细胞反应动力学

合集下载

第四章第二节细胞反应动力学

第四章第二节细胞反应动力学
b. 仅适用于细胞浓度较低的条件
μ μm μm μ S KS
b) 对于快速生长密度较高的微生物培养过程:
Where S0 ─ 底物的初始浓度 KS0 ─ 无纲量系数 c) 其它方程:

μmS μ KS0S0 S
or
μmS μ KS1 KS0S0 S
Blackman equation
S
限制性底物 的浓度
12
Monod方程与Michaelis-Menten方程的比较
Michaelis-Menten方程
1. 酶催化反应 2. 一种酶参与 3. 单底物的反应 4. 反应速率
kca t E 0 S dP Vm S vP dt Km S Km S
kca t S vP dP E 0 E 0 dt Km S
dS dt dP dt
a) Monod 方程的提出
假设条件: 1.只有一种限制性底物 2. 均衡生长 3. 细胞得率系数为常数
典型的非结构非分离动力学模型是Monod 方程, 表达形式类似于酶的Michaelis-Menten 方程:
μm S μ KS S
半经验公式
Where μ ─ 比生长速率 ( h-1 )
rP
μ
dP dt
dX Xdt
qS
dS Xd t
底物比消耗速率 (h-1)
产物比合成速率 (h-1)
5
dP qP Xdt
4.2.2 细胞反应动力学
细胞生长动力学 (X) 细胞反应动力学 产物合成动力学 (P) 底物消耗动力学 (S)
6
细胞生长与限制
什么是限制性底物? During the microorganisms growth the environment will change but if the conditions remain favorable growth will continue until one of the essential substrates is depleted. If all other nutrients are available in excess this substrate is called the growth-limiting substrate. 培养基中某一底物S的浓度增加会影响细胞生长速率, 而其它营养物浓度的变化对生长速率无明显影响,则 底物S即为限制性底物。

细胞化学反应动力学例题和知识点总结

细胞化学反应动力学例题和知识点总结

细胞化学反应动力学例题和知识点总结细胞化学反应动力学是研究细胞内化学反应速率和机制的重要领域,它对于理解细胞的生理功能、代谢过程以及疾病的发生发展都具有关键意义。

接下来,让我们通过一些例题来深入理解细胞化学反应动力学的相关知识点。

一、知识点回顾在探讨例题之前,先来回顾一下细胞化学反应动力学的几个重要知识点。

1、反应速率反应速率通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示。

对于一般的化学反应 aA +bB → cC + dD,其反应速率可以表示为:v =-1/a(dA/dt) =-1/b(dB/dt) = 1/c(dC/dt) = 1/d(dD/dt) 。

2、浓度对反应速率的影响根据质量作用定律,反应速率与反应物浓度的乘积成正比。

对于简单的一级反应,反应速率只与一种反应物的浓度成正比;对于二级反应,反应速率与两种反应物浓度的乘积成正比。

3、酶促反应动力学酶能够显著加快反应速率,但不改变反应的平衡常数。

酶促反应的速率受到酶浓度、底物浓度、温度、pH 值等多种因素的影响。

米氏方程(v = VmaxS /(Km + S))常用于描述酶促反应的速率与底物浓度之间的关系,其中 Vmax 表示最大反应速率,Km 表示米氏常数。

4、反应级数通过实验确定反应速率与反应物浓度之间的关系,可以确定反应的级数。

一级反应的速率与反应物浓度的一次方成正比,二级反应的速率与反应物浓度的二次方成正比,零级反应的速率与反应物浓度无关。

二、例题解析例题 1:在一个细胞内的化学反应A → B 中,反应物 A 的初始浓度为 10 mol/L,经过 20 秒后,A 的浓度降低到 05 mol/L。

计算该反应在这段时间内的平均反应速率。

解:反应速率 v =(dA/dt) ,由于浓度的变化量为 10 05 = 05mol/L ,时间为 20 秒,所以平均反应速率 v =(05 / 20) = 0025mol/(L·s) 。

细胞反应过程动力学

细胞反应过程动力学
典型的微生物细胞的组成为 CH1.8O0.5N0.2。 例如
大肠杆菌细胞的化学组成(以干基计% )
成分
含量
成分
含量
C
50
Na
1
H
20
Ca
0.5
O
8
Mg
0.5
N
14
Cl
0.5
P
3
Fe
0.2
S
1
其他
0.3
K
1
2.2.1 忽略产物生成的细胞生长过程的计量关系
对忽略产物生成的细胞生长过程的计量关系可表 示为
第二章 细胞反应动力学
2.1微生物反应过程概论
• 2.1.1微生物反应过程主要特征 • (1)微生物是该反应过程的主体 • (2)微生物反应的本质是复杂的酶催化反
应体系 • (3)微生物反应是非常复杂的反应过程
复杂性表现
1. 代谢成网络化分布,并相互影响,无法完全了解 清楚
2. 反应体系中的细胞生长、基质消耗和产物生成, 三者的动力学规律既有联系,又有明显差别,且 有各自的最佳反应条件。
式中 CX——细胞浓度,(g/L) t——时间,(h)
细胞浓度通常用单位体积的培养液中的细胞
(或菌体)的干燥质量表示。细胞浓度一般用质 量单位表示,很难用摩尔单位表示。
② 底物消耗速率
rS
dCS dt
式中 CS——底物浓度,(g/L)或(mol/L)—单位体积的培养液中O2的消耗量, (g/L)或(mol/L)
rCO2 CX
(1/h)或 (mol/g·h )
⑥ 热量的比生成速率
qH
1 CX
dCH dt
rH CX
(kJ/g·h )

第二章-生物反应动力学-2-细胞反应PPT课件

第二章-生物反应动力学-2-细胞反应PPT课件
分裂时间为90~120 min。
.
18
霉菌的生长特性是菌丝伸长和分枝。从
菌丝体(顶端生长)的顶端细胞间形成
隔膜进行生长,一旦形成一个细胞,它
就保持其完整性。霉菌的倍增时间可短
至60~90 min,但典型的霉菌倍增时间
为4~8 h。
.
19
病毒能在活细胞内繁
殖,但不能在一般培
养基中繁殖。病毒是
通过复制方式进行繁
1 细胞反应过程计量学
反应计量学是对反应物的组成和反应
转化程度的数量化研究。通过计量学,可
知道反应过程中有关组分的组成变化规律
以及各反应之间的数量关系。知道了这些
数量关系,就可以由一个物质的消耗或生
成速率来推知其他物质的消耗或生成速率。
.
40
由于细胞反应过程由众多组分参与,
且代谢途径错综复杂,在细胞生长和繁殖
的。
CH
O
m
n aO
2bNH
3
cCH
fCO
xO
yN
z dCH
uO
vN
weH
2O
2
.
45
CH
O
bNH
m
n aO
2
3
cCH
fCO
xO
yN
z dCH
uO
vN
weH
2O
2
• 式中CHmOn为碳源的元素组成,CHxOyNz
是细胞的元素组成,CHuOvNw为产物的元
素组成。下标m、n、u、v、w、x、y、z
最伟大的发现。
.
3
第三代现代生物技术产品
从1953年美国的Watson及Crick发现了
DNA分子的双螺旋结构,由此而来21世

2.细胞生长动力学作业参考资料

2.细胞生长动力学作业参考资料

非相关模型
二次代谢产 物
与细胞生长 是否同步
同步
细胞生长期 基本无产物
细胞生长期 无产物积累
2-2 酵母在需氧条件下,以乙醇为基质进行生长可表 示下列总反应式:
C2H5OH aO2 bNH3 cCH1.704O0.149 N0.408 dCO2 eH2O
试求当RQ=0.66时(1)求计量关系中的系数a,b,c,d和e的值; (2)确定YX/S 和YX/O值
C:2=c+d H: 6+3b=1.704c+2e O:1+2a=0.149c+2d+e N:b=0.408c d/a=0.66

解方程得 a=2.917, b=0.011, c=0.075, d=1.925, e=2.953
YX / S YX / o cM X 0.075(12 1.704 0.149 14 16 0.408) 0.075 22.32 0.036 MS 46 46
2、写出描述无抑制的细胞生长动力学模型的monod方程,并 简单的讨论 rX 随CS的变化.
max
cS K S cS
max
cS K S cS
cS KS
(1)cS << KS时:
max
rX max
cS cX KS
(2)cS >> KS时:
max
rX max cS 0 1 YX / S
c X c X 0
1
K S cS 0
YX / S
c X c X 0
cX
cX
rX max
cS 0
1 YX / S

细胞生物学中的生物化学反应动力学

细胞生物学中的生物化学反应动力学

细胞生物学中的生物化学反应动力学近年来,随着科技的不断进步,细胞生物学中的生物化学反应动力学研究也得到了极大的发展。

生物化学反应动力学是研究化学反应速率及其影响因素的学科,细胞生物学中研究生物化学反应动力学可以揭示生物现象的本质,为疾病的治疗和预防提供更有效的方法。

一、生物化学反应动力学的概念生物化学反应动力学是一门研究化学反应速率及其影响因素的学科。

在细胞生物学中,生物化学反应动力学研究细胞内各种生化反应的速率和对速率的影响。

细胞内的化学反应通常由酶催化,而酶催化的反应速率受到很多因素的制约。

二、反应速率常数的计算方法反应速率常数是生物化学反应动力学中最基本的参数,它是化学反应速率与反应物浓度的函数。

计算反应速率常数需要用到一些公式,其中最基本的公式为:k = (1/t) ln([A]₀/[A])其中k表示反应速率常数,t为反应时间,[A]₀表示反应初始时刻A的浓度,[A]表示t时刻A的浓度,ln表示自然对数。

该公式表明,反应速率常数与反应时间和反应物浓度有关,可以通过实验测定得到。

三、影响反应速率的因素生物化学反应速率受到很多因素的影响,其中包括温度、pH 值、浓度、催化剂和反应物分子间的碰撞概率。

其中,温度和pH 值是影响反应速率最主要的因素。

温度影响反应速率的原因在于温度升高会使反应物分子的平均动能增加,达到一定温度后,反应物分子的碰撞能够克服反应物分子间的相互作用能,从而使反应发生。

不过,温度过高时,酶的空间构型被破坏,反应速率会急剧下降。

pH值对反应速率的影响是因为酶对pH值非常敏感。

当pH值偏离其最适pH值时,酶的活性减退,反应速率明显降低。

四、酶催化反应的动力学酶是生物体内催化化学反应的生物催化剂。

酶催化反应动力学研究的重要性体现在酶反应速率与底物浓度之间的函数关系深入研究中。

基本的Michaelis-Menten方程可以描述酶催化反应速率(v)与底物浓度([S])的关系,该方程表达为:V = Vmax * [S] / (Km + [S])其中,Vmax表示酶的最大催化速率,在酶浓度饱和时达到。

生化反应器 第三章 细胞反应动力学1

生化反应器 第三章 细胞反应动力学1
1.2c + d + 2e − 6 b= 2 1.2 × 0.909 + 3.855 + 2 × 2 − 6 = 2 = 1.473
所以: a= 0.782,b=1.473,c=0.909,d=3.855,e=2
即: C6H12O6+0.782NH3+1.473O2=0.909C4.4H7.3O1.2N0.86 +3.855H2O+2CO2 (2)底物对细胞的得率YX / S的计算
YX / S
max
= 1 / 0.0167 = 59.8802(g/mol)
m = 0.0012(mol/g ⋅ h )
由而可看出两种作法的计算结果时接近的
0.04 0.035 0.03 YX/S (g/mol) 0.025 0.02 0.015 0.01 0.005 0 0 5 10 1/ µ (h ) 15 20
0.008 0.007 q S (mol/g·h) 0.006 0.005 0.004 0.003 0.002 0.001 0 0 0.1 0.2 0.3 0.4
µ (1/h )
qS及µ的实验数据计算YX/S ,以1/YX/S对1/µ进 行回归得到 则
1 / Y X / S = 0.0167 + 0.0012 / µ
对N元素平衡,有:
a = 0.86c = 0.782
对H元素平衡,有:
12 + 3a = 7.3c + 2d , 12 + 3a − 7.3c d= 2 12 + 3 × 0.782 − 7.3 × 0.909 = 2 = 3.855
对O元素平衡,有:
6 + 2 × b = 1 .2 c + d + 2 e ,

第八章 细胞生长动力学

第八章 细胞生长动力学

• (3)类型Ⅲ 产物的形成显然与基质(糖类)的 消耗无关,例如青霉素、链霉素等抗生素发酵。 • 即产物是生物的次级代谢产物,其特征是产物 合成与利用碳源无准量关系。产物合成在菌体 生长停止及底物被消耗完以后才开始。此种培 养类型也叫做无生长联系的培养。
三、根据反应形式分类
• (1)简单反应型 营养成分以固定的化学量转化为 产物,没有中间物积聚。又可分为有生长偶联和 无生长偶联两类。 • (2)并行反应型 营养成分以不定的化学量转化为 产物,在反应过程中产生一种以上的产物,而且 这些产物的生成速率随营养成分的浓度而异,同 时没有中间物积聚。
发酵动力学的研究内容
• 主要包括:细胞生长和死亡动力学,基质 消耗动力学,氧消耗动力学,CO2生成动 力学,产物合成和降解动力学,代谢热生 成动力学等。 • 以上各方面不是孤立的,而是既相互依赖 又相互制约,构成错综复杂、丰富多彩的 发酵动力学体系。
发酵动力学内容及目的
• 发酵动力学:是研究发酵过程中菌体生 长、基质消耗、产物生成的动态平衡及 其内在规律。 • 研究内容:包括了解发酵过程中菌体生 长速率、基质消耗速率和产物生成速率 的相互关系,环境因素对三者的影响, 以及影响其反应速度的条件。
• (1)分批式操作 底物一次装入罐内,在适宜条 件下接种进行反应,经过一定时间后将全部反 应系取出。 • (2)半分批式操作 也称流加式操作。是指先将 一定量底物装入罐内,在适宜条件下接种使反 应开始。反应过程中,将特定的限制性底物送 人反应器,以控制罐内限制性底物浓度保持一 定,反应终止取出反应系。 • (3)反复分批式操作 分批操作完成后取出部分 反应系,剩余部分重新加入底物,再按分批式 操作进行。
• 1.得率(或产率,转化率,Y):包括生长 得率(Yx/s)和产物得率(Yp/s)。 • 得率:是指被消耗的物质和所合成产物之 间的量的关系。 • 生长得率:是指每消耗1g(或mo1)基质(一 般指碳源)所产生的菌体重(g),即Yx/s=ΔX /一ΔS。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档