直线与圆综合应用题

合集下载

(完整版)直线和圆基础习题和经典习题加答案

(完整版)直线和圆基础习题和经典习题加答案

【知识网络】综合复习和应用直线和圆的基础知识,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题,提高分析问题和解决问题能力.【典型例题】[例1]( 1)直线x+ y=1与圆X2+ y2—2ay=0(a>0)没有公共点,贝V a的取值范围是()A. (0, 2 —1) B . ( 2 —1, 2 + 1)C. (—2 —1 , 2 —1)D. (0, 2 +1(2)圆(x —1)2+ (y +•, 3 )2=1的切线方程中有一个是()A. x—y=0B. x + y=0C. x=0 D . y=0(3)a=b”是直线y x 2与圆(x a)2(y b)22相切”的()A .充分不必要条件B .必要不充分条件C.充分必要条件 D •既不充分又不必要条件(4)已知直线5x + 12y + a=0与圆x2+ y2—2x=0相切,则a的值为 ___________ .(5)过点(1, ,2 )的直线I将圆(x —2)2+ y2=4分成两段弧,当弧所对的圆心角最小时,直线I的斜率k= ___________ .[例2]设圆上点A (2, 3)关于直线x+ 2y=0的对称点仍在圆上,且圆与直线x —y+ 1=0相交的弦长为2 2 ,求圆的方程.[例3]已知直角坐标平面上点Q (2, 0)和圆C: x2+ y2=1,动点M到圆C的切线长与|MQ| 的比等于入(心0).求动点M的轨迹方程,并说明它表示什么曲线.[例4]已知与曲线C: x2+ y2—2x —2y +仁0相切的直线I叫x轴,y轴于A , B两点, |OA|=a,|OB|=b(a > 2,b > 2).(1) 求证:(a—2)(b —2)=2 ;(2) 求线段AB中点的轨迹方程;(3 )求厶AOB面积的最小值.【课内练习】51 .过坐标原点且与圆x2+ y2—4x + 2y +2 =0相切的直线的方程为()2. 圆(x — 2)2 + y 2=5关于原点(0,0)对称的圆的方程为()A . (x + 2)2+ y 2=5B . x 2 + (y — 2)2=5C . (x — 2)2+ (y — 2)2=5D . x 2 + (y + 2)2=53.对曲线凶一|y|=1围成的图形,下列叙述不正确的是()A .关于x 轴对称B .关于y 轴对称C .关于原点轴对称D .关于y=x 轴对称4. 直线11: y=kx + 1与圆x 2 + y 2+ kx — y — 4=0的两个交点关于直线 I 2: y + x=0对称,那么这两个交点中有一个是()A . (1, 2)B . (— 1, 2)C . (— 3, 2)D . (2, — 3)5. ____________________________________________________________________________ 若直线y=kx + 2与圆(x — 2)2 + (y 一 3)2=1有两个不同的交点,则k 的取值范围是 ________________6.已知直线ax + by + c = 0与圆O : x 2 + y2= 1相交于A 、B 两点,且|AB| = ■.. 3 ,则OA OB7. ___________________________________________________________ 直线11: y= — 2x + 4关于点M (2, 3)的对称直线方程是 _____________________________________ . & 求直线11: x + y — 4=0关于直线1: 4y + 3x —仁0对称的直线|2的方程.9.已知圆 C : x 2 + y 2 + 2x — 4y + 3=0(1) 若C 的切线在x 轴,y 轴上的截距的绝对值相等,求此切线方程;(2) 从圆C 外一点P (X 1,y 1)向圆引一条切线,切点为 M , O 为原点,且有|PM|=|PO|,求 使|PM|最小的P 点的坐标.10 .由动点P 引圆x 2 + y 2=10的两条切线PA , PB ,直线PA , PB 的斜率分别为k 1,k 2 . (1)若k 1+ k 2+ k 1k 2=— 1,求动点P 的轨迹方程;(2)若点P 在直线x + y=m 上,且PA 丄PB ,求实数m 的取值范围.1y= — 3x 或 y=3 x 1B . y=3x 或 y= — § x、 1 y= — 3x 或 y= — 3 x 、 1D . y=3x 或 y=3 x11 . 5直线与圆的综合应用1. 设直线过点(0, a),其斜率为1,且与圆x2+ y2=2相切,则a的值为 ()A. ±,2 B . ± C. i2 2 D . ±42. 将直线2x —y+ X= 0,沿x轴向左平移1个单位,所得直线与圆x2+y2+2x —4y=0相切,则实数入的值为A. —3 或7 B . —2 或8 C. 0 或10 D . 1 或113. 从原点向圆x2+ y2—12y+ 27=0作两条切线,则该圆夹在两条切线间的劣弧长为()A. nB. 2 nC. 4 nD. 6 n1 14. 若三点A (2, 2), B (a,0), C ( 0, b) (a, b均不为0)共线,^U ——的值等于______________ .a b5. 设直线ax—y + 3=0与圆(x —1)2+ (y—2)2=4有两个不同的交点A , B,且弦AB的长为2 3,则a等于_____________ .6. 光线经过点A (1, 7),经直线| : x+ y +仁0反射,反射线经过点B (1, 1).(1 )求入射线所在的方程;(2)求反射点的坐标.7. 在厶ABC中,BC边上的高所在的直线方程为x—2y +仁0, / A的平分线所在直线方程为y=0,若B点的坐标为(1 , 2),求点A和点C的坐标.& 过圆O: x2+ y2=4与y轴正半轴的交点A作这个圆的切线I, M为I上任意一点,过M 作圆O的另一条切线,切点为Q,当点M在直线I上移动时,求△ MAQ垂心H的轨迹方程.B组1. 已知两定点A (—2, 0), B (1 , 0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A. n B . 4 n C . 8 n D . 9 n2•和x轴相切,且与圆x2+ y2=i外切的圆的圆心的轨迹方程是()A. x2=2y + 1 B . x2= —2y + 1 C. x2=2y —1 D. x2=2|y| + 13.设直线的方程是Ax By 0,从1, 2, 3, 4, 5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是A . 20B . 1918D . 1624.设直线2x 3y 1 0和圆x2x 3 0相交于点A 、B ,则弦AB 的垂直平分线方程是 _____5. 已知圆M : A .对任意实数B .对任意实数C .对任意实数D .对任意实数 其中真命题的代号是 6. 已知点A , B 的坐标为(一3 , 0), (3 , 0), C 为线段AB 上的任意一点,P , Q 是分别 以AC , BC 为直径的两圆01 , O 2的外公切线的切点,求 PQ 中点的轨迹方程. 7.已知△ ABC 的顶点A (— 1, — 4),且/ B 和/ C 的平分线分别为I BT : y +仁0,I CK :X + y +仁0,求BC 边所在直线的方程.&设a,b,c,都是整数,过圆x 2 + y 2= (3a + 1)2外一点P (b 3 — b,c 3— c)向圆引两条切线,试证 明:过这两切点的直线上的任意一点都不是格点(纵横坐标均为整数的点)(x + cos e 2) (y — sin 02=1, k 和e 直线l 和圆M 都相切; k 和e 直线l 和圆M有公共点; e ,必存在实数k ,使得直线I 和圆M 相切; k ,必存在实数 e,使得直线I 和圆M 相切. 写出所有真命题的代号)直线I : y=kx ,下面四个命题 11. 5直线与圆的综合应用【典型例题】 例1(1) A .提示:用点到直线的距离公式.(2) C .提示:依据圆心和半径判断. (3) A .提示:将直线与圆相切转化成关于ab 的等量关系.(4) — 18或&提示:用点到直线的距离公式,注意去绝对值符号时的两种可能情况. (5)石-.提示:过圆心(2 , 0)与点(1, ,2 )的直线m 的斜率是—2 ,要使劣弧所 对圆心角最小,只需直线 I 与直线m 垂直.例2、设圆的方程为(x — a)2 + (y — b)2=r 2,点A (2 , 3)关于直线x + 2y=0的对称点仍在圆 上,说明圆心在直线 x + 2y=0上,a + 2b=0 ,又(2— a)2 + (3 — b)2=r 2,而圆与直线x — y + 1=0 相交的弦长为2 .2 ,,故r 2— ()2=2,依据上述方程解得:b 1= — 3 a 1=6 或r 12=52b 2=— 7 a 2=14 r 22=244•••所求圆的方程为(x — 6)2 + (y + 3)2=52,或(x — 14)2+ (y + 7)2=224. 例 3、设切点为 N ,则 |MN|2=|MO|2 — |ON|2=|MO|2 — 1 ,设 M ( x,y),则y 2 1 J (x 2)2y 2,整理得(於一1) (x 2+ y 2) — 4 入 X (1 + 4 心=05 当入=1时,表示直线x=5;当入工时,方程化为(x 二 )2 21坨,它表示圆心在(罕,。

直线与圆的综合运用练习题

直线与圆的综合运用练习题

直线与圆的综合运用练习题直线与圆的关系是数学中的基础知识点,不仅在几何学中有广泛应用,而且在实际问题中也能发挥重要作用。

本文将给出一些直线与圆综合运用的练习题,帮助读者巩固和应用所学知识。

问题一:已知直线与圆的交点坐标,求直线方程和圆的方程。

解析:设已知直线方程为y = kx + b,圆的方程为(x - m)² + (y - n)² = r²。

设交点坐标为(x₁, y₁),代入直线方程得y₁ = kx₁ + b,代入圆的方程得(x₁ - m)² + (kx₁ + b - n)² = r²。

化简后即可得到直线方程和圆的方程。

问题二:已知直线与圆的交点坐标,求该直线过圆心的垂线方程。

解析:设已知直线方程为y = kx + b,圆心坐标为(m, n)。

由于直线过圆心的垂线与直线的斜率为k的负倒数,故直线过圆心的垂线的斜率为-1/k。

设垂线方程为y = mkx + c,代入圆心坐标(m, n)得c = n -k*m。

因此,该直线过圆心的垂线方程为y = -x/k + (n - k*m)。

问题三:已知直线与圆的交点坐标,求直线与圆的切线方程。

解析:设已知直线方程为y = kx + b,圆的方程为(x - m)² + (y - n)² = r²。

通过求导可得直线的斜率为k。

根据切线的性质,直线与圆的切线垂直于通过切点与圆心的半径。

设直线与圆的切点坐标为(x₁, y₁),圆心坐标为(m, n),切线方程为y = mx + c。

由于切线垂直于半径,故直线与切线的斜率乘积为-1,即k * m = -1。

代入切点坐标(x₁, y₁)和圆心坐标(m, n)可得c = y₁ - m*x₁。

因此,直线与圆的切线方程为y = -1/k * x + (y₁ - m*x₁)。

问题四:已知圆的半径和切点坐标,求切线方程。

解析:设圆的方程为(x - m)² + (y - n)² = r²,切点坐标为(x₁, y₁)。

第五节 直线与圆的综合问题

第五节 直线与圆的综合问题

1.已知实数x,y满足方程x2+y2-8x+15=0,则x2+y2的最
大值和最小值分别是
()
A.25,9
B.16,9
C.5,3
D.4,3
解析:如图所示,x2+y2表示圆上的一点与原点
距离的平方,由平面几何知识知,在原点和圆心
连线所在直线与圆的两个交点处取得最值.原方
程化为标准方程为(x-4)2+y2=1,圆心为(4,0),半径为1.又
直线与圆的综合问题 [师生共研过关]
[例3] 已知直线l:4x+ay-5=0与直线l′:x-2y= 0相互垂直,圆C的圆心与点(2,1)关于直线l对称,且圆C过 点M(-1,-1).
(1)求直线l与圆C的方程; (2)过点M作两条直线分别与圆C交于P,Q两点,若直 线MP,MQ的斜率满足kMP+kMQ=0,求证:直线PQ的斜 率为1.
圆心到原点的距离为 4-02+0-02 =4,所以x2+y2的最
大值是(4+1)2=25,x2+y2的最小值是(4-1)2=9.故选A. 答案:A
2.已知点P(t,t),t∈R
,点M是圆x2+(y-1)2=
1 4
上的动点,
点N是圆(x-2)2+y2=
1 4
上的动点,则|PN|-|PM|的最大值

()
|PM|2-4,所以只需直线 2x+y+2=0 上的动点 P 到 M 的距离最小,
其最小值为|2+1+2|= 5
5,此时 PM⊥l,易求出直线 PM 的方程为 x
-2y+1=0.由2xx-+2yy+ +21= =00, ,
得xy==0-,1,
所以 P(-1,0).易知
P,A,M,B 四点共圆,所以以 PM 为直径的圆的方程为 x2+y-122

初三数学直线和圆的位置关系试题

初三数学直线和圆的位置关系试题

初三数学直线和圆的位置关系试题1.在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以点C为圆心,6cm的长为半径的圆与直线AB的位置关系是________.【答案】相交【解析】先根据勾股定理求得AB的长,再求得点C与直线AB的距离,再根据直线与圆的位置关系即可得到结果.∵∠C=90°,AC=12cm,BC=5cm∴∴点C与直线AB的距离为∴点C为圆心,6cm的长为半径的圆与直线AB的位置关系是相交.【考点】勾股定理,直线和圆的位置关系点评:勾股定理是初中数学平面图形中的重点,在中考中极为常见,在各种题型中均有出现,一般难度不大,需多加注意.2.如图,在△ABC中, ,⊙A与BC相切于点D,与AB相交于点E,则∠ADE等于____度.【答案】60【解析】先根据切线的性质可得∠ADB=90°,由AB=AC,∠BAC=120°可得∠B的度数,即可得到∠BAD的度数,再根据AD=AE即可求得结果.∵⊙A与BC相切于点D∴∠ADB=90°∵AB=AC,∠BAC=120°∴∠B=30°∴∠BAD=60°∵AD=AE∴∠ADE=60°.【考点】切线的性质,等腰三角形的性质,圆的基本性质点评:切线的性质是圆中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需多加注意.3.已知⊙O的半径为4cm,直线L与⊙O相交,则圆心O到直线L的距离d 的取值范围是____.【答案】0≤d<4【解析】圆心O到直线L的距离为d,圆的半径为r:当时,直线与圆相离;当时,直线与圆相切;当时,直线与圆相交.∵⊙O的半径为4cm,直线L与⊙O相交∴0≤d<4.【考点】直线和圆的位置关系点评:本题是直线和圆的位置关系的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.4.如图,PA、PB是⊙O的切线,切点分别为A、B,且∠APB=50°,点C是优弧AB上的一点,则∠ACB的度数为________.【答案】65°【解析】连接OA、OB,根据切线的性质可得∠PAO=∠PBO=90°,再根据四边形的内角和定理可得∠AOB的度数,最后根据圆周角定理即可求得结果.连接OA、OB∵PA、PB是⊙O的切线∴∠PAO=∠PBO=90°∵∠APB=50°∴∠AOB=130°∴∠ACB=65°.【考点】切线的性质,圆周角定理点评:切线的性质是圆中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需多加注意.5.如图,⊙O为△ABC的内切圆,D、E、F为切点,∠DOB="73°,∠DOE=120°," 则∠DOF=_______度,∠C=______度,∠A=_______度.【答案】146°,60°,86°【解析】根据切线的性质结合四边形内角和定理即可求得结果.∵⊙O为△ABC的内切圆,∠DOB=73°,∠DOE=120°∴∠DOF=146°,∠C=60°∴∠EOF=94°∴∠A=86°.【考点】切线的性质,四边形内角和定理点评:切线的性质是圆中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需多加注意.6.若∠OAB=30°,OA=10cm,则以O为圆心,6cm为半径的圆与直线AB 的位置关系是( )A.相交B.相切C.相离D.不能确定【答案】A【解析】圆心O到直线L的距离为d,圆的半径为r:当时,直线与圆相离;当时,直线与圆相切;当时,直线与圆相交.由题意得点O到直线AB的距离为5则以O为圆心,6cm为半径的圆与直线AB 的位置关系是相交故选A.【考点】直线和圆的位置关系,含30°角的直角三角形的性质点评:本题是直线和圆的位置关系的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.7.给出下列命题:①任意三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形, 并且只有一个外切三角形,其中真命题共有( )A.1个B.2个C.3个D.4个【答案】B【解析】根据三角形的外接圆,内接三角形,内切圆,外切三角形的性质依次分析即可.①任意三角形一定有一个外接圆,并且只有一个外接圆,③任意一个三角形一定有一个内切圆,并且只有一个内切圆,正确;②任意一个圆一定有一个内接三角形,而且有无数个内接三角形,④任意一个圆一定有一个外切三角形,而且有无数个外切三角形,故错误;故选B.【考点】三角形的外接圆,内接三角形,内切圆,外切三角形点评:三角形的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.设⊙O的直径为m,直线L与⊙O相离,点O到直线L的距离为d,则d与m的关系是( )A.d=m B.d>m C.d>D.d<【答案】C【解析】圆心O到直线L的距离为d,圆的半径为r:当时,直线与圆相离;当时,直线与圆相切;当时,直线与圆相交.∵⊙O的直径为m,直线L与⊙O相离∴d>故选C.【考点】直线和圆的位置关系点评:本题是直线和圆的位置关系的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.9.如图,∠PAQ是直角,半径为5的⊙O与AP相切于点T,与AQ相交于两点B、C.(1)BT是否平分∠OBA?证明你的结论.(2)若已知AT=4,试求AB的长.【答案】(1)平分;(2)2【解析】(1)连接OT,根据切线的性质可得∠OTA=90°,即可得到∠OBT=∠OTB=90°-∠ATB=∠ABT,从而得到结果;(2)过O作OM⊥BC于M,则可得四边形OTAM是矩形,根据矩形的性质可得OM=AT=4,AM=OT=5.在Rt△OBM中,根据勾股定理可得BM的长,从而可以求得结果.(1)连接OT,∵PT切⊙O于T,∴OT⊥PT,故∠OTA="90°,"从而∠OBT=∠OTB=90°-∠ATB=∠ABT.即BT平分∠OBA.(2)过O作OM⊥BC于M则四边形OTAM是矩形,故OM=AT=4,AM=OT=5.在Rt△OBM中, OB=5,OM=4,故BM==3,从而AB=AM-BM=5-3=2.【考点】切线的性质,角平分线的判定,矩形的判定和性质,勾股定理点评:本题综合性强,知识点较多,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.如图,AB为半圆O的直径,在AB的同侧作AC、BD切半圆O于A、B,CD切半圆O于E,请分别写出两个角相等、两条边相等、两个三角形全等、两个三角形相似等四个正确的结论.【答案】①角相等:∠AOC=∠COE=∠BDO=∠EDO,∠ACO=∠ECO=∠DOE=∠DOB,∠A=∠B=∠OEC=∠OED,②边相等:AC=CE,DE=DB,OA=OB=OE;③全等三角形:△OAC≌△OEC,△OBD≌△OED;④相似三角形:△AOC∽△EOC∽△EDO∽△BDO∽△ODC.【解析】根据切线的性质仔细分析图形即可判断.由已知得:OA=OE,∠OAC=∠OEC,又OC公共,故△OAC≌OEC,同理,△OBD ≌△OED,由此可得∠AOC=∠EOC,∠BOD=∠EOD,从而∠COD="90°,∠AOC=∠BDO."根据这些写如下结论:①角相等:∠AOC=∠COE=∠BDO=∠EDO,∠ACO=∠ECO=∠DOE=∠DOB,∠A=∠B=∠OEC=∠OED,②边相等:AC=CE,DE=DB,OA=OB=OE;③全等三角形:△OAC≌△OEC,△OBD≌△OED;④相似三角形:△AOC∽△EOC∽△EDO∽△BDO∽△ODC.【考点】切线的性质点评:切线的性质是圆中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需多加注意.。

直线与圆的综合问题(附答案)

直线与圆的综合问题(附答案)

例1直线y x m =-+与圆221x y +=在第一象限内有两个不同交点,则m 的取值范围是 ( B )()A 0m << ()B 1m <<()C 1m ≤≤ ()D m <<例2 设圆上的点(2,3)A 关于直线20x y +=的对称点仍在圆上,且与直线0x y y -+=相交的弦长为,求圆的方程。

(注意:试卷直线方程有误,应为x+y+1=0)解:已知圆上的点A (2,3)关于直线x+2y=0的对称点仍在圆上,即圆心在直线x+2y=0上所以,设圆心为(2a ,-a ),代入A 点有(2-2a )²+(3+a )²=R ²----(1)又知道与直线x-y+1=0相交的弦长为22所以,圆心到直线l 得距离 22132-=+=R a d -----(2)由方程(1),(2)经转化,得(a-7)(a-3)=0所以,a=3或7经检验成立故,圆方程为(x-6)²+(y+3)²=52或(x-14)²+(y+7)²=244例3 若过点()10,A 和B ()m B ,4并且与x 轴相切的圆有且只有一个,求实数m 的值和这个圆的方程。

解:分两种情况一种是这个圆与x 轴的切点与B 重合,即B 在x 轴上,此时过B 作X 轴的垂线,这条垂线与AB 的中垂线的相交,交点为圆心,两线确定一点,所以圆心是唯一的,又半径等于圆心到x 轴的距离,此时圆有且只有一个此时m=0,设圆心(x ,y )则B 作X 轴的垂线:x=4 (1)AB 的中垂线:y=4(x-2)+1/2 (2)联立(1)(2)得x=4,y=17/2 r=y=17/2所以圆的方程(x-4)²+(y-17/2)²=(17/2)²化简得:x ²-8x+16+y ²-17y=0还有一种情况是AB 平行于X 轴,此时AB 的中垂线垂直与x 轴,又圆与x 轴相切,所以AB 的中垂线过切点,此时这条线上到三点距离相等的点只有一个,所以圆心是唯一的,又半径等于圆心到x 轴的距离,此时圆有且只有一个此时m=1设圆心(x,y )这AB 中垂线:x=2半径等于圆心到x 轴的距离等于圆心到A 的距离所以:y ²=2²+(y-1)²得y=5/2所以圆的方程:(x-2)²+(y-5/2)²=(5/2)²化简得:x ²-4x+4+y ²-5y=0例4 已知直线为 ax-by+2=0( a>0 ,b>0 ),圆的方程为x+y+2x-4y+1=0 ,直线与圆截得到弦长为4 , 求a 1 +b1 的最小值。

高中直线与圆练习题

高中直线与圆练习题

高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。

2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。

3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。

三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。

2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。

3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。

4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。

5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。

(完整版)直线与圆综合练习题含答案

(完整版)直线与圆综合练习题含答案

直线与圆的方程训练题一、选择题:1.直线1x =的倾斜角和斜率分别是( )A .B .C . ,不存在D . ,不存在 2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .38.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23-9.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=10.若 为 圆的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y x D . 052=--y x11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .221+D .221+ 12.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )0135,1-045,10900180,,a b θ(2,1)P -22(1)25x y -+=A .1条B .2条C .3条D .4条 13.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x14.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43C.52 D.55615.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x16.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 17.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( ) A.30x y ++= B .250x y --= C .390x y --= D .4370x y -+=18.入射光线在直线1:23l x y -=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,若点P是1l 上某一点,则点P 到3l 的距离为( )A .6 B .3 C D 二、填空题:19.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.21.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

中职直线与圆练习题

中职直线与圆练习题

中职直线与圆练习题一、选择题(每题2分,共20分)1. 直线与圆相切时,圆心到直线的距离等于:A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积2. 圆的方程为 \( (x-3)^2 + (y-4)^2 = 16 \),圆心坐标是:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)3. 直线 \( y = 2x + 3 \) 与 \( y = -3x + 5 \) 的交点坐标是:A. (1, 5)B. (-1, 5)C. (1, -1)D. (-1, -1)4. 直线 \( x + 2y - 6 = 0 \) 与 \( 3x - 4y + 5 = 0 \) 的夹角是:A. 30°B. 45°C. 60°D. 90°5. 圆的半径为5,圆心在坐标原点,圆上一点P(x, y)到圆心的距离是:A. \( \sqrt{x^2 + y^2} \)B. \( \sqrt{(x-5)^2 + y^2} \)C. \( \sqrt{x^2 + (y-5)^2} \)D. \( \sqrt{(x+5)^2 + y^2} \)二、填空题(每题3分,共15分)6. 若直线 \( ax + by + c = 0 \) 与圆 \( x^2 + y^2 = r^2 \) 相切,则 \( a^2 + b^2 \) 等于______。

7. 圆心在(2, 3),半径为4的圆的方程是 \( (x-2)^2 + (y-3)^2 =______ \)。

8. 若直线 \( 2x - 3y + 5 = 0 \) 与圆 \( x^2 + y^2 = 9 \) 相切,则圆心(0, 0)到直线的距离是______。

9. 直线 \( 3x + 4y - 7 = 0 \) 与圆 \( x^2 + y^2 = 25 \) 相交,交点A和B的距离是______。

10. 若圆 \( (x-1)^2 + (y+2)^2 = 9 \) 与直线 \( y = x \) 相切,则切点的坐标是______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018级高一年数学竞赛辅导材料
1、直线l :()22+=x k y 与圆O :422=+y x 相交于A 、B 两点,O 是坐标原点,ABO ∆的面积为S 。

(1)求函数)(k f S =;
(2)求S 的最大值,并求取得最大值时的k 值。

2、曲线03622=+-++y x y x 上点Q 、P 满足:关于直线04=+-y kx 对称、OQ OP ⊥,求直线Q P 的方程。

3、在平面直角坐标系xOy 中,O 是坐标原点,以O 为圆心的圆与直线043=--y x 相切。

(1)求圆O 的方程;
(2)若直线l :3+=kx y 与圆O 交于B 、A 两点,在圆O 上是否存在一点Q ,使得OB OA OQ +=?若存在,求出此时直线l 的斜率;若不存在,说明理由。

4、已知圆心为C 的圆,满足下列条件:圆心C 位于x 轴正半轴上,与直线0743=+-y x 相切,且被y 轴截得的弦长为32,圆C 面积小于13。

(1)求圆C 的标准方程;
(2)设过点()3,0M 的直线l 与圆C 交于不同的两点B 、A ,以OB OA 、为邻边做平行四边形OADB 。

是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出直线l 的方程;若不存在,请说明理由。

5、已知圆C :)0()(222>=-+r r b y x 与直线l :02=-+y x 相切于点)1,1(P 。

(1)求圆C 的方程;
(2)若点Q 为圆C 上一个动点,点)2,2(--M ,求MQ PQ •的最小值;
(3)过点P 作两条相异直线与圆C 相交于点B 、A ,且直线PB 、PA 的倾斜角互补,试判断直线CP 与直线AB 是否平行,并说明理由。

6、已知圆C 过)0,2(B 。

(1)若圆C 与圆D :()2221r y x =+-关于直线x y =对称,试判断圆D 与圆C 的位置关系;
(2)若圆C 过点()2,0A ,圆心在圆222=+y x 的内部,且直线0543=++y x 被圆C 截得的弦长为32,点P 为圆C 上异于B 、A 的任意一点,直线PA 与x 轴交于点M ,直线PB 与y 轴交于点N 。

① 求圆C 的方程;
② 求证:BM AN •为定值。

7. (2019年福建省质检理12题)在ABC ∆中,B = 30,
3=BC ,32=AB ,点D 在边BC 上,点B 、C 关于直线AD 的对称点分别为B '、C ',则C B B ''∆的面积的最大值是
A. 2339-
B.736
C.739
D.2
33 8. (2018年5月莆田市质检理16)在平面四边形ABCD 中,AC AB ⊥,CD AD ⊥,3=AB ,8=AC ,则BD 的最大值为?
9. (2018年5月福州市质检理16)在平面四边形ABCD 中,若 15022=∠=∠=∠C B A ,当BC 取某个定值时,得CD 的取值范围为()t ,2,则t 的值为?
10. (2018年3月福建省高三质检理16)在平面四边形ABCD 中,1=AB ,5=AC ,BC BD ⊥,BC BD 2=,则AD 的最小值为?
11. (2019年1月湖北省元月调研理10)在ABC ∆中,角C B A ,,的对边
分别为c b a ,,,若2cos cos c
A b
B a =-,则B
a B
b A a cos cos cos +的最小值为? 12. (2019年1月佛山市质检理16)在ABC ∆中,角C B A ,,的对边分别为
c b a ,,,且1=a ,3
2π=A 。

当c b ,变化时,c b c b g λ+=),(存在最大值,则正数λ的取值范围是?
13. (2019年3月福建省适应性练习二理16)在ABC ∆中,角C B A ,,的对边分别为c b a ,,,3π
=A ,且a bc C c B b 3sin 2sin 2+=+,则ABC ∆面积的最大值为?
14. (2019年1月三明市质检理16)在平面直角坐标系xOy 中,点()0,1A ,动点M 满足以MA 为直径的圆与y 轴相切,过A 做直线052)1(=-+-+m y m x ,垂足为B ,则MB MA +的最小值?
15. (2019年3月唐山市质检理16)已知O 为坐标原点,圆M :()1122=++y x ,圆()4222=+-y x ,B A ,分别为圆M 和圆N 上的动点,则OAB S ∆的最大值为?
16. (2018年12月双十中学月考理16)阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A 、B 的距离之比λ()1,0≠>λλ,那么点M 的轨迹就是阿波罗尼斯圆。

下面,我们来研究与此相关的一个问题:已知圆:
122=+y x 和点⎪⎭
⎫ ⎝⎛-0,21A ,点)1,1(B ,M 为圆O 上动点,则MB MA +2的最小值为?。

相关文档
最新文档