方面又发现一种新型手段:即计算机仿真科学。

仿真程序是实现计算机仿真过程的凭借。

运行仿真模拟程序时:第一,模型要研究系统的相关特性,并且针对它们来设定出定量的参数值;第二,我们命令有关研究模型的一些变量变化,当然要在已经规定的变化范围之中;第三,计算;第四,得出这些系统通过计算求出来的各种结果、情况;第五,让参数值不断变化,然后得出相应情况下的结果。

计算机仿真程序用有很多的功能,最大的在运行情况下的功能如下:(1)计算机能够演示出来系统在运行的时候的整体过程以及此过程当中出现的各个现象、状态;(2)计算机的拥有高速运算的能力。

借助计算机的这个能力,我们能够反复的输入的实验条件、系统参数。

从而极大的提高了实验的效率。

由此可以得出,用计算机来模拟:近代制性更好(用参数的调整即可实现),完全没有破坏性(器械和事故都不会因为设计上出现不合理而损坏和发生),可以重复出现(像湿度、温度等随机因素的影响可以排除),观察性更强(在现实实验中根本没有办法观察或很难观察到的现象能够被观察到,从而节省很多耗费在实验上的物力人力),模拟可以看成是研究的基础,模拟的效果达到了一般才会去研发。

Matlab软件是目前应用最广泛的计算机仿真程序之一,它是由MATrix和LABoratory两词的前三个字母组合从而形成的。

它的寓意是:“矩阵实验室”。

Cleve Moler(新墨西哥大学计算机系主任)为讲解线性代数编写了程序,后创建Mathworks公司。

由1982年Mathworks公司推出了Matlab软件。

1984年Mathworks公司把Matlab软件正式推向市场。

从此,这个软件的内核编写用C语言,并且填加了数据图视功能。

而且C语言的本身就可以进行数值的计算。

1997年,Matlab5.0版问世,很快就是5.1、5.2以及2003年的6.5版。

Matlab发展到今天,它的数据结构和类型比以前丰富,面向对象比以前友善,图形可视比以前快速精良,数学和数据分析资源比以前广阔、应用开发工具比以前多。

Matlab是一种“高高级”语言,面向工程和科学,可以进行图形显示、数值分析、信号处理、矩阵运算,并且构成方便和界面友好的用户环境。

在求特定学科问题的方面,它还有相应的工具箱。

其特点是:可扩展性、强大的运算功能、易学易用高效性、良好的开放性、函盖广泛的专业领域——工具箱。

Matlab因其大量的特点,在研究单位、工业部门中广泛的应用与解决研究相关的工程问题。

有“第四代计算机语言”的美誉。

2 光的衍射理论2.1 惠更斯原理波面上的每一点都是一个次级球面波的子波源,如图1点光源的传输示意图所示。

因为子波的波速与频率与初级波的波速和频率相同。

所以在这以后的每一时刻当中,这个时刻总的波动的波面就构成了子波波面的包络。

它的核心的思想是:介质中任一处的波动状态是由各处的波动决定的。

惠更斯原理可以对光的直线传播、折射、反射等现象进行较好的解释。

不过,相对来说,原始的惠更斯原理就更加粗糙。

所以,它解释衍射现象还是比较困难的。

而且用惠更斯原理推倒还会出现倒退波(这个显然不存在)。

点光源的传输示意图图 12.2 惠更斯——菲涅耳原理在惠更斯原理(Huygens principle )的基础上,进一步发展,就有了惠更斯-菲涅耳原理( Huggens-Fresnel principle )。

在解释光的传播规律的光的波动理论中,惠更斯-菲涅耳原理是基本原理。

创立光的波动说的时候,荷兰物理学家克里斯蒂安·惠更斯(Christiaan Huygens )首先将它提出。

它是研究衍射现象的理论基础,也是求解波(特别是光波)的一种近似方法。

惠更斯于1678年在给巴黎科学院的信和中,阐述了他的光波动原理。

之后, 奥古斯汀-让·菲涅尔(Augustin-Jean Fresnel )于1815年,补充了惠更斯原理:加入了波的相干性(在考虑各次波到达某点的作用的时候,一起考虑次波之间的位相关系)到里面。

菲涅耳在它的基础上,添加了一些定量表示式,这些表示式是用来描述次波的基本特征(位相和振幅)的,并且加入“次波相干叠加原理”。

进一波源子波包洛 新波阵面 Rtt+τ 1s 2s r=υt步将这个原理发展成了惠更斯——菲涅耳原理。

这个原理的内容表述如下:由面积元dS发出的各次波如图所示,它的振幅和位相同时满足下面的四个假设:(1)在波动理论中,波面是一个等位相面。

所以,我们能够将所有dS面上发出的次波的初位相看作相同(并且可以假设它是零)。

(2)次波在P点引起的振动的振幅与r成反比。

(3)面元dS发出的次波,在P点的振幅于dS的面积成正比,并且与倾角θ有关。

(4)P点次波的位相,由光程nr来决定。

由于惠更斯——菲涅耳原理并不是严格的理论上的产物,在较大的程度上,它是凭科学家们朴素的直觉得到的。

而且对于倾斜因子来说,它也没有办法给出具体的函数形式。

3夫琅禾费衍射原理3.1 夫琅禾费单缝衍射在衍射角=0的情况下,因为所有的光在经历缝面AB到会聚点0时都是相同的光程,所以它们的振动是同位相的。

所以,所有的衍射线在O点所引出的振动振幅的和就是此点合振动的振幅。

因而,O点的合振动强度最大,振幅也最大。

从而,在O点呈现出明纹,因为位置在屏幕的中央,这个条纹也叫中央明纹。

我们假设会聚于屏幕上的某点P的一束衍射光,它和屏幕中心O 点的距离是x。

就光程差来说,在单缝上面的其它各点所发出的子波都小于AC.子波在其它的位置上的时候:我们来作此光过B点的同相面BC, 只是在波从AB面转到BC面的时候,产生同相面AB发出的子波到P点的光程差。

A点发出的子波比B点发出的子波多走的光程是asinθ。

单缝衍射的特点:1)主极大在屏幕上,相同θ角的地方拥有的光强相同,导致相互平行的条纹出现在屏上,成为它的衍射图样。

这些条纹平行于狭缝。

在θ=0的地方,因为没有光程差,各衍射光线相干加强,因而光强最大。

2)次级大屏上光强分布上有中央主极大,还有次级大。

次级大的位置可以通过计算来得出:,47.3,46.2,43.1ππ±±±=a (1)3)暗纹位置它满足下面关系 () ,2,1=±=k k a π (3)() ,2,1sin =±=k k a πθ (4)4)明纹角宽度由于其间明纹的角宽度是指相邻暗纹的角距离,所以中央主极大的半角3.2 夫琅禾费双缝衍射衍射利用惠更斯——菲涅耳原理。

它让光穿过矩孔或者狭缝,从而利用矩孔或者狭缝来将一个向外的波动分成很多向外的波动。

波动通过矩孔或者狭缝的时候,会被分成很多波动,然后各自分别平行行进,后面跟着的波动亦是如此。

我们把屏幕放在波动的行经路线上,就可以观测到成像条纹。

此办法应用的就是如上所述的这个原理。

由于夫琅禾费双缝衍射数学上并不复杂,实验设置可以很准确地找出入射单色光的波长,障碍物是两个相距很近的细狭缝时的夫琅和费衍射。

两个狭缝,宽度一样并且都是a ,中间隔上宽度为b 的不透光部分。

平行光照射此双缝,在L2的焦平面上可得到夫琅和费双缝衍射图样。

图样的形成机制可看为两步,首先,若两个缝分别打开,它们将分别形成单缝衍射图样,图样的形状,位置和强度都是完全相同的。

第二步,两个缝同时打开,则屏上某点P 的总振幅是每个缝形成的振幅的合成,是干涉的结果。

相关文档
最新文档