二项式定理的应用--求系数
二项式定理应用常见类型及其解题方法

二项式定理应用常见类型及其解题方法一、知识点回顾: 1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。
用1r n r rr n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意准确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,按降幂排列。
b 的指数从0逐项减到n ,按升幂排列。
各项的次数和等于n .④系数:注意准确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数,包含符号)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==-0122(1)(1)()n r rn n nn n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
二项式定理及其应用

二项式定理及其应用二项式定理是数学中的一条重要定理,它揭示了如何展开和求解(x + y)ⁿ这种形式的表达式。
本文将介绍二项式定理的公式及其应用,并探讨其在数学和实际问题中的意义。
1. 二项式定理的公式二项式定理的公式如下所示:(x + y)ⁿ = C(n,0) · xⁿ · y⁰ + C(n,1) · xⁿ⁻¹ · y¹ + C(n,2) · xⁿ⁻² · y² + ... + C(n,n-1) · x · yⁿ⁻¹ + C(n,n) · x⁰ · yⁿ其中,C(n,k)表示从n个元素中选取k个元素的组合数,也可以表示为n! / (k! · (n-k)! )。
在展开(x + y)ⁿ时,每一项的系数就是组合数C(n,k),指数是x和y的幂次。
2. 二项式定理的应用2.1 二项式系数二项式定理中的组合数C(n,k)被称为二项式系数,它具有很多重要的性质。
其中最为著名的是杨辉三角形,每一行的数字都是由上一行相邻两个数字相加而来。
杨辉三角形也是计算二项式系数的一种常用方法。
2.2 展开式的应用二项式定理的展开式可以用于求解多项式的乘法、计算多项式在某一点的值等问题。
通过展开(x + y)ⁿ,可以直观地观察到每一项的系数和指数之间的关系,从而简化计算。
2.3 组合恒等式二项式定理可以通过一些代数推导得到一些有用的组合恒等式,如:- C(n,0) + C(n,1) + C(n,2) + ... + C(n,n) = 2ⁿ- C(n,0) - C(n,1) + C(n,2) - ... + (-1)ⁿ · C(n,n) = 0这些恒等式在组合数学、概率论等领域中有着重要的应用。
3. 二项式定理的意义二项式定理的意义不仅仅局限于数学领域,它在实际问题中也有广泛的应用。
二项式定理求系数

二项式定理求系数二项式定理是代数学中的重要定理,它描述了一个二次多项式的展开式中各项的系数。
在这篇文章中,我们将详细介绍二项式定理以及如何利用该定理求解系数。
一、二项式定理的表达式二项式定理可以用以下表达式表示:$(a+b)^n=\sum\limits_{k=0}^nC_n^ka^{n-k}b^k$其中,$n$为非负整数,$C_n^k$表示从$n$个元素中选取$k$个元素的组合数,$a$和$b$为任意实数。
二、二项式定理的求解过程利用二项式定理求解系数的过程如下:1.确定展开式中的幂次。
根据二项式定理,展开式的幂次从0到$n$,其中$n$为给定的非负整数。
2.确定各项的系数。
根据二项式定理的表达式,可以看出展开式中各项的系数由组合数$C_n^k$决定。
$C_n^k$表示从$n$个元素中选取$k$个元素的组合数,可以用公式$C_n^k=\frac{n!}{k!(n-k)!}$计算得出。
3.确定各项的幂指数。
根据二项式定理的表达式,可以看出第$k$项的幂指数为$a^{n-k}b^k$。
4.计算各项的值。
根据确定的系数和幂指数,可以计算出展开式中各项的值。
三、例题分析现在我们通过一个例题来进一步理解二项式定理的求解过程。
例题:将$(a+b)^3$展开。
根据二项式定理,展开式为:$(a+b)^3=C_3^0a^3b^0+C_3^1a^2b^1+C_3^2a^1b^2+C_3^3a^0b^3$展开式的各项系数如下:第一项的系数为$C_3^0=1$,幂指数为$a^3b^0=a^3$。
第二项的系数为$C_3^1=3$,幂指数为$a^2b^1=ab$。
第三项的系数为$C_3^2=3$,幂指数为$a^1b^2=a^2b^2$。
第四项的系数为$C_3^3=1$,幂指数为$a^0b^3=b^3$。
因此,展开式为:$(a+b)^3=a^3+3ab+a^2b^2+b^3$四、总结通过以上例题的分析,我们可以看出,二项式定理是求解二次多项式展开式中各项系数的有力工具。
二项式定理

- - -
+ n· 2n-1=(n+2)· 2n-1, 故 3n>(n+2)· 2n-1.
2 n 例 4:已知( x- 2) (n∈N*)的展开式中第五项的系数与第三 x 项的系数的比是 10∶1. (1)求展开式中各项系数的和; (2)求展开式中含x 的项; (3)求展开式中系数最大的项和二项式系数最大的项.
2 3 1 ( x 2) 【 3】 展开式中的常数项是_______. 2 x
20
1 1 3 3 C x C 2 C1 ( 2) C3 (2) x
1 3 2 1 2
20.
( x 2 12 2)3 ( x 1 )6 x x
Tr +1 = (1) C x
r n- r r n- r r a=2x,b=3y,Tr+1=Cn2 · 3 x y ,其中 r Cn
2n-r3r 就是 Tr+1 项的系数.
求展开式中的特定项或特 定项的系数
1 x+ n 例 1 在二项式 4 的展开式中,前三项的系数成等 2 x 差数列,求展开式中的有理项和二项式系数最大的项.
4 所以x的系数为 C4 5 3 2 240.
【点评】三项式不能用二项式定理,必须转化 为二项式.
例1. 求(x2十3x十2)5的展开式中x的系数. 解法二:因为 (x2 十 3x 十 2)5 = (x2 十 3x 十 2)(x2 十 3x十2)(x2十3x十2)(x2十3x十2)(x2十3x十2), 所以 (x2 十 3x 十 2)5 展开式的各项是由五个 因式中各选一项相乘后得到的. 则它的一次项只能从五个因式中的一个取 一次项3x,另四个因式中取常数项2相乘得到.
二项式定理及其系数的性质

03
这些性质在解决某些数学问题 时非常有用,如求和、求积等 。
03 系数性质分析
组合数性质回顾
组合数定义
$C_n^k = frac{n!}{k!(n-k)!}$,表示从 $n$个不同元素中选取$k$个元素的组合数。
VS
组合数性质
$C_n^k = C_n^{n-k}$(互补性), $C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$(帕斯卡三角形), $C_n^0 + C_n^1 + ldots + C_n^n = 2^n$(二项式定理特例)。
根据二项式定理的通项公式,可以直接计算出展开式中 任意一项的系数。具体方法为:确定该项在展开式中的 位置(即序号$k$),然后代入通项公式计算即可。
若需要求多项式的某一项系数,可以先将多项式按照 二项式定理展开,然后找到对应位置的项并计算其系 数。
THANKS FOR WATCHING
感谢您的观看
常见问题一
根据二项式定理的通项公式,若某项 的系数为0,则该项不存在于展开式 中。因此,可以通过判断通项公式中 组合数或二项式系数的值是否为0来 确定某项是否存在。
VS
当$n<k$时,组合数$C_n^k=0$, 因此对应的二项式系数也为0。此时, 展开式中不存在该项。
常见问题二:如何求展开式中特定项系数?
在二项式定理的通项公式$T_{k+1}=C_n^k cdot a^{n-k} cdot b^k$中,混淆$n$、$k$、$a$、$b$的含义和取值范围。其 中,$n$表示二项式的次数,$k$表示项的序号(从0开始计数),$a$和$b$分别表示二项式中的两个实数。
错误地认为通项公式中的组合数$C_n^k$与二项式系数完全相同,实际上二者在数值上相等,但意义不同。组合数表示从 $n$个不同元素中取出$k$个元素的组合数,而二项式系数表示$(a+b)^n$展开后各项的系数。
二项式定理求系数

二项式定理求系数一、引言二项式定理是高中数学中的重要概念之一,它描述了一个二项式的展开式中各项的系数。
本文将以二项式定理求系数为主题,介绍二项式定理的概念、公式推导以及应用实例,力求使读者对二项式定理有一个全面的了解。
二、二项式定理的概念二项式定理是指对于任意的实数a、b和非负整数n,都有以下等式成立:$(a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + ... + C_n^kb^{n-k} + ... + C_n^na^0b^n$其中,$C_n^k$表示从n个不同元素中取出k个元素的组合数。
三、二项式定理的证明二项式定理的证明可以通过数学归纳法进行。
首先,当n=0时,等式左边为$(a+b)^0=1$,等式右边只有一项$C_0^0a^0b^0=1$,两边相等。
假设当n=k时等式成立,则当n=k+1时,根据组合数的性质,有$C_{k+1}^0 = 1$,$C_{k+1}^k = 1$,以及$C_{k+1}^i = C_k^i + C_k^{i-1}$(其中0<i<k+1),将这些结果代入等式右边进行展开,可得到与等式左边相同的结果。
因此,根据数学归纳法,二项式定理成立。
四、二项式定理的应用实例1. 求二项式展开式的特定项系数若要求$(a+b)^n$展开式中第k项的系数,可以使用二项式定理中的组合数来计算。
根据二项式定理的推导可知,第k项的系数为$C_n^k$。
例如,展开$(x+y)^5$,要求第3项的系数,即$C_5^3$,可计算得到35。
2. 计算二项式系数的性质二项式定理中的组合数$C_n^k$具有一些重要的性质。
例如,对于任意的非负整数n和k,有$C_n^k = C_n^{n-k}$。
这一性质被称为二项式系数的对称性。
另外,二项式系数满足杨辉三角形的性质,即$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$。
二项式定理及其应用

二项式定理及其应用1. 引言二项式定理是数学中的一个重要定理,它描述了如何展开二项式的幂。
该定理在代数、组合数学、数论以及其他数学领域有着广泛的应用。
本文将介绍二项式定理的数学表达式、证明过程以及一些常见的应用。
2. 二项式定理的表达式二项式定理可以用以下的数学表达式来描述:$$(a + b)^n = C(n,0) \\cdot a^n \\cdot b^0 + C(n,1) \\cdot a^{n-1} \\cdot b^1+ ... + C(n,k) \\cdot a^{n-k} \\cdot b^k + ... + C(n,n) \\cdot a^0 \\cdot b^n$$ 其中,C(n,k)表示组合数,即从n个元素中选取k个元素的不同组合数量。
3. 二项式定理的证明为了证明二项式定理,我们可以使用数学归纳法。
首先,考虑当n=1时的情况:(a+b)1=a+b显然,上述等式成立。
假设当n=m时,二项式定理成立,即:$$(a + b)^m = C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdot a^{m-1} \\cdotb^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdot a^0 \\cdot b^m$$ 我们需要证明当n=m+1时,二项式定理也成立。
首先,考虑展开(a+b)m+1:$$(a + b)^{m+1} = (a + b) \\cdot (a + b)^m$$根据归纳假设,我们可以将(a+b)m展开为:$$(a + b)^m = C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdot a^{m-1} \\cdotb^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdot a^0 \\cdot b^m$$ 将上述展开式代入$(a + b) \\cdot (a + b)^m$中,我们可以得到:$$(a + b) \\cdot (a + b)^m = (C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdota^{m-1} \\cdot b^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdota^0 \\cdot b^m) \\cdot (a + b)$$将上式展开并合并同类项,我们可以得到:$$(a + b) \\cdot (a + b)^m = C(m,0) \\cdot a^{m+1} \\cdot b^0 + (C(m,1)\\cdot a^m \\cdot b^1 + C(m,0) \\cdot a^m \\cdot b^1) + ... + (C(m,k) \\cdota^{m-k+1} \\cdot b^k + C(m,k-1) \\cdot a^{m-k} \\cdot b^{k+1}) + ... + a^0 \\cdot C(m,m) \\cdot b^{m+1}$$我们可以通过重新排列项来证明上式等于展开式(a+b)m+1的每一项。
二项式定理及其应用

赋值法求解.
解 令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1 ①
令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37
②
(1)∵a0=
C
0 7
=1,∴a1+a2+a3+…+a7=-2.
(2)(①-②)÷2,
得a1+a3+a5+a7=
1 37 2
=-1 094.
(3)(①+②)÷2,得
点,转化为二项式来解决,转化的方法通常为集 项、配方、因式分解,集项时要注意结合的合理性 和简捷性. 3.求常数项、有理项和系数最大的项时,要根据通 项公式讨论对r的限制;求有理项时要注意到指数 及项数的整数性.
4.性质1是组合数公式Crn Cnnr 的再现,性质2是从 函数的角度研究的二项式系数的单调性,性质3是 利用赋值法得出的二项展开式中所有二项式系数的 和.
基础自测
1.二项式(a+2b)n展开式中的第二项的系数是8,则
它的第三项的二项式系数为
A.24
B.18 C.16
( D) D.6
解析 T2= C1n an1(2b)1 C1n 2an1b,
所以2n=8,n=4,所以
C
2 n
=
C
2 4
=6.
2.(2009·浙江理,4)在二项式 (x2 1的)5展开式中, x
1
2
∴8 2n·(n2n-=11)+,81 n(n-1),
解得n=8或n=1(不合题意,舍去),
Tk1
C8k
x
8k 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两理两数四原则 十大题型递推法
1.阶乘: n!1 23 n
A 2.排列数: m n! n • (n 1) • (n 2) (n m 1) n (n m)!
C C 3.组合数:
m n
nm Anm
n
m!
注1.一般的,乘积式用于计算,阶乘式用于证明
§251 二项式定理的应用——求系数
一、求指定项的系数(等价于求指定项):
1. (a b)n 型: 2.(a b)m ○* (c d)n 型: 3. (a b c)n 型:
4.导பைடு நூலகம்型:
二、求系数和(差) :
1.赋值法: 2.其他法:
计数问题知识网络
复杂的计数问题 简单的计数问题
组合数的性质
x
为-20,则自然数n=_______
法2:由多项式乘法法则,结合组合的知识可得
(x 1 2)n x
的通项为
Cnk
Cnrk
x
k
(
1 x
)r
(2)nk
r
Cnk
Cr nk
x
k
r
(2)
nk
r
由题意得
kr 0
Cnk
Cr nk
(2)
nk
r
20
后续工作等同法1,操作量较大……
(3)(2004年安徽春考)若 (x 1 2)n 的展开式中常数项
lnim[(a0 a2 a4 ... a2n )2 (a1 a3 a5 ... a2n1)2 ] ____
析①:ln因im[(a0 a2 a4 ... a2n )2 (a1 a3 a5 ... a2n1)2 ]
(a0a1a2a3 a2n)(a0a1a2a3 a2n)
对称性 拆并性 增减性 可和性
计数原理型 排列组合型 十大题型
计数问题总述: 两理两数四原则 十大题型递推法
①
②
③
④
⑤
注①:分类加法及分步乘法计数原理:
化大为小是共性 顾名思义是区分
注②:排列数与组合数: 注③:①○先理后数②○先组后排③○特殊优先④○正难则反
注④:①○相邻(捆绑法)
②○不邻(插空法)
析②:令
x=1,代入(
2 2
x)2n
a0
a1x a2 x2
... a2n1x2n1
a2n x2n
得
a 0 a1a 2 a3
a2n
(
2 1)2n 2
析③:令x=-1,代入(
2 2
x)2n
a0
a1x
a 2
x2
...
a x2n1 2n1
a2n
x2n
得
a 0 a1a 2 a3
a2n (
2 1)2n 2
故所有项的系数和为1+2+3+2+1=9
法2:设 f (x) (1 x x2 )2 a 0a1x a 2 x2 a 3 x3 a 4 x4
故所有项的系数和为 f (1) (111)2 9
(6)(2009年湖北)设(
2 2
x)2n
a0
a1x
a 2
x2
...
a x2n1 2n1
a2n x2n
f (1) a0a1a2a3a4a5 (a0a2a4 ) (a1a3a5 )
③
a0a2a4
f (1) f (1) 2
a1a3a5 f (1) f (1)
2.其他法:
2
练习2.求系数和(差) :
(4)(2012年上海春考)若 (2x 1)5 a0a1x a2x2 a5x5
则 a0a1a2 a5 _______
⑨定序——倍缩法(等概率法);插空法
⑩染色——递推法
1.相邻问题捆绑法:
先捆可邻成大元 次变个数全排列
2.不邻(相离)问题插空法:
先排可邻后插空 多元切忌间接法
二元可用间接法 亮灯空位是变式
引:相间问题位置法
相邻相离综合体 一般解法位置法
3.在与不在 4.含与不含 5.至多与至少
——
特殊优先直接法 正难则反间接法
要求每个区域染一种颜色,相邻的区域不同色,
则不同的染色方法有多少种?
法3:环型域递推法:
h1 k h2 k(k 1)
A1 An
A2
An1
A3
A4
h3 k(k 1)(k 2)
hn (k 2)hn1 (k 1)hn2 (n 4)
注:二三环型点算法 四块以上递推法
异色插入第一类 同色剪开第二类
(a b)n Cn0an Cn1an1b Cnra b nr r Cnnbn
注1:相关概念: ①项与项数: 类似于学号与同学的关系
②系数与二项式系数:Cnr 称为二项式系数 ;容斥关系
注2:上下前后及某项 知四有一两头同(中间差)
组合数的性质
1.对称性: Cnr
C nr n
与首末两端“等距离”的两个二项式系数相等
11 121 1331 14641 1 5 10 10 5 1
C10 C11
C
0 2
C12
C
2 2
C
0 3
C13
C
2 3
C
3 3
C
0 4
C14
C
2 4
C
3 4
C
4 4
C
0 5
C
1 5
C
2 5
C
3 5
C
4 5
C
5 5
幂的运算性质
③ amn am an
④ amn am an
⑤ amn (am )n (an )m
③○在与不在 ④○含与不含 ⑤○至多与至少
直接法 间接法
⑦○分配 均匀分配 非均匀分配
⑨○定序
⑥○分组
相同元素 不同元素
二元1种 ⑧○错排 三元2种
⑩○染色 四元9种
注⑤:设n元某计数问题共有an种方法 若求an的通项公式有难度,可考虑求其递推公式
1.分类加法计数原理:
完成一件事有n类方式, 在第一类方式中有m1种不同 的方法,在第二类方式中有m2种不同的方法……,在第n类 方式中有mn种不同的方法.
4.导数型:
二、求系数和(差) :
1.赋值法: 2.其他法:
练习1.求指定项的系数
(1)(2012年全国)若 (x 1)n 的展开式中第3项与第7项的
x
二项式系数相等,则该展开式中
1 x2
的系数为____
析:由题意56得 Cn2 Cn6 ,解n 得2 n=62+68=8
故 Tr1 C8r x8r ,令 8 82r2r 2 ,2 得r r5 5
(3)不同元素的均匀分组:
①将2n个不同元素均匀的分成2组,共有 C2nnCnn 种分法
2!
②将3n个不同元素均匀的分成3组,共有 C3nnC2nnCnn 种分法 (4)不同元素的混合分组:先均匀后非均匀 3!
9.分配:
(1)不同元素的分配: 先分组后分配
(2)相同元素的分配(分组):0—1法
10.染色问题:
4.可和性:
系数求和赋值法 方法要熟正负1
① C0n C1n C2n C3n Cnn 2n ② C0n C2n C4n C1n C3n C5n 2n-1
§251 二项式定理的应用——求系数
一、求指定项的系数(等价于求指定项):
1. (a b)n 型: 2.(a b)m ○* (c d)n 型: 3. (a b c)n 型:
那么完成这件事共有 N=m1+m2+…+mn种不同的方法
2.分步乘法计数原理: 完成一件事需要分成n个步骤,做第1步有m1种不同
的方法,做第2步有m2种不同的方法……,做第n步有mn种 不同的方法 那么完成这件事共有 N=m1×m2×…×mn种不同的方法
3.容斥计数原理: 先把包含于某内容中的所有对象的数目计算出来
注2. 常用的排列数: An0 1 An1 n Ann n!
注3.常用的组合数: Cn0 1 Cn1 n Cnn 1
两理两数四原则 十大题型递推法
排列与组合的关联:
① 排列有序,组合无序,可用特值法来验证有无顺序
② 先组后排:排列可以看作是先取组合,再做全排列
Anm Cnm m!
两理两数四原则 十大题型递推法
析④:即求 lim [( 2 1)2n ( 2 1)2n ] lim ( 1 )n 0
2 n
2
n 4
(7)化简:
C1 2014
2C22014
3C23014
2014C22001144
法1:因 kCnk nCnk11 (参课本P:25 练习5)
(1)条型域:
如图,1 2 3 … n ,用k种颜色染n块区域,相邻
区域不能同色, 则共有 tn k(k 1)n1 种染法
注1:染色基础是条型 方法多多随爱好 从头到尾逐个染 乘法原理显神功
注2:隐含了颜色有剩余
2.环型域: ①无心环型域: 如图,用k种不同的颜色,涂圆中n块区域
要求每个区域染一种颜色,相邻的区域不同色,
则不同的染色方法有多少种?
法1:通项公式:
hn (k 1)n (1)n (k 1)
法2:化环型域为条型域:
h1 k
A1 An
A2
An1
A3
A4
h2 k(k 1) , h3 k(k 1)(k 2)
tn hn hn1 (n 4)
注:思路显然,但操作量过大
2.环型域: ①无心环型域: 如图,用k种不同的颜色,涂圆中n块区域
析:令 x=1,代入 (2x 1)5 a0a1x a2x2 a5x5 得 a0a1a2 a5 (211)5 1