K-均值聚类算法(原理加程序代码)

合集下载

k均值聚类的python代码

k均值聚类的python代码

k均值聚类的python代码K均值(K-means)聚类是一种常见的无监督学习算法,用于将数据集分成K 个不同的簇。

以下是使用Python 中的scikit-learn 库进行K 均值聚类的简单示例代码:```pythonimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeansfrom sklearn.datasets import make_blobs# 生成一些随机数据data, labels = make_blobs(n_samples=300, centers=4, random_state=42)# 创建KMeans 模型,指定簇的数量kmeans = KMeans(n_clusters=4)# 用数据训练模型kmeans.fit(data)# 获取簇中心和预测的标签centers = kmeans.cluster_centers_predicted_labels = bels_# 绘制原始数据和簇中心plt.scatter(data[:, 0], data[:, 1], c=predicted_labels, cmap='viridis', edgecolor='k', s=50)plt.scatter(centers[:, 0], centers[:, 1], c='red', marker='X', s=200, label='Cluster Centers')plt.title('K-Means Clustering')plt.xlabel('Feature 1')plt.ylabel('Feature 2')plt.legend()plt.show()```上述代码的步骤如下:1. 生成一些随机数据(在实际应用中,你会使用你自己的数据)。

kmeans算法简单例题代码实现

kmeans算法简单例题代码实现

K-means算法是一种用于数据聚类的经典算法,它通过迭代将数据分成K个类别。

在本文中,我们将对K-means算法进行简单介绍,然后用一个例题来演示如何实现K-means算法的代码。

1. K-means算法简介K-means算法是一种无监督学习算法,它的基本原理是通过迭代将数据分成K个类别,使得每个数据点都属于与其最近的均值点所代表的类别。

K-means算法的过程可以简单分为以下几步:(1)随机选择K个初始均值点作为聚类中心;(2)对于每个数据点,计算其与K个均值点的距离,并将其归类到距离最近的均值点所代表的类别中;(3)更新每个类别的均值点为该类别中所有数据点的平均值;(4)重复步骤(2)和步骤(3),直到达到停止条件为止。

2. K-means算法例题代码实现下面我们用一个简单的例题来演示如何实现K-means算法的代码。

假设我们有如下的数据集:```X = [[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]]我们的目标是将这个数据集分成两个类别。

我们可以用以下的Python 代码来实现K-means算法:```pythonimport numpy as npfrom sklearn.cluster import KMeansX = np.array([[1, 2], [1, 4], [1, 0], [4, 2], [4, 4], [4, 0]])kmeans = KMeans(n_clusters=2, random_state=0).fit(X)print(bels_)print(kmeans.cluster_centers_)```在这段代码中,我们首先导入了numpy库和sklearn库,并将我们的数据集X转换为numpy数组。

然后我们使用KMeans类来创建一个K-means模型,并指定聚类的数量为2。

接着我们使用fit方法来对数据进行聚类,并打印出每个数据点的类别和每个类别的均值点的位置。

K-MEANS算法(K均值算法)

K-MEANS算法(K均值算法)

k-means 算法一.算法简介k -means 算法,也被称为k -平均或k -均值,是一种得到最广泛使用的聚类算法。

它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。

这一算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。

二.划分聚类方法对数据集进行聚类时包括如下三个要点:(1)选定某种距离作为数据样本间的相似性度量k-means 聚类算法不适合处理离散型属性,对连续型属性比较适合。

因此在计算数据样本之间的距离时,可以根据实际需要选择欧式距离、曼哈顿距离或者明考斯距离中的一种来作为算法的相似性度量,其中最常用的是欧式距离。

下面我给大家具体介绍一下欧式距离。

假设给定的数据集 ,X 中的样本用d 个描述属性A 1,A 2…A d 来表示,并且d 个描述属性都是连续型属性。

数据样本x i =(x i1,x i2,…x id ), x j =(x j1,x j2,…x jd )其中,x i1,x i2,…x id 和x j1,x j2,…x jd 分别是样本x i 和x j 对应d 个描述属性A 1,A 2,…A d 的具体取值。

样本xi 和xj 之间的相似度通常用它们之间的距离d(x i ,x j )来表示,距离越小,样本x i 和x j 越相似,差异度越小;距离越大,样本x i 和x j 越不相似,差异度越大。

欧式距离公式如下:(2)选择评价聚类性能的准则函数k-means 聚类算法使用误差平方和准则函数来评价聚类性能。

给定数据集X ,其中只包含描述属性,不包含类别属性。

假设X 包含k 个聚类子集X 1,X 2,…X K ;{}|1,2,...,m X x m total ==(),i j d x x =各个聚类子集中的样本数量分别为n 1,n 2,…,n k ;各个聚类子集的均值代表点(也称聚类中心)分别为m 1,m 2,…,m k 。

模式识别第二章-2.K-均值分类算法

模式识别第二章-2.K-均值分类算法

模式识别第二章2. K-均值分类算法1. 实验原理和步骤以初始化聚类中心为1x 和10x 为例。

第一次迭代:第一步:取K=2,并选T x z )00()1(11==,T x z )67()1(102==。

第二步:因)1()1(2111z x z x -<-,故)1(11S x ∈因)1()1(2212z x z x -<-,故)1(12S x ∈因)1()1(2313z x z x -<-,故)1(13S x ∈……得到:},,,,,,,{)1(876543211x x x x x x x x S =},,,,,,,,,,,{)1(201918171615141312111092x x x x x x x x x x x x S =。

第三步:计算新的聚类中心:⎪⎪⎭⎫ ⎝⎛=+⋯⋯++==∑∈125.1250.1)(811)2(821)1(111x x x x N z S x ⎪⎪⎭⎫ ⎝⎛=+⋯⋯++==∑∈333.7663.7)(1211)2(20109)1(222x x x x N z S x (1N 和2N 分别为属于第一类和第二类的样本的数目)。

第四步:因)2()1(z z ≠,返回第二步。

第二次迭代(步骤同上):第二次迭代得到的⎪⎪⎭⎫ ⎝⎛=125.1250.1)3(1z ,⎪⎪⎭⎫ ⎝⎛=333.7663.7)3(2z ,)3()2(z z ≠,结束迭代,得到的最终聚类中心为:⎪⎪⎭⎫ ⎝⎛=125.1250.11z ,⎪⎪⎭⎫ ⎝⎛=333.7663.72z 。

2. 实验结果截图(1)初始化聚类中心为1x 和10x 时:(2)初始化聚类中心为1x 和2x 时:(3)初始化聚类中心为12x 和20x 时:3. 程序代码%程序功能:实现K-均值分类%作者:赵晓梅 201428014628066%时间:2014.10.3clc;clear all ;fprintf('K-均值分类算法\n');k=0;%记录迭代次数x=[0,0;1,0;0,1;1,1;2,1;1,2;2,2;3,2;6,6;7,6;8,6;6,7;7,7;8,7;9,7;7,8;8,8;9,8;8,9;9,9];%输入样本[N n]=size(x);%N 表示样本数目;n 表示样本维度m=[12,20];z=[x(m(1),:);x(m(2),:)];%初始化聚类中心fprintf('初始聚类中心选:x%d 和x%d\n',m(1),m(2));%显示初始化聚类中心 D=size(z);K=D(1);%获取聚类数目d=zeros(1,K);%用于保存一个样本到K 个聚类中心的距离label=zeros(1,N);%用于标记每个样本属于哪个类,取值为1-K 之间的整数flag_end=0;%迭代结束标志,当为1时,迭代结束while(~flag_end)for i=1:Nfor j=1:Kd(j)=norm(x(i,:)-z(j,:));%计算第i个样本到第j个聚类中心的距离endmin_d=d(1);for j=1:Kif d(j)<=min_d%选取最短的距离,并用最短距离的索引标记样本,记样本为第j类min_d=d(j);label(i)=j;endendendz_new=zeros(K,n);%用于保存更新的聚类中心的坐标for j=1:K%更新聚类中心坐标num=0;for i=1:Nif label(i)==jz_new(j,:)=z_new(j,:)+x(i,:);num=num+1;endendz_new(j,:)=z_new(j,:)/num;%新的聚类中心的坐标为第j类样本的均值向量endif z==z_new%如果原聚类中心与更新的聚类中心相等,则迭代结束,迭代结束标志置1 flag_end=1;endz=z_new;k=k+1;%迭代次数加1endfprintf('经过 %d次迭代\n',k);%显示迭代次数for j=1:Kfprintf('第 %d类的聚类中心坐标为:(%f,%f)\n',j,z(j,1),z(j,2));%显示聚类中心坐标end。

kmeans 算法

kmeans 算法

kmeans 算法K-Means算法,也称为K均值聚类算法,是一种无监督机器学习方法,用于将数据集分成K个簇群。

该算法的核心思想是将数据点划分为不同的簇群,使得同一簇群内的点相似度尽可能高,而不同簇群之间的相似度尽可能低。

该算法可用于许多领域,如计算机视觉、医学图像处理、自然语言处理等。

1.工作原理K-Means算法的工作原理如下:1. 首先,从数据集中随机选择K个点作为初始簇群的中心点。

2. 接下来,计算每个数据点与K个中心点之间的距离,并将它们归入距离最近的簇群中。

这个过程称为“分配”。

3. 在所有数据点都被分配到簇群后,重新计算每个簇群的中心点,即将簇群中所有数据点的坐标取平均值得出新的中心点。

这个过程称为“更新”。

4. 重复执行2-3步骤,直到簇群不再发生变化或达到最大迭代次数为止。

2.优缺点1. 简单易懂,实现方便。

2. 可用于处理大量数据集。

1. 随机初始化可能导致算法无法找到全局最优解。

2. 结果受到初始中心点的影响。

3. 对离群值敏感,可能导致簇群数量不足或簇群数量偏多。

4. 对于非球形簇群,K-Means算法的效果可能较差。

3.应用场景K-Means算法可以广泛应用于许多领域,如:1. 机器学习和数据挖掘:用于聚类分析和领域分类。

2. 计算机视觉:用于图像分割和物体识别。

3. 自然语言处理:用于文本聚类和词向量空间的子空间聚类。

4. 财务分析:用于分析财务数据,比如信用评分和市场分析。

5. 医学图像处理:用于医学影像分析和分类。

总之,K-Means算法是一种简单有效的聚类算法,可用于处理大量数据集、连续型数据、图像和文本等多种形式数据。

但在实际应用中,需要根据具体情况选择合适的簇群数量和初始中心点,在保证算法正确性和有效性的同时,减少误差和提高效率。

k均值聚类精品PPT课件

k均值聚类精品PPT课件

4 应用举例
利用K均值聚 类,K=2
5 K均值性能分析
经典算法,简单、快速 算法复杂度低,适用于多种数据类型 类中样本密集,类间差异较大效果较好
需要事先指定类别数目和初始聚类中心 对数据异常点敏感
感谢各位的聆听!
为方便学习与使用课件内容,
课件可以在下载后自由调整
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
K均值聚类
1 聚类
2 K均值简介
第i个聚类集的聚类中心
3 K均值--算法描述
开始
输入:N个样本和类 别数目K
输出:满足准则函数 的K个类别
初始化K个聚类中心
将所有样本划 分到K个类别 计算新的聚类中心
聚类中心不变 N Y
结束
3 K均值--算法描述
AB

C

E

D

AB C
E D
AB C
E D
AB C
E D
AB C
E D
3 K均值--算法描述
距离最小原则将所有样本分配到K个类别中; 3)计算每个类的平均值,用平均值代替类心; 4)根据样本到类心的距离,重新分配到最近的类; 5)转2),迭代直到满足误差平方和准则函数停止。
4 应用举例
100 个 包 含 身 高和体重的二 维数据样本

matlab kmeans聚类算法代码

matlab kmeans聚类算法代码

一、引言在机器学习和数据分析中,聚类是一种常用的数据分析技术,它可以帮助我们发现数据中的潜在模式和结构。

而k均值(k-means)聚类算法作为一种经典的聚类方法,被广泛应用于各种领域的数据分析和模式识别中。

本文将介绍matlab中k均值聚类算法的实现和代码编写。

二、k均值(k-means)聚类算法简介k均值聚类算法是一种基于距离的聚类算法,它通过迭代的方式将数据集划分为k个簇,每个簇内的数据点与该簇的中心点的距离之和最小。

其基本思想是通过不断调整簇的中心点,使得簇内的数据点与中心点的距离最小化,从而实现数据的聚类分布。

三、matlab实现k均值聚类算法步骤在matlab中,实现k均值聚类算法的步骤如下:1. 初始化k个簇的中心点,可以随机选择数据集中的k个点作为初始中心点。

2. 根据每个数据点与各个簇中心点的距离,将数据点分配给距离最近的簇。

3. 根据每个簇的数据点重新计算该簇的中心点。

4. 重复步骤2和步骤3,直到簇的中心点不再发生变化或者达到预定的迭代次数。

在matlab中,可以通过以下代码实现k均值聚类算法:```matlab设置参数k = 3; 设置簇的个数max_iter = 100; 最大迭代次数初始化k个簇的中心点centroids = datasample(data, k, 'Replace', false);for iter = 1:max_iterStep 1: 计算每个数据点与簇中心点的距离distances = pdist2(data, centroids);Step 2: 分配数据点给距离最近的簇[~, cluster_idx] = min(distances, [], 2);Step 3: 重新计算每个簇的中心点for i = 1:kcentroids(i, :) = mean(data(cluster_idx == i, :)); endend得到最终的聚类结果cluster_result = cluster_idx;```四、代码解释上述代码实现了k均值聚类算法的基本步骤,其中包括了参数设置、簇中心点的初始化、迭代过程中的数据点分配和中心点更新。

kmean算法原理

kmean算法原理

kmean算法原理
k均值聚类算法(k-means)是一种常用的聚类分析算法,它的主要原理如下:
1. 初始化:首先选择k个初始中心点,可以是随机选择或者根据先验知识选择。

这些中心点将作为聚类的中心。

2. 分配样本:将每个样本点分配给距离最近的中心点所代表的聚类。

3. 更新中心点:重新计算每个聚类的中心点,即将每个聚类中的样本点的均值作为新的中心点。

4. 重复步骤2和步骤3,直到满足终止条件(如达到最大迭代次数或者中心点不再更新)。

5. 输出结果:得到k个聚类,每个聚类包含一组样本点,这些样本点在空间中相互靠近,并且与其他聚类的样本点相距较远。

k均值聚类算法的核心思想是通过最小化各个样本点与所属聚类中心点之间的距离来实现聚类。

在迭代过程中,不断更新中心点的位置,使得所有样本点尽可能地靠近自己所属的聚类中心。

最终的聚类结果取决于初始中心点的选择和更新中心点的策略。

需要注意的是,k均值聚类算法对离群点比较敏感,并且需要预先设定聚类数量k。

因此,在应用k均值聚类算法时,需要根据具体问题进行合理的调参和评估聚类结果的质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K-均值聚类算法
1.初始化:选择c 个代表点,...,,321c p p p p
2.建立c 个空间聚类表:C K K K ...,21
3.按照最小距离法则逐个对样本X 进行分类:
),(),,(m in arg J i i
K x add p x j ∂=
4.计算J 及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点)
5.若J 不变或代表点未发生变化,则停止。

否则转2.
6.),(1∑∑=∈=c
i K x i
i p x J δ
具体代码如下:
clear all
clc
x=[0 1 0 1 2 1 2 3 6 7 8 6 7 8 9 7 8 9 8 9;0 0 1 1 1 2 2 2 6 6 6 7 7 7 7 8 8 8 9 9];
figure(1)
plot(x(1,:),x(2,:),'r*')
%%第一步选取聚类中心,即令K=2
Z1=[x(1,1);x(2,1)];
Z2=[x(1,2);x(2,2)];
R1=[];
R2=[];
t=1;
K=1;%记录迭代的次数
dif1=inf;
dif2=inf;
%%第二步计算各点与聚类中心的距离
while (dif1>eps&dif2>eps)
for i=1:20
dist1=sqrt((x(1,i)-Z1(1)).^2+(x(2,i)-Z1(2)).^2);
dist2=sqrt((x(1,i)-Z2(1)).^2+(x(2,i)-Z2(2)).^2);
temp=[x(1,i),x(2,i)]';
if dist1<dist2
R1=[R1,temp];
else
R2=[R2,temp];
end
end
Z11=mean(R1,2);
Z22=mean(R2,2);
t1=Z1-Z11;%%测试两次是不是相等,可以有多种方法这里只简单的列举一种t2=Z2-Z22;
dif1=sqrt(dot(t1,t1));
dif2=sqrt(dot(t2,t2));
Z1=Z11;
Z2=Z22;
K=K+1;
R1=[];
R2=[];
end
plot ([Z1(1),Z2(1)],[Z1(2),Z2(2)],'g+')。

相关文档
最新文档