实验三 K-均值聚类算法实验报告
模式识别 实验三

实验三K-Means聚类算法一、实验目的1)加深对非监督学习的理解和认识2)掌握动态聚类方法K-Means算法的设计方法二、实验环境1)具有相关编程软件的PC机三、实验原理1)非监督学习的理论基础2)动态聚类分析的思想和理论依据3)聚类算法的评价指标四、实验内容1)用FAMALE.TXT和MALE.TXT的数据作为样本集,实现K-Means聚类算法;2)调整特征、分类器等方面的一些因素,考察它们对分类器性能的影响,从而加深对所学内容的理解和感性认识。
五、实验步骤1)把FAMALE.TXT和MALE.TXT两个文件合并成一个数据集;2)同时采用身高和体重数据作为特征,设类别数为2,利用K-Means聚类方法对数据进行聚类;3)将聚类结果表示在二维平面上;4)尝试不同初始值对此数据集是否会造成不同的聚类结果;5)对1)中的数据利用K-Means聚类方法分别进行两类、三类、四类、五类聚类,画出聚类指标与类别数之间的关系曲线,探讨是否可以确定出合理的类别数目;6)利用test2.txt数据或者把test2.txt的数据与上述1中的数据合并在一起,重复上述实验,考察结果是否有变化,对观察到的现象进行分析,写出体会。
六、实验源代码clear all;fid=fopen('test1.txt','r');test1=fscanf(fid,'%f%f%c',[3,inf]);fclose(fid);f2=[0;0];f1=[0;0];N1=17;N2=18;for i=1:N1f1(1,1)=f1(1,1)+test1(1,i);f1(2,1)=f1(2,1)+test1(2,i);end;f1mean=f1/N1;for i=N1+1:35f2(1,1)=f2(1,1)+test1(1,i);f2(2,1)=f2(2,1)+test1(2,i);end;f2mean=f2/(35-N1);J1=0;J2=0;J=0;for i=1:N1J1=J1+(test1(1,i)-f1mean(1,1))*(test1(2,i)-f1mean(2,1));end;for i=N1+1:35J2=J2+(test1(1,i)-f2mean(1,1))*(test1(2,i)-f2mean(2,1));end;J=J1+J2;figure;detaJ=0;for k=1:35if(k<N1)detaJ=N2/(N2+1)*J2-N1/(N1-1)*J1;if(detaJ>0)plot(k,test1(1,k),'k+');end;if(detaJ<0)plot(k,test1(1,k),'r*');f1=f1-test1(1:2,k);f2=f2+test1(1:2,k);N1=N1-1;N2=35-N1+1;f1mean=f1/N1;f2mean=f2/N2;J1=0;J2=0;J=0;for i=1:N1J1=J1+(test1(1,i)-f1mean(1,1))*(test1(2,i)-f1mean(2,1))-(t est1(1,k)-f1mean(1,1))*(test1(2,k)-f1mean(2,1));end;for i=N1+1:35J2=J2+(test1(1,i)-f2mean(1,1))*(test1(2,i)-f2mean(2,1))+(t est1(1,k)-f2mean(1,1))*(test1(2,k)-f2mean(2,1));end;J=J1+J2;detaJ=0;end;hold on;elsedetaJ=N1/(N1+1)*J1-N2/(N2-1)*J2;if(detaJ>0)plot(k,test1(1,k),'r*');end;if(detaJ<0)plot(k,test1(1,k),'k+');f1=f1+test1(1:2,k);f2=f2-test1(1:2,k);N1=N1+1;N2=35-N1-1;f1mean=f1/N1;f2mean=f2/N2;J1=0;J2=0;J=0;for i=1:N1J1=J1+(test1(1,i)-f1mean(1,1))*(test1(2,i)-f1mean(2,1))+(t est1(1,k)-f1mean(1,1))*(test1(2,k)-f1mean(2,1));end;for i=N1+1:35J2=J2+(test1(1,i)-f2mean(1,1))*(test1(2,i)-f2mean(2,1))-(test1(1,k)-f2mean(1,1))*(test1(2,k)-f2mean(2,1));end;end;J=J1+J2;detaJ=0;end;hold on;end;title('K-means聚类');xlabel('测试序号'),ylabel('身高(cm)')七、实验结果及分析总结八、体会及总结k-means算法接受输入量k;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
k-means算法实验报告

.哈尔滨工业大学数据挖掘理论与算法实验报告(2014年度秋季学期).课程编码S1300019C授课教师高宏学生姓名赵天意学号14S101018学院电气工程及自动化学院一、实验内容设计实现 k 均值聚类算法。
二、实验设计随机生成 2 维坐标点,对点进行聚类,进行k=2 聚类, k=3 聚类,多次 k=4 聚类,分析比较实验结果。
三、实验环境及测试数据实验环境: Windows7操作系统,Python2.7 IDLE测试数据:随机生成 3 个点集,点到中心点距离服从高斯分布:集合大小中心坐标半径11005,52 210010,62 31008,102四、实验过程编写程序随机生成测试点集,分别聚成2, 3, 4 类,观察实验结果多次 4 聚类,观察实验结果五、实验结果初始随机点:2聚类迭代 -平方误差1234561337677639634633633聚类中心与类中点数9.06 ,8.291915.05 ,5.011093聚类123456789101112 810692690688686681565385369.4369.8373700 4.99 ,5.05108,7.92 ,10.489310.15 ,6.16994聚类迭代 27次,平方误差 344.897291273 7.95,,10.56904.89,5.001038.41,6.313810.75 ,6.1,469多次4聚类迭代27次平方误差 352.19 4.95 ,5.031069.79 ,6.03937.85 ,10.509012.71 ,8.1611迭代 8 次平方误差356.1910.15 ,6.16997.92 ,10.48935.54 ,5.01674.09 ,5.1041迭代 7 次平方误差352.3510.39 ,6.04874.91 ,4.981038.00 ,10.79797.71 ,7.6931六、遇到的困难及解决方法、心得体会K-Means初值对最终的聚类结果有影响,不同初值,可能会有不同的聚类结果,也就是说, K-Means收敛于局部最优点K-Means趋向于收敛到球形,每类样本数相近K-Means随着k的增加,平方误差会降低,但聚类效果未必变好该例子, 2 聚类误差 633 , 3 聚类 370 ,4 聚类 350 ,可以发现 2 聚类到 3 聚类误差下降较快, 3 到 4 聚类误差下降较慢,所以 3 是最佳聚类个数。
如何使用K均值算法进行聚类分析(Ⅲ)

K均值算法是一种常用的聚类分析方法,它可以根据数据的特征将数据集分成若干个簇。
在实际应用中,K均值算法被广泛用于数据挖掘、模式识别、图像分割等领域。
本文将详细介绍如何使用K均值算法进行聚类分析,并且探讨一些常见的应用场景。
1. 算法原理K均值算法的原理比较简单,首先需要确定簇的数量K,然后随机选择K个数据点作为初始的聚类中心。
接着,将数据集中的每个数据点分配到与其最近的聚类中心所在的簇中。
然后重新计算每个簇的中心点,直到簇中心不再发生变化或者达到预设的迭代次数为止。
最终得到K个簇,每个簇包含一组相似的数据点。
2. 数据预处理在使用K均值算法进行聚类分析之前,需要对数据进行预处理。
首先需要对数据进行标准化处理,使得各个特征的取值范围相对一致。
其次,需要对数据进行降维处理,以减少计算复杂度和提高聚类效果。
最后,需要对数据进行缺失值处理和异常值处理,以确保数据的完整性和准确性。
3. 选择簇的数量K选择簇的数量K是K均值算法中的一个关键步骤。
通常情况下,可以通过肘部法则来确定最优的簇的数量。
肘部法则是通过绘制簇内平方和与簇的数量K的关系图,找到拐点所对应的K值作为最佳的簇的数量。
另外,可以通过轮廓系数等指标来评估不同K值下的聚类效果,选择使得聚类效果最优的簇的数量。
4. 聚类结果评估在得到聚类结果之后,需要对聚类结果进行评估。
通常可以使用簇内平方和、轮廓系数、Davies-Bouldin指数等指标来评估聚类的效果。
除此之外,还可以通过可视化的方式来展示聚类的结果,比如绘制簇的中心点、簇的分布图等。
通过对聚类结果的评估,可以调整算法参数,优化聚类效果。
5. 应用场景K均值算法在各个领域都有着广泛的应用。
在市场营销领域,可以使用K均值算法对客户进行分群,以便针对不同的客户群体制定个性化的营销策略。
在医疗领域,可以使用K均值算法对患者进行分组,以便进行疾病风险评估和治疗方案制定。
在金融领域,可以使用K均值算法对金融产品进行分群,以便推荐个性化的金融产品。
实验三-K-均值聚类算法实验报告

实验三K-Means聚类算法一、实验目的1) 加深对非监督学习的理解和认识2) 掌握动态聚类方法K-Means 算法的设计方法二、实验环境1) 具有相关编程软件的PC机三、实验原理1) 非监督学习的理论基础2) 动态聚类分析的思想和理论依据3) 聚类算法的评价指标四、算法思想K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。
实验代码function km(k,A)%函数名里不要出现“-”warning off[n,p]=size(A);%输入数据有n个样本,p个属性cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性%A(:,p+1)=100;A(:,p+1)=0;for i=1:k%cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心m=i*floor(n/k)-floor(rand(1,1)*(n/k))cid(i,:)=A(m,:);cid;endAsum=0;Csum2=NaN;flags=1;times=1;while flagsflags=0;times=times+1;%计算每个向量到聚类中心的欧氏距离for i=1:nfor j=1:kdist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离end%A(i,p+1)=min(dist(i,:));%与中心的最小距离[x,y]=find(dist(i,:)==min(dist(i,:)));[c,d]=size(find(y==A(i,p+1)));if c==0 %说明聚类中心变了flags=flags+1;A(i,p+1)=y(1,1);elsecontinue;endendiflagsfor j=1:kAsum=0;[r,c]=find(A(:,p+1)==j);cid(j,:)=mean(A(r,:),1);for m=1:length(r)Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2));endCsum(1,j)=Asum;endsum(Csum(1,:))%if sum(Csum(1,:))>Csum2% break;%endCsum2=sum(Csum(1,:));Csum;cid; %得到新的聚类中心endtimesdisplay('A矩阵,最后一列是所属类别'); Afor j=1:k[a,b]=size(find(A(:,p+1)==j));numK(j)=a;endnumKtimesxlswrite('data.xls',A);五、算法流程图六、实验结果>>Kmeans6 iterations, total sum of distances = 204.82110 iterations, total sum of distances = 205.88616 iterations, total sum of distances = 204.8219 iterations, total sum of distances = 205.886........9 iterations, total sum of distances = 205.8868 iterations, total sum of distances = 204.8218 iterations, total sum of distances = 204.82114 iterations, total sum of distances = 205.88614 iterations, total sum of distances = 205.8866 iterations, total sum of distances = 204.821Ctrs =1.0754 -1.06321.0482 1.3902-1.1442 -1.1121SumD =64.294463.593976.9329七、实验心得初始的聚类中心的不同,对聚类结果没有很大的影响,而对迭代次数有显著的影响。
聚类分析算法实验报告(3篇)

第1篇一、实验背景聚类分析是数据挖掘中的一种重要技术,它将数据集划分成若干个类或簇,使得同一簇内的数据点具有较高的相似度,而不同簇之间的数据点则具有较低相似度。
本实验旨在通过实际操作,了解并掌握聚类分析的基本原理,并对比分析不同聚类算法的性能。
二、实验环境1. 操作系统:Windows 102. 软件环境:Python3.8、NumPy 1.19、Matplotlib 3.3.4、Scikit-learn0.24.03. 数据集:Iris数据集三、实验内容本实验主要对比分析以下聚类算法:1. K-means算法2. 聚类层次算法(Agglomerative Clustering)3. DBSCAN算法四、实验步骤1. K-means算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的KMeans类进行聚类,设置聚类数为3。
(3)计算聚类中心,并计算每个样本到聚类中心的距离。
(4)绘制聚类结果图。
2. 聚类层次算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的AgglomerativeClustering类进行聚类,设置链接方法为'ward'。
(3)计算聚类结果,并绘制树状图。
3. DBSCAN算法(1)导入Iris数据集,提取特征数据。
(2)使用Scikit-learn库中的DBSCAN类进行聚类,设置邻域半径为0.5,最小样本数为5。
(3)计算聚类结果,并绘制聚类结果图。
五、实验结果与分析1. K-means算法实验结果显示,K-means算法将Iris数据集划分为3个簇,每个簇包含3个样本。
从聚类结果图可以看出,K-means算法能够较好地将Iris数据集划分为3个簇,但存在一些噪声点。
2. 聚类层次算法聚类层次算法将Iris数据集划分为3个簇,与K-means算法的结果相同。
从树状图可以看出,聚类层次算法在聚类过程中形成了多个分支,说明该算法能够较好地处理不同簇之间的相似度。
数据挖掘实验报告三

实验三一、实验原理K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。
在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。
算法原理:(1) 随机选取k个中心点;(2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类;(3) 更新中心点为每类的均值;(4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步数,误差不变.空间复杂度o(N)时间复杂度o(I*K*N)其中N为样本点个数,K为中心点个数,I为迭代次数二、实验目的:1、利用R实现数据标准化。
2、利用R实现K-Meams聚类过程。
3、了解K-Means聚类算法在客户价值分析实例中的应用。
三、实验内容依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。
对其进行标准差标准化并保存后,采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。
编写R程序,完成客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数四、实验步骤1、依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。
2、确定要探索分析的变量3、利用R实现数据标准化。
4、采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。
五、实验结果客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数六、思考与分析使用不同的预处理对数据进行变化,在使用k-means算法进行聚类,对比聚类的结果。
kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。
这样做的前提是我们已经知道数据集中包含多少个簇.1.与层次聚类结合经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。
聚类分析实验报告

聚类分析实验报告
《聚类分析实验报告》
在数据挖掘和机器学习领域,聚类分析是一种常用的技术,用于将数据集中的对象分成具有相似特征的组。
通过聚类分析,我们可以发现数据集中隐藏的模式和结构,从而更好地理解数据并做出相应的决策。
在本次实验中,我们使用了一种名为K均值聚类的方法,对一个包含多个特征的数据集进行了聚类分析。
我们首先对数据进行了预处理,包括缺失值处理、标准化和特征选择等步骤,以确保数据的质量和可靠性。
接着,我们选择了合适的K值(聚类的数量),并利用K均值算法对数据进行了聚类。
在实验过程中,我们发现K均值聚类方法能够有效地将数据集中的对象分成具有相似特征的组,从而形成了清晰的聚类结构。
通过对聚类结果的分析,我们发现不同的聚类中心代表了不同的数据模式,这有助于我们更好地理解数据集中的内在规律和特点。
此外,我们还对聚类结果进行了评估和验证,包括使用轮廓系数和肘部法则等方法来评价聚类的质量和效果。
通过这些评估方法,我们得出了实验结果的可靠性和有效性,证明了K均值聚类在本次实验中的良好表现。
总的来说,本次实验通过聚类分析方法对数据集进行了深入的挖掘和分析,得到了有意义的聚类结果,并验证了聚类的有效性和可靠性。
通过这一实验,我们对聚类分析方法有了更深入的理解,也为今后在实际应用中更好地利用聚类分析提供了有力支持。
聚类算法_实验报告

一、实验背景随着大数据时代的到来,数据量呈爆炸式增长,如何有效地对海量数据进行处理和分析成为了一个重要课题。
聚类算法作为一种无监督学习方法,在数据挖掘、模式识别等领域有着广泛的应用。
本实验旨在通过实际操作,了解聚类算法的基本原理、实现方法及其在实际问题中的应用。
二、实验目的1. 理解聚类算法的基本原理和流程;2. 掌握K-means、层次聚类、DBSCAN等常用聚类算法;3. 分析不同聚类算法在处理不同类型数据时的优缺点;4. 学会使用聚类算法解决实际问题。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据库:Pandas4. 机器学习库:Scikit-learn四、实验内容1. K-means聚类算法(1)数据准备本实验使用的数据集为Iris数据集,包含150个样本,每个样本有4个特征。
(2)算法实现使用Scikit-learn库中的KMeans类实现K-means聚类算法。
(3)结果分析通过绘制样本分布图,观察聚类效果。
根据聚类结果,将样本分为3类,与Iris数据集的类别标签进行对比。
2. 层次聚类算法(1)数据准备本实验使用的数据集为鸢尾花数据集,包含150个样本,每个样本有4个特征。
(2)算法实现使用Scikit-learn库中的AgglomerativeClustering类实现层次聚类算法。
(3)结果分析通过绘制树状图,观察聚类过程。
根据聚类结果,将样本分为3类,与鸢尾花数据集的类别标签进行对比。
3. DBSCAN聚类算法(1)数据准备本实验使用的数据集为Iris数据集。
(2)算法实现使用Scikit-learn库中的DBSCAN类实现DBSCAN聚类算法。
(3)结果分析通过绘制样本分布图,观察聚类效果。
根据聚类结果,将样本分为3类,与Iris 数据集的类别标签进行对比。
五、实验结果与分析1. K-means聚类算法K-means聚类算法在Iris数据集上取得了较好的聚类效果,将样本分为3类,与真实标签一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 K-Means聚类算法
一、实验目的
1) 加深对非监督学习的理解和认识
2) 掌握动态聚类方法K-Means 算法的设计方法
二、实验环境
1) 具有相关编程软件的PC机
三、实验原理
1) 非监督学习的理论基础
2) 动态聚类分析的思想和理论依据
3) 聚类算法的评价指标
四、算法思想
K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。
实验代码
function km(k,A)%函数名里不要出现“-”
warning off
[n,p]=size(A);%输入数据有n个样本,p个属性
cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性
%A(:,p+1)=100;
A(:,p+1)=0;
for i=1:k
%cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心
m=i*floor(n/k)-floor(rand(1,1)*(n/k))
cid(i,:)=A(m,:);
cid;
end
Asum=0;
Csum2=NaN;
flags=1;
times=1;
while flags
flags=0;
times=times+1;
%计算每个向量到聚类中心的欧氏距离
for i=1:n
for j=1:k
dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end
%A(i,p+1)=min(dist(i,:));%与中心的最小距离
[x,y]=find(dist(i,:)==min(dist(i,:)));
[c,d]=size(find(y==A(i,p+1)));
if c==0 %说明聚类中心变了
flags=flags+1;
A(i,p+1)=y(1,1);
else
continue;
end
end
i
flags
for j=1:k
Asum=0;
[r,c]=find(A(:,p+1)==j);
cid(j,:)=mean(A(r,:),1);
for m=1:length(r)
Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end
Csum(1,j)=Asum;
end
sum(Csum(1,:))
%if sum(Csum(1,:))>Csum2
% break;
%end
Csum2=sum(Csum(1,:));
Csum;
cid; %得到新的聚类中心
end
times
display('A矩阵,最后一列是所属类别');
A
for j=1:k
[a,b]=size(find(A(:,p+1)==j));
numK(j)=a;
end
numK
times
xlswrite('data.xls',A);
五、算法流程图
六、实验结果
>>Kmeans
6 iterations, total sum of distances = 204.821
10 iterations, total sum of distances = 205.886
16 iterations, total sum of distances = 204.821
9 iterations, total sum of distances = 205.886
........
9 iterations, total sum of distances = 205.886
8 iterations, total sum of distances = 204.821
8 iterations, total sum of distances = 204.821
14 iterations, total sum of distances = 205.886
14 iterations, total sum of distances = 205.886
6 iterations, total sum of distances = 204.821
Ctrs =1.0754 -1.06321.0482 1.3902-1.1442 -1.1121
SumD =64.294463.593976.9329
七、实验心得
初始的聚类中心的不同,对聚类结果没有很大的影响,而对迭代次数有显著的影响。
数据的输入顺序不同,同样影响迭代次数,而对聚类结果没有太大的影响。