第22届“华杯赛”初赛试卷( 小中组五年级)

合集下载

华杯赛练习题五年级

华杯赛练习题五年级

华杯赛练习题五年级五年级同学们:大家好!今天我们要进行华杯赛的练习题。

这是一项非常重要的考试,我们需要做好充分准备。

下面,我将为大家提供一些练习题,希望能够帮助大家查漏补缺,提高自己的学习水平。

练习题一:计算题1. 请计算下列各题。

a) 15 + 7 = ?b) 36 - 19 = ?c) 4 × 6 = ?d) 45 ÷ 5 = ?2. 请判断下列各题的计算结果是否正确。

a) 9 × 8 = 82b) 54 ÷ 6 = 10c) 23 + 14 = 37d) 75 - 41 = 34练习题二:选择题1. 在下列各个数中,哪个数是一个偶数?a) 17b) 22c) 33d) 442. 下列哪个图形是一个正方形?a) △ABCb) ○DEFc) □GHId) ⊗JKL练习题三:填空题1. 请根据题目的意思填入合适的单词。

a) 今天是星期__。

b) 一天有__小时。

c) 鱼住在__里。

2. 请填入下一个数字。

3, 6, 9, __, 15, 18, ...练习题四:解答题1. 请用小学语文课本中学到的知识,写一篇关于你最喜欢的动物的作文。

不少于50个字。

2. 请解答下列问题。

a) 地球上最大的洲是哪个?b) 鸟类如何孵化蛋?c) 什么是水循环?练习题五:绘画题1. 请根据题目的要求,用颜色填充图画。

题目:画一个绿色的森林,里面有一只黄色的小鸟和一颗红色的苹果树。

2. 请在下面给出的空白画布上画一幅你自己的作品。

以上就是本次华杯赛练习题的内容,希望同学们都能认真做好准备。

通过这些练习,我们可以进一步巩固已学知识,查漏补缺,为参加华杯赛奠定更坚实的基础。

祝愿大家在比赛中取得优异成绩!加油!注:本练习题仅供参考,大家可以根据自己的实际情况进行针对性的练习。

希望大家能够在学习中发现更多的乐趣,并享受进步的喜悦!。

第22届华杯赛总决赛全部四组题目

第22届华杯赛总决赛全部四组题目

总决赛试题 小中组一试一、填空题(共3题,每题10分)1. 计算:2017201820192020220182019⨯+⨯-⨯⨯=_________.2. 若干枚白色棋子成直线摆放,将其中一些棋子染成红色,使未染成的白色棋子被隔成9部分,其中有2部分棋子数量相同,而同样被白色棋子隔开的各部分的红色棋子数均不相同,则棋子总数的最小值为_________.3. 把1,2,3,4,5,6,7,8,9分别填入33⨯的九宫格中,使得每行、每列的三个数的和都相等,中心位置可能填的数共有_________个.二、解答题(共3题,每题10分,写出解答过程)4. 如图,大、小正方形的边长分别为4和1,且各边均水平或竖直放置,求四边形ADFG和BHEC 的面积之和.5. 将一个数的各位数字倒序后所得的数称为原数的倒序数.2017具有这样的性质:将2017及其倒序数7102相加,所得和9119的各位数字都是奇数.能否找到这样的五位数,使它与其倒序数的和的各位数字都是奇数?若能,请给出一个例子;若不能,请说明理由.6. 一副扑克牌去掉大小王后还有52张,如果把J ,Q ,K ,A 分别当作11,12,13,1点,问最多取出多少张牌,可使得取出的牌中任意两张牌的点数之和是合数?BA总决赛试题 小中组二试一、填空题(共3题,每题10分)1. 2017的倍数中,各个数字不同的五位数最大为_________.2. 长方形甲与乙的边长都是大于1的自然数,如图拼成一个“L 形”.已知“L 形”的面积是432,甲的面积为133,那么“L 形”的周长为_________.3. 同时满足下列两个条件的四位数共有_________个.(1)该数的各位数字只能是2,3,4,5中的数,数字允许重复; (2)该数能被组成它的各位数字整除.二、解答题(共3题,每题10分,写出解答过程)4. 将1,2,3,4,5,6,7,8分成两组,若第一组数的乘积恰为第二组数的乘积的整数倍,则最小为多少倍?5. 能否将1个正方形恰好分割成2017个互不重叠的小正方形,使得这2017个小正方形一共只有2种不同的大小?若能,请给出一个例子;若不能,请说明理由.bc6.下图是用9个相同的小正三角形拼成的图案,小正三角形的顶点称为格点.以格点为顶点,一组对边平行但不相等,另一组对边相等的四边形,称为“贝贝梯形”.(1)图中共有多少个“贝贝梯形”?(2)在格点处写下自然数1,2,3,4,…,8,9,10,每个格点写1个数字,不同格点所写的数字不同,将每一个“贝贝梯形”的四个顶点处的数字求和,再将这些和相加,结果最大是多少?总决赛试题 小高组一试一、填空题(共3题,每题10分)1. 计算:()422201720162017220173-⨯+⨯+=_________.2. 不超过100的所有质数的乘积,减去不超过100的所有个位数字为3和7的质数的乘积,所得差的个位数字为_________.3. 运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能得第一名;比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是_________.二、解答题(共3题,每题10分,写出解答过程)4. 能够将1到2017这2017个自然数分为若干组,使得每组中的最大数都等于该组其余数的和吗?如果能,请举一例;如果不能,请说明理由. 5. 把20172016表示成两个形式均为1n n+的分数相乘(其中n 是不为零的自然数),问有多少种不同的方法?(b d a c ⨯与d bc a⨯视为相同方法)6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.已知甲、乙下山速度都是上山速度的1.5倍,甲的速度与乙的速度之比是6:5.两人同时从山脚开始爬山,经过一段时间后,甲第10次到达山顶.问:在此之前,甲在山顶上有多少次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?总决赛试题 小高组二试一、填空题(共3题,每题10分)1. 某小镇上有若干辆共享单车,如果小镇人口少1人,则平均200人共享一辆单车,如果单车减少2俩,小镇共享一辆单车的平均人数仍为整数,则小镇最多有_________人.2. 恰有1513个不超过m 的正整数n 使得1234n n n n +++的个位数字为0,则自然数m =_________.3. 下图中的L 型立体称为“构件”,可切割成为4个单位正方体.用4个“构件”连结组合成一个长方体,如果经旋转及翻转后,连结成的两个长方体宽、长、高相同,并且连结方式相同,可视为相同的长方体,否则是不同的长方体,则可连结出_______种一条棱长为1的不同的长方体,总共可以连结出_______种不同的长方体.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,3,4,…,2017中,最多能选出多少个数,在这些数中,不存在三个数a ,b ,c 满足a b c +=?5. 下图中,ABCD 是长为3,宽为1的长方形,BE EG GC ==,2AH HD =,AC 、AG 、BH 、EH 交成阴影四边形PNQM .求四边形PNQM 的面积.6. 在等差数列1,4,7,10,13,16,…的前500项中,有多少个是完全平方数?总决赛试题 初一组一试一、填空题(共3题,每题10分)1. 计算:22222222221223344520162017---+---+--=_________.2. 某班30名同学在旅游途中看到一个商店的广告:酸奶一瓶5元,两瓶9元;冰激凌一支6元,两只10元.每人选择酸奶或者冰激凌中的一种,用最省钱的方式购买,一共花了140元.那么,他们一共至多买了_____瓶酸奶,至少买了_____瓶酸奶.3. 如图,在三角形ABC 中,D 、E 分别在边BC 、AC 上,AB AC =,AD AE =,18CDE ∠=︒,则BAD ∠=_________.二、解答题(共3题,每题10分,写出解答过程)4. 是否存在数c 满足:对任意的有理数a ,b ,都有a b +,a b -,1b -三个值中最大值大于等于c ?如果存在这样的c ,请给出一个具体数值,并求c 的最大值;如果不存在,请说明理由.5. 一个立方体是由27个棱长为1个单位的小正方体构成的.一只蚂蚁从A 沿着立方体表面的小正方体的边爬到B ,最短路径长是多少个单位?最短路径有多少种不同的走法? 6. []a 表示不超过a 的最大整数,求满足条件12235x x x x ++⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦的所有x 的值的和.AD总决赛试题 初一组二试一、填空题(共3题,每题10分)1. 一个四位数abcd 是完全平方数,并且满足()5104910c d a b ++=+,则这个四位数是_____或_____.2. 把500枚鸡蛋装到分别能装17枚和27枚两种规格的盒子中出售,刚好装完无剩余,则17枚规格的盒子装了_____盒,27枚规格的盒子装了_____盒.3. 在一条线段有n 个等分点,从n 个等分点中任选10个点,中间必有两个点,能把原线段分成3段,这3段能构成三角形,则n 的最大值是_________.二、解答题(共3题,每题10分,写出解答过程) 4. 求方程2432426760x y y y y -+-+-=的全部整数解.5. E 、F 分别是四边形ABCD 的对角线AC 、BD 的中点,EF 分别交边AD 、BC 于点P 和Q .已知7APPD=,求BQ QC 的值.6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?A总决赛试题 初二组一试一、填空题(共3题,每题10分) 1. 若正数a ,b ,c 满足1a b c ++=,则()()()111abca b c ---的最大值为_________.2. 将正数x 四舍五入到个位得到整数n ,若42017x n -=,那么x =_________.3.已知1p =+,那么23331p p p++=_________.二、解答题(共3题,每题10分,写出解答过程)4. 在边长为1的正方形中(含边上)至多放置多少个点,可使得这些点之间的所有距离都不小于0.5?5. 下图中,四边形ABCD 是矩形,()12ABr r BC=<<.四边形AEFG 是正方形,顶点G 在边CD 上,边EF 通过点B .求:BF EF .6. 早上8点,快、慢两车同时从A 站出发,慢车环行全程一次用43分钟,回到A 站休息5分钟;快车环行全程一次用37分钟,回到A 站休息4分钟.如此往返行驶.问:22点以前,两车同时到达A 站几次?快车在A 站休息时慢车达到的情况有几次?(8点整,两车出发时不计).FA总决赛试题 初二组二试二、填空题(共3题,每题10分)1. 设多项式()p x 的各项系数都是非负整数,且()16p =,()332p =,则()2p 的所有可能值为_________.2.已知a =105173a a a +-=+_________.3.()12k k +能被n 整除的最小正整数k 记为()F n ,例如,()54F =.若()9F x =,则x =_______.若()9F y =,则y =_______.二、解答题(共3题,每题10分,写出解答过程)4. 从1,2,…,50这50个数中任选n 个不同的数,其中一定有三个的比为2:3:7.求n的最小值.5. 如图,以长为4厘米的线段AB 的中点O 为圆心和2厘米为半径画圆,交AB 的中垂线于点E .再以A 、B 为圆心和4厘米为半径分别画圆弧交AE 于C ,交BE 于D .最后以E 为圆心和DE 为半径画圆弧DC .请确定“下弦月形”ADCBEA (图中阴影部分)的面积是多少平方厘米.(答案中圆周率用π表示)6. 将1,2,3,4,5,6,7这7个数打乱次序排列成一行,1a ,2a , (7)并作部分和,11S a =,212S a a =+,…,1j j j S S a -=+,2,3,,7j =.使得7个部分和中至少有1个是3的倍数的排列方法有多少种?。

22届华杯赛试题及答案

22届华杯赛试题及答案

22届华杯赛试题及答案一、选择题(每题5分,共20分)1. 已知函数f(x) = 3x^2 - 5x + 2,求f(2)的值。

A. 4B. 6C. 8D. 10答案:B2. 一个圆的直径为10cm,求其面积。

A. 25π cm²B. 50π cm²C. 100π cm²D. 200π cm²答案:B3. 已知一个等差数列的前三项分别为2, 5, 8,求第四项的值。

A. 11B. 12C. 15D. 18答案:A4. 已知一个三角形的两边长分别为3cm和4cm,夹角为60°,求第三边的长度。

A. 5cmB. 7cmC. √13 cmD. √21 cm答案:C二、填空题(每题5分,共20分)5. 已知等比数列的前三项为2, 6, 18,求第四项的值。

答案:546. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。

答案:5cm7. 已知一个二次方程x^2 - 5x + 6 = 0,求该方程的根。

答案:2, 38. 已知一个正方体的体积为64cm³,求其边长。

答案:4cm三、解答题(每题10分,共60分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求其在x=1处的导数值。

解答:首先求导数f'(x) = 3x^2 - 6x。

将x=1代入,得到f'(1) = 3(1)^2 - 6(1) = -3。

答案:-310. 已知一个等差数列的前三项为1, 4, 7,求其第n项的通项公式。

解答:设数列的公差为d,则d = 4 - 1 = 3。

根据等差数列的通项公式,第n项an = a1 + (n - 1)d,代入已知值,得到an = 1 +(n - 1) * 3 = 3n - 2。

答案:an = 3n - 211. 已知一个圆的半径为5cm,求其内接正六边形的边长。

解答:设正六边形的边长为a,由于正六边形可以分成六个等边三角形,每个等边三角形的边长等于圆的半径,所以正六边形的边长a等于圆的半径5cm。

华杯赛初赛试题及答案

华杯赛初赛试题及答案

华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方是16,那么这个数是多少?A. 4B. -4C. 4或-4D. 2答案:C3. 一个圆的周长是2πr,那么它的直径是多少?A. πrB. 2rC. rD. 2πr答案:B4. 计算下列表达式的值:(3x^2 - 2x + 1) + (2x^2 + 3x - 4)A. 5x^2 + x - 3B. 5x^2 + x + 5C. 5x^2 + x - 5D. 5x^2 + x + 3答案:A二、填空题(每题5分,共20分)1. 一个数的立方是27,那么这个数是______。

答案:32. 一个三角形的两个内角分别是40度和60度,那么第三个内角是______度。

答案:803. 一个数的绝对值是5,那么这个数可能是______或______。

答案:5或-54. 一个数除以2的结果是3,那么这个数是______。

答案:6三、解答题(每题10分,共20分)1. 已知一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:设数列的首项为a1=2,公差为d=5-2=3,根据等差数列的通项公式an=a1+(n-1)d,代入n=10,得a10=2+(10-1)*3=29。

答案:292. 一个长方形的长是宽的两倍,如果长是10厘米,那么宽是多少厘米?解答:设宽为x厘米,那么长就是2x厘米。

根据题意,2x=10,解得x=5。

答案:5厘米四、证明题(每题10分,共20分)1. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。

证明:设直角三角形的两直角边分别为a和b,斜边为c。

根据勾股定理,有a^2 + b^2 = c^2。

答案:证明完毕。

2. 证明:如果一个数的平方等于它的相反数,那么这个数只能是0。

证明:设这个数为x,那么x^2 = -x。

将方程重写为x^2 + x = 0,提取公因式得x(x + 1) = 0。

小学数学竞赛难题解析试卷(小中组)

小学数学竞赛难题解析试卷(小中组)

第二十二届华罗庚金杯少年数学邀请赛 初赛试卷(小学中年级组) (时间: 2016年12月10日10:00—11:00 ) 一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 两个小三角形不重叠放置可以拼成一个大三角形, 那么这个大三角形不可能由( )拼成. (A )两个锐角三角形 (B )两个直角三角形 (C )两个钝角三角形 (D )一个锐角三角形和一个钝角三角形 2. 从1至10这10个整数中, 至少取( )个数, 才能保证其中有两个数的和等于10. (A )4 (B )5 (C )6 (D )7 3. 小明行李箱锁的密码是由两个数字8与5构成的三位数. 某次旅行, 小明忘记了密码, 他最少要试( )次, 才能确保打开箱子. (A )9 (B )8 (C )7 (D )6 4. 猎豹跑一步长为2米, 狐狸跑一步长为1米. 猎豹跑2步的时间狐狸跑3步.猎豹距离狐狸30米, 则猎豹跑动( )米可追上狐狸. (A )90 (B )105 (C )120 (D )135 5. 图1中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道( )条线段的长度, 才可以计算出这个八边形的周长. (A )4 (B )3 (C )5 (D )10图1 装订线6.一个数串Λ219, 从第4个数字开始, 每个数字都是前面3个数字和的个位数.下面有4个四位数:1113, 2226, 2125, 2215, 其中共有()个不出现在该数串中.(A)1(B)2(C)3(D)4二、填空题(每小题 10 分, 满分40分.)7.计算=----1643842571000.8.已知动车的时速是普快的两倍, 动车的时速提高%25即达到高铁的时速, 高铁与普快的平均时速比特快快15千米/小时, 动车与普快的平均时速比特快慢10千米/小时, 则高铁和普快列车的时速分别是千米/小时和千米/小时.9.《火星救援》中, 马克不幸没有跟上其他5名航天员飞回地球, 独自留在了火星,马克必须想办法生存, 等待救援. 马克的居住舱内留有每名航天员5天的食品和50千克的非饮用水, 还有一个足够大的菜园, 马克计划用来种植土豆, 30天后每平方米可以收获5.2千克,但是需要灌溉4千克的水.马克每天需要吃875.1千克土豆, 才可以维持生存, 则食品和土豆可供马克最多可以支撑天.10.图2五角星中, 位于顶点处的“华”、“罗”、“庚”、“金”、“杯”5个汉字分别代表1至5的数字, 不同的汉字代表不同的数字.每条线段两端点上的数字和恰为5个连续自然数.如果“杯”代表数字“1”, 则“华”代表的数字是或.图2第二十一届华罗庚金杯少年数学邀请赛 初赛试卷(小学中年级组) (时间: 2015年12月12日10:00—11:00) 一、选择题 (每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.) 1. 计算: 124+129+106+141+237-500+113=( ). (A )350 (B )360 (C )370 (D )380 解题分析:(124+106)+(129+141)+(237+113)-500 =(230+270)+350-500 =500-500+350 =350 答案选A 2. 如右图所示, 韩梅家的左右两侧各摆了2盆花. 每次, 韩梅按照以下规则往家中搬一盆花: 先选择左侧还是右侧, 然后搬该侧离家最近的. 要把所有的花搬到家里, 共有( )种不同的搬花顺序. (A )4 (B )6 (C )8 (D )10 解题分析:原则是先选择门口左侧的c 或右侧的b ,从b 点入手 b→a→c→d ;b→c→a→d ;b→c→d→a装订线总分 a b c d左侧c同理:c→d→b→a;c→b→a→d;c→b→d→a共3×2=6种答案选B3.在桌面上, 将一个边长为1的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠, 且拼接的边完全重合, 则得到的新图形的边数为().(A)8 (B)7 (C)6 (D)5解题分析:答案选D4.甲、乙、丙、丁四支足球队进行比赛.懒羊羊说: 甲第一, 丁第四; 喜羊羊说: 丁第二, 丙第三; 沸羊羊说: 丙第二, 乙第一. 每个的预测都只对了一半, 那么, 实际的第一名至第四名的球队依次是().(A)甲乙丁丙(B)甲丁乙丙(C)乙甲丙丁(D)丙甲乙丁解题分析:代入排出法将A代入,懒羊羊说:甲第一, 丁第四;对一半(符合题意)喜羊羊说:丁第二, 丙第三;全错(不符合题意)终止A 将B代入,懒羊羊说:甲第一, 丁第四;对一半(符合题意)喜羊羊说:丁第二, 丙第三;对一半(符合题意)沸羊羊说:丙第二, 乙第一;全错(不符合题意)终止B 将C代入,懒羊羊说:甲第一, 丁第四;对一半(符合题意)喜羊羊说:丁第二, 丙第三;对一半(符合题意)沸羊羊说:丙第二, 乙第一;对一半(符合题意)答案选C5.如右图, 在5×5的空格内填入数字, 使每行、每列及每个粗线框中的数字为1, 2, 3, 4, 5, 且不重复. 那么五角星所在的空格内的数字是().(A)1 (B)2(C)3 (D)4解题分析:根据题意,☆不能为2(列重复)、5(行重复)、3(粗线框内重复)只能为1或4;☆为1答案选A6.在除法算式中, 被除数为2016, 余数为7, 则满足算式的除数共有()个.(A)3 (B)4 (C)5 (D)6解题分析:根据题意2016-7=2009,求2009的因数2009的因数:1,7,41,49,287,20092016÷1=2016(×);2016÷7=288(×);2016÷41=49……7(√);2016÷49=41……7(√);2016÷287=7……7(√);2016÷2009=1……7(√)符合条件的4个答案选B二、填空题(每小题10 分, 共40分)7.动物园里有鸵鸟和梅花鹿若干, 共有腿122条.如果将鸵鸟与梅花鹿的数目互换,则应有腿106条, 那么鸵鸟有只, 梅花鹿有头.解题分析:第一种方法:设鸵鸟有X只,梅花鹿有Y只2X+4Y=122 4X+8Y=244 6Y=244-106=1384X+2Y=106 4X+2Y=106 Y=2323=122 2X=30 X=15第二种方法:设鸵鸟有X只,梅花鹿有(122-2X) ÷4只4X+(122-2X) ÷4×2=106 4X+(122-2X) ÷2=1064X+61-X=106 3X=106-61X=15梅花鹿只数=(122-15×2) ÷4=23(只)答案:鸵鸟15只,梅花鹿23只8.某年, 端午节距离儿童节和父亲节的天数相同, 在月历中与六月最后一天同列, 父亲节是六月的第三个星期日, 则该年的父亲节是六月日.(右图是某个月的月历示意图)解题分析:根据右图28天,可知是二月份的日历,先求出6月1日星期几?3月31天、4月30日、5月31日,6月1日共计31+30+31+1=93天93÷7=13(周) ……2(天) 从3月1日星期四算,第2天是星期五,六月一日为星期五。

[华杯赛初赛试题]华杯赛试题

[华杯赛初赛试题]华杯赛试题

[华杯赛初赛试题]华杯赛试题篇一:[华杯赛试题]小学组华杯赛初赛试题精选8道题小学组华杯赛初赛试题1、全世界胡杨90%在中国,中国胡杨90%在新疆,新疆胡杨90%在塔里木.塔里木的胡杨占全世界的%.2、50个各不相同的正整数,它们的总和是2022,那么这些数里奇数至多有个。

3、在一个正方形里面画一个最大的圆,这个圆的面积是正方形面积的_______%。

(π取3.14)4、如果物价下降50%,那么原来买1件东西的钱现在就能买2件。

1件变2件增加了100%,这就相当于我手中的钱增值了100%。

如果物价上涨25%,相当于手中的钱贬值了_____%。

5、算式的计算结果是_______。

6、如图,大等边三角形中放了三个面积都是30平方厘米的小正六边形。

大三角形的面积是______平方厘米。

7、小学组华杯赛初赛试题:如果(A、B均为自然数),那么B最大是______。

8、甲、乙两车都从A地到B地。

甲车比乙车提前30分钟出发,行到全程三分之一时,甲车发生了故障,修车花了15分钟,结果比乙车晚到B地15分钟。

甲车修车前后速度不变,全程为300千米。

那么乙车追上甲车时在距A地_______千米。

篇二:[华杯赛试题]有关小学奥数华杯赛试题小学奥数华杯赛试题:一、选择题(每小题10分,以下每题的四个选项中,仅有一个是正确的,请单击选择答案。

)1、如图,时钟上的表针从(1)转到(2)最少经过了()。

(A)、2小时30分(B)、2小时45分(C)、3小时30分(D)、3小时45分2、在2022年,1月1日是星期日,并且()(A)、1月份有5个星期三,2月份只有4个星期三(B)、1月份有5个星期三,2月份也有5个星期三(C)、1月份有4个星期三,2月份也有4个星期三(D)、1月份有4个星期三,2月份有5个星期三3、有大小不同的4个数,从中任取3个数相加,所得的和分别是180,197,208和222,那么,第二小的数所在的和一定不是()。

第二十二届华杯赛试题(2017)

第二十二届华杯赛试题(2017)

第二十二届“华罗庚金杯”少年数学邀请赛(2017)一、选择题(每小题10分,共60分。

)1.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由( )拼成。

A.两个锐角蔓角形 B.两个直角三角形 C.两个钝角三角形D.-个锐角三角形和一个钝角三角形2.从1~10这10个整数中,至少取( )个数,才能保证其中有2个数的和等于10。

A.4 B.5 C.6 D.73.小明行李箱锁的密码是由2个数字8与5构成的三位数。

某次旅行,小明忘记了密码,他最少要试( )次,才能确保打开箱子。

A.9 B.8 C.7 D.64.猎豹跑一步长为2米,狐狸跑一步长为1米。

猎豹跑2步的时间狐狸跑3步。

猎豹距离狐狸30米,则猎豹跑( )米可追上狐狸。

A. 90 B.105 C.120 D.1355.题图中的八边形是将大长方形纸片剪去一个小长方形得到的,则至少需要知道( )条线段的长度,才可以计算出这个八边形的周长。

A. 4B. 4C. 5D. 106.一个数串219A,从第4个数字开始,每个数字都是前面3个数字和的个位数。

下面有4个四位数:1113、2226、2125、2215,其中共有( )个不出现在该数串中。

A.1 B.2 C.3 D.4二、填空题(每小题10分,满分40分。

)7.计算1000-257-84-43-16=____。

8.已知动车的速度是普快的两倍,动车的速度提高25%即达到高铁的速度,高铁与普快的平均速度比特快快15千米/时,动车与普快的平均速度比特快慢10千米/时,则高铁和普快列车的速度分别是千米/时和千米/时。

9.《火星救援》中,马克不幸没有跟上其他5名航天员飞回地球,独自留在了火星,马克必须想办法生存,等待救援。

马克的居住舱内留有每名航天员5天的食品和50千克的非饮用水,还有一个足够大的菜园,马克计划用来种植土豆,30天后每平方米可以收获2.5千克,但是需要灌溉4千克的水。

马克每天需要吃1.875千克土豆,才可以维持生存,则食品和土豆可供马克最多支撑天。

17至22届华杯赛小中组解析

17至22届华杯赛小中组解析

第17届华杯赛小中组解析1.答案:D算式中9个汉字,分别代表1~9,由于1+2+3+4+5+6+7+8+9=45,45是9的倍数,所以和也是9的倍数,选项只有D选项18是9的倍数。

例如324+657=981。

2.答案:D从镜子里看到的指针与实际是相反的,可将题中的指针以秒针为对称轴作对称,可知D选项15:55是最接近16时的。

3.答案:B最少4个三角形,如图4.答案:B最大值为109,10×10+10-10÷10=109。

5.答案:C设长方形长为a,宽为b,a+2b=30,2ab最大值为15×15,但a、b均为偶数,2ab最大值为14×16,长宽分别为14和8,面积最大112。

6.答案:A45=3×3×5,约数15小于19,所以不变的边长应为15,另一边最长为19,所以小虎最多用了15×19=285枚棋子。

7.答案:665将第二堆剩下的17颗小球除去,剩下的恰好是第三堆球数的3倍,如图第一堆第二堆第三堆所以第三堆原有小球(2012-17)÷3=665颗。

8.答案:925三个档上的算珠合起来是1110,1110=2×3×5×37,要求上面的三位数字不同,而,37×3=111,所以1110=37×5×6=37×5×(5+1)。

那么满足题意的上面的三位数是:37×5×5=9259.答案:105,2520小正方形的边长应为90和42的最大公因数,(90,42)=6,所以最少能剪出90/6×42/6=105块;所有正方形纸片的周长之和为6×4×105=2520厘米。

10.答案:20两桌单打的人数和一桌双打的人数相同,要想双打的人数和单打的多4人,则双打的桌数应为单打的一半多一桌。

已知乒乓球台共13张,所以双打的乒乓球台应有(13-1)÷3+1=5张,人数为5×4=20人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二届华罗庚金杯少年数学邀请赛 初赛试卷(同文五年级组) (时间: 2016年11月) 第一部分 一、填空题。

(每小题10分, 共80分.请将正确答案填入括号内.) 1. 计算:(1)871185811÷⨯ =( ) (2)5347352273⨯+⨯ =( )
2. 下面自然数中:481、184、841、523、523、325,( )能被5整除,( )能被2整除。

3. 下面自然数中:3124、3823、45235、5189、5588、5598,( )能被3整除,( )能被9整除。

4. 如图一,有9个长方形,其中5个长方形的面积分别是4、8、12、16、20平方米,那么长方形A 与长方形B 的和是( )。

5. 如图二,BD 是DA 的2倍,已知三角形BCD 的面积为12,则三角形ABC 的
面积是( )。



线
6. 将假分数
1564化成带分数是( ),将带分数941化成假分数是(
)。

7. 比较下列分数的大小(填“>”、“<”或“=”)
76 87 174 19
5
8. 下列分数中,最大的是(
)。

75、97、43、3
2。

二、解答题。

(每小题10分, 共20分.请写出具体的解答过程.)
1. 计算:
⎪⎭
⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-165113171351131410511311751138451135151132
2. 如图三,把三角形DEF 的边分别向外延长1倍、2倍、3倍后得到三角形ABC ,已知三角形ABC 的面积是180,那么三角形DEF 的面积是多少?
第二部分
一、选择题(每小题10分, 共60分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)
1.有些昙花的寿命能达到4小时,小麦开花的时间是这种昙花寿命的0.02倍,
约()分钟左右.
(A)0.8 (B)5 (C)0.08 (D)4
2.如右图所示, 韩梅家的左右两侧各摆了2盆花. 每次,
韩梅按照以下规则往家中搬一盆花: 先选择左侧还是
右侧, 然后搬该侧离家最近的. 要把所有的花搬到家里,
共有()种不同的搬花顺序.
(A)4 (B)6 (C)8 (D)10
3.一个小数,如果把它的小数部分扩大5倍,它就变成17.92;如果把它的小
数部分扩大8倍,它就变成20.38,则这个小数是().
(A)14.02 (B)13.92 (C)13.82 (D)12.72
4.甲、乙、丙、丁四支足球队进行比赛.懒羊羊说: 甲第一, 丁第四; 喜羊羊
说: 丁第二, 丙第三; 沸羊羊说: 丙第二, 乙第一. 每个的预测都只对了一半, 那么, 实际的第一名至第四名的球队依次是().
(A)甲乙丁丙(B)甲丁乙丙(C)乙甲丙丁(D)丙甲乙丁
5.在一个七位整数中, 任何三个连续排列的数字都构成一个能被11或13整除
的三位数, 则这个七位数最大是().
(A)9981733 (B)9884737 (C)9978137 (D)9871773
6.从自然数1, 2, 3, , 2015, 2016中, 任意取n个不同的数, 要求总能在这n
个不同的数中找到5个数, 它们的数字和相等. 那么n的最小值等于().
(A)109 (B)110 (C)111 (D)112
二、填空题(每小题10 分, 共40分)
7.计算:0.125×0.75+ 0.125×8.25+0.125=()。

8.某年, 端午节距离儿童节和父亲节的
天数相同, 在月历中与六月最后一天
同列, 父亲节是六月的第三个星期日,
则该年的父亲节是六月
日.(右图是某个月的月历示意图)
9.芈月、芈戎两人从第一层开始爬楼梯,芈月跑到第3层楼时,芈戎恰好跑
到第2层楼,照这样计算,芈月跑到第9层楼时,芈戎跑到第()层楼.
10.十个人围坐在一个圆桌边,每人选定一个数并将此数告诉他的两个邻座,
然后每人报出他的两个邻座告诉他的两个数的平均数,如图给出了所有人报的数,则报出数6的人他原来选定的数是
().。

相关文档
最新文档