K均值聚类算法优缺点
有关k-均值聚类算法的理解

有关k-均值聚类算法的理解1.K-均值聚类算法的历史:聚类分析作为一种非监督学习方法,是机器学习领域中的一个重要的研究方向,同时,聚类技术也是数据挖掘中进行数据处理的重要分析工具和方法。
1967 年MacQueen 首次提出了K 均值聚类算法(K-means算法)。
到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。
它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数迄今为止,很多聚类任务都选择该经典算法,K-means算法虽然有能对大型数据集进行高效分类的优点,但K-means算法必须事先确定类的数目k,而实际应用过程中,k 值是很难确定的,并且初始聚类中心选择得不恰当会使算法迭代次数增加,并在获得一个局部最优值时终止,因此在实际应用中有一定的局限性。
半监督学习是近年来机器学习领域的一个研究热点,已经出现了很多半监督学习算法,在很多实际应用中,获取大量的无标号样本非常容易,而获取有标签的样本通常需要出较大的代价。
因而,相对大量的无标签样本,有标签的样本通常会很少。
传统的监督学习只能利用少量的有标签样本学习,而无监督学习只利用无标签样本学习。
半监督学习的优越性则体现在能同时利用有标签样本和无标签样本学习。
针对这种情况,引入半监督学习的思想,对部分已知分类样本运用图论知识迭代确定K-means 算法的K值和初始聚类中心,然后在全体样本集上进行K-均值聚类算法。
2. K-算法在遥感多光谱分类中的应用基于K-均值聚类的多光谱分类算法近年来对高光谱与多光谱进行分类去混的研究方法很多,K-均值聚类算法与光谱相似度计算算法都属于成熟的分类算法.这类算法的聚类原则是以数据的均值作为对象集的聚类中心。
均值体现的是数据集的整体特征,而掩盖了数据本身的特性。
无论是对高光谱还是对多光谱进行分类的方法很多,K-均值算法属于聚类方法中一种成熟的方法。
使用ENVI将多光谱图像合成一幅伪彩色图像见图1,图中可以看出它由标有数字1 的背景与标有数字2 和3的两种不同的气泡及标有数字4的两个气泡重叠处构成。
K-MEANS算法(K均值算法)

k-means 算法一.算法简介k -means 算法,也被称为k -平均或k -均值,是一种得到最广泛使用的聚类算法。
它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。
这一算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。
二.划分聚类方法对数据集进行聚类时包括如下三个要点:(1)选定某种距离作为数据样本间的相似性度量k-means 聚类算法不适合处理离散型属性,对连续型属性比较适合。
因此在计算数据样本之间的距离时,可以根据实际需要选择欧式距离、曼哈顿距离或者明考斯距离中的一种来作为算法的相似性度量,其中最常用的是欧式距离。
下面我给大家具体介绍一下欧式距离。
假设给定的数据集 ,X 中的样本用d 个描述属性A 1,A 2…A d 来表示,并且d 个描述属性都是连续型属性。
数据样本x i =(x i1,x i2,…x id ), x j =(x j1,x j2,…x jd )其中,x i1,x i2,…x id 和x j1,x j2,…x jd 分别是样本x i 和x j 对应d 个描述属性A 1,A 2,…A d 的具体取值。
样本xi 和xj 之间的相似度通常用它们之间的距离d(x i ,x j )来表示,距离越小,样本x i 和x j 越相似,差异度越小;距离越大,样本x i 和x j 越不相似,差异度越大。
欧式距离公式如下:(2)选择评价聚类性能的准则函数k-means 聚类算法使用误差平方和准则函数来评价聚类性能。
给定数据集X ,其中只包含描述属性,不包含类别属性。
假设X 包含k 个聚类子集X 1,X 2,…X K ;{}|1,2,...,m X x m total ==(),i j d x x =各个聚类子集中的样本数量分别为n 1,n 2,…,n k ;各个聚类子集的均值代表点(也称聚类中心)分别为m 1,m 2,…,m k 。
K均值算法的优缺点及使用注意事项(四)

K均值算法是一种常见的聚类算法,它主要用于将数据集划分成不同的簇。
这种算法的应用非常广泛,涉及到数据挖掘、图像处理、自然语言处理等多个领域。
在本文中,我们将探讨K均值算法的优缺点以及使用注意事项。
K均值算法的优点:1. 简单易实现。
K均值算法的原理和实现都相对简单,不需要过多的数学基础,因此容易上手。
2. 高效。
K均值算法的时间复杂度相对较低,适合处理大规模数据集。
3. 灵活性强。
K均值算法对于大部分数据分布都能取得较好的聚类效果,对于不同的数据结构都有较好的适应性。
K均值算法的缺点:1. 对初始值敏感。
K均值算法的结果会受到初始值的影响,对于不同的初始值可能会得到不同的聚类结果。
2. 对异常值敏感。
K均值算法对异常值比较敏感,可能会导致聚类结果的偏移。
3. 难以处理不规则形状的簇。
K均值算法假定簇是凸的,对于不规则形状的簇可能无法很好地划分。
使用K均值算法需要注意的事项:1. 选择合适的K值。
K均值算法需要事先确定簇的个数K,因此需要对数据集有一定的了解,选择合适的K值能够影响聚类结果。
2. 处理缺失值。
在进行聚类之前,需要对数据集进行预处理,包括处理缺失值、标准化等操作。
3. 处理异常值。
对于异常值需要进行处理,可以通过删除、替换等方式进行处理。
4. 多次运行算法。
由于K均值算法对初始值敏感,可以多次运行算法,选择结果最好的一次作为最终聚类结果。
5. 评估聚类结果。
需要对聚类结果进行评估,可以使用轮廓系数、Davies-Bouldin指数等指标进行评估,选择最优的聚类结果。
总的来说,K均值算法作为一种简单而高效的聚类算法,在实际应用中有着广泛的应用前景。
但是在使用过程中需要注意选择合适的K值、处理异常值和评估聚类结果等问题,才能够得到较好的聚类效果。
希望本文所述的K均值算法的优缺点及使用注意事项能够对读者有所帮助。
各种聚类算法的优缺点

各种聚类算法的优缺点在机器学习领域中,聚类(cluster)是最基本的无监督学习问题之一。
聚类算法是指把具有相似性质的数据对象分组的算法,被广泛应用于数据挖掘、模式识别等领域。
本文将介绍几种常见的聚类算法、它们的优缺点,并与之间做出比较。
一、K-Means聚类算法K-Means算法又称为K均值算法,是最为普及的一种聚类算法。
该算法通过将 n 个对象分到 k 个类的方法来使每个数据对象都与所属类的均值最为接近。
K-Means聚类算法有以下优缺点:优点:1.简单、易于实现。
2.计算速度快。
缺点:1.需要预先设定数据类别数量,且对初始化比较敏感。
2.数据集分布不均匀或聚类类别的数量差别较大时,聚类效果较差。
二、层次聚类算法层次聚类算法是一种基于树形结构的聚类方法,可以得到不同类别的层次结构。
该算法的核心思想就是通过计算每个数据对象间的距离并逐步将他们聚合成层次结构。
层次聚类算法的优缺点如下:优点:1.可以帮助我们发现数据对象之间的内部关系和层次结构。
2.不需要预先设定聚类类别数量。
缺点:1.计算复杂度较高,不适合大规模数据集。
2.聚类的结果可能会很大,难以在可视化方面得到较好的展示效果。
三、DBSCAN聚类算法DBSCAN是基于密度的聚类算法。
该算法将具有密度连接的数据点视为一组,并且可以在其它密度较低的区域中选择单个数据点。
DBSCAN聚类算法的优缺点如下:优点:1.不需要预设聚类类别数量。
2.能够发现任意形态的聚类。
缺点:1.初始化比较敏感,对参数设置等因素较为敏感。
2.难以解决密度分布不均一、噪音点分布不规律的问题。
四、BIRCH聚类算法BIRCH算法是基于描述的聚类方法,是聚类中的层次算法。
BIRCH的全称是Balanced Iterative Reducing and Clustering using Hierarchies,它采用一种合并聚类方式,通过类的层次结构来简化聚类过程。
BIRCH聚类算法的优缺点如下:优点:1.该算法能够处理海量数据。
K均值算法的优缺点及使用注意事项(五)

K均值算法是一种常用的聚类算法,它通过计算数据点之间的距离,将数据点划分为K个不同的簇。
K均值算法在数据挖掘和机器学习领域得到了广泛的应用,但是在实际应用中也存在一些优缺点,同时在使用K均值算法时也需要注意一些事项。
一、优点1. 简单易懂:K均值算法是一种简单且直观的聚类方法,容易理解和实现。
它通过迭代的方式不断调整簇的中心点,使得簇内的数据点与中心点之间的距离最小化,从而实现数据的聚类。
2. 高效性:K均值算法的时间复杂度较低,对于大规模数据集也能够较快地收敛。
这使得K均值算法可以在较短的时间内对数据进行聚类分析,适用于大数据处理。
3. 可解释性强:K均值算法得到的聚类结果具有较强的可解释性,每个数据点都会被分配到某个簇中,便于对数据进行分析和理解。
4. 适用性广泛:K均值算法对数据类型的要求较低,能够处理各种类型的数据,包括数值型和类别型数据。
二、缺点1. 对K值的选择敏感:K均值算法需要预先确定簇的数量K,而K的选择对聚类结果有很大的影响。
若K值选择不当,容易导致聚类结果不理想。
2. 对初始值敏感:K均值算法的聚类结果受初始簇中心点的选择影响较大。
不同的初始值可能导致不同的聚类结果,因此需要多次运行算法以减小这种影响。
3. 对异常值敏感:K均值算法对异常值较为敏感,异常值可能会影响簇的中心点的位置,从而影响整个聚类结果。
4. 需要预先确定簇的数量:K均值算法需要预先确定簇的数量K,但在实际应用中,很难事先确定数据的真实分布情况,这使得K均值算法的应用受到一定的限制。
三、使用注意事项1. 选择合适的K值:在使用K均值算法时,需要根据实际数据的特点选择合适的K值。
可以通过肘部法则、轮廓系数等方法来帮助确定最优的K值。
2. 多次运行算法:为了减小初始值选择对聚类结果的影响,通常需要多次运行K均值算法,然后选择最优的聚类结果。
3. 数据预处理:在使用K均值算法之前,需要对数据进行预处理,包括数据归一化、处理缺失值、异常值处理等,以提高算法的稳定性和准确性。
kmeans色彩聚类算法

kmeans色彩聚类算法
K均值(K-means)色彩聚类算法是一种常见的无监督学习算法,用于将图像中的像素分组成具有相似颜色的集群。
该算法基于最小
化集群内部方差的原则,通过迭代寻找最优的集群中心来实现聚类。
首先,算法随机初始化K个集群中心(K为预先设定的参数),然后将每个像素分配到最接近的集群中心。
接下来,更新集群中心
为集群内所有像素的平均值,然后重新分配像素直到达到收敛条件。
最终,得到K个集群,每个集群代表一种颜色,图像中的像素根据
它们与集群中心的距离被归类到不同的集群中。
K均值色彩聚类算法的优点是简单且易于实现,对于大型数据
集也具有较高的效率。
然而,该算法也存在一些缺点,例如对初始
集群中心的选择敏感,可能收敛于局部最优解,对噪声和异常值敏
感等。
在实际应用中,K均值色彩聚类算法常被用于图像压缩、图像
分割以及图像检索等领域。
同时,为了提高算法的鲁棒性和效果,
通常会结合其他技术和方法,如颜色直方图、特征提取等。
此外,
还有一些改进的K均值算法,如加权K均值、谱聚类等,用于解决
K均值算法的局限性。
总之,K均值色彩聚类算法是一种常用的图像处理算法,通过对图像像素进行聚类,实现了图像的颜色分组和压缩,具有广泛的应用前景和研究价值。
K均值算法在医疗影像分析中的使用教程(七)

K均值算法在医疗影像分析中的使用教程医疗影像分析是医学影像学的一个重要领域,通过对医学影像进行分析和处理,可以帮助医生更好地诊断疾病、制定治疗方案。
K均值算法是一种常用的聚类算法,可以用于医疗影像分析中的图像分割和特征提取。
本文将介绍K均值算法在医疗影像分析中的使用方法和注意事项。
一、K均值算法简介K均值算法是一种基于距离的聚类算法,它将n个样本划分为k个不同的簇,使得簇内的样本之间的距离尽可能小,而簇间的距离尽可能大。
算法的基本思想是随机选择k个样本作为初始的聚类中心,然后将其他样本分配到最近的聚类中心,再根据分配的样本重新计算聚类中心,不断迭代直到收敛。
K均值算法的优点是简单易实现,计算复杂度低,适用于大规模数据集。
二、K均值算法在医疗影像分析中的应用在医疗影像分析中,K均值算法主要应用在图像分割和特征提取两个方面。
1. 图像分割医学影像通常包括X光片、CT扫描、MRI等多种类型,图像中包含的信息复杂多样,因此需要对图像进行分割,将感兴趣的目标从背景中分离出来。
K均值算法可以根据像素之间的相似性将图像分成若干个簇,从而实现图像的分割。
在图像分割的过程中,选择合适的距离度量方法和聚类个数是至关重要的,这需要根据具体的医学影像和分析目的来确定。
2. 特征提取医学影像中蕴含着丰富的信息,如肿瘤的形状、纹理、密度等特征,这些特征对于疾病的诊断和治疗具有重要意义。
K均值算法可以帮助提取这些特征,将影像中的像素点聚类成若干个簇,然后计算每个簇的中心点作为该簇的特征表示。
通过特征提取,医生可以更好地理解影像中包含的信息,从而更准确地做出诊断和治疗方案。
三、K均值算法在医疗影像分析中的使用教程1. 数据准备在使用K均值算法进行医疗影像分析之前,首先需要准备好医学影像数据。
这些数据可能包括X光片、CT扫描、MRI等各种类型的影像,需要确保数据的质量和完整性。
此外,还需要对影像数据进行预处理,如去噪、增强等操作,以便更好地适应K均值算法的需求。
各种聚类算法的比较

各种聚类算法的比较聚类算法是一种无监督学习方法,用于将样本划分为具有相似特征的不同组别。
在机器学习和数据挖掘中被广泛应用。
有许多不同的聚类算法可供选择,每个算法有其独特的优点和适用范围。
在本文中,我们将比较几种常用的聚类算法,以帮助选择最适合特定问题和数据集的算法。
1.K均值聚类算法:K均值算法是一种经典的聚类算法。
它将数据点分为K个不同的簇,使得同一簇内的数据点之间的距离尽可能小,不同簇之间的距离尽可能大。
该算法计算复杂度较低,适用于大数据集。
然而,该算法对初始聚类中心的选择非常敏感,并且只能处理数值型数据。
2.层次聚类算法:层次聚类算法通过计算数据点之间的相似性将它们逐步聚类成树状结构。
该算法不需要事先指定聚类个数,并且可以处理各种数据类型。
然而,该算法在处理大数据集时计算复杂度较高,并且结果的质量受到相似性度量的影响。
3.密度聚类算法:密度聚类算法使用数据点密度来识别簇。
该算法可以处理不规则形状的簇,并且对初始聚类中心的选择不敏感。
DBSCAN是一种常用的密度聚类算法。
然而,该算法对密度参数的选择敏感,并且在处理高维数据时效果可能不好。
4.基于模型的聚类算法:基于模型的聚类算法将数据点建模为一些概率分布的样本。
该算法可以处理不同形状和大小的簇,并且能够进行概率推断。
高斯混合模型(GMM)是一种常用的基于模型的聚类算法。
然而,该算法对模型的选择和参数估计比较困难。
5.谱聚类算法:谱聚类算法通过矩阵分解来对数据进行聚类。
该算法可以处理非线性可分的数据,并且不需要事先指定聚类个数。
然而,该算法在处理大数据集时计算开销较大,并且对相似度矩阵的构建方法敏感。
以上只是一些常见的聚类算法,实际上还有许多其他聚类算法可供选择,如affinity propagation、BIRCH、OPTICS等。
每种算法都有其独特的特点和适用范围。
在选择聚类算法时,需要考虑数据集的规模、维度、特征类型以及问题的特殊需求等因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J.B.MacQueen 在 1967 年提出的K-means算法[22]到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。
它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数,误差平方和准则函数定义为:
(3-1)其中,是类中数据对象的均值,即,(j=1,2,…,n),是K个聚类中心,分别代表K个类。
K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。
计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。
本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。
若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。
如果在一次迭代算法中,所有的样本被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着已经收敛,因此算法结束。
算法描述如下:
算法:K-means。
划分的 K-means 算法基于类中对象的平均值。
输入:类的数目K和包含N个对象的数据库。
方法:
① 对于数据对象集,任意选取K个对象作为初始的类中心;
② 根据类中对象的平均值,将每个对象重新赋给最相似的类;
③ 更新类的平均值,即计算每个类中对象的平均值;
④ Repeat ②③;
⑤ 直到不再发生变化。
其中,初始聚类中心的选择对聚类结果的影响是很大的,如图3.1,图a是三个类的实际分布,图b是选取了好的初始聚类中心(+字标记的数据对象)得到的结果。
图c是选取不好的初始聚类中心得到的结果,从中可以看到,选择初始聚类中心是很关键的。
a b c
图3.1基于K-means算法的一组对象的聚类
算法的数据描述为:把n个向量(j=1,2,…,n)分成c个类( i=1,2,…,c) ,并求每类的聚类中心,使得非相似性(或距离)指标的目标函数达到最小。
当选择第i类中向量与相应聚类中心间的度量为欧几里德距离时,目标函数可以定义为:
(3-2) 其中是类的目标函数。
J值依赖于的几何形状和的位置。
可以看出J是样本和聚类中心的函数,样本集 X 给定的情况下J的值取决于K个聚类中心。
J 描述 n 个样本聚类成K个类时所产生的总的误差平方和。
显然,若J值越大,说明误差越大,聚类结果越不好。
因此,应该寻求使J最小的聚类结果,即在误差平方和准则下的最优结果。
这种聚类通常也称为最小方差划分。
3.1.3K均值聚类存在的问题
K-means 算法的特点——采用两阶段反复循环过程算法,结束的条件是不再有数据元素被重新分配:
① 指定聚类,即指定数据到某一个聚类,使得它与这个聚类中心的距离比它到其它聚类中心的距离要近。
② 修改聚类中心。
优点:本算法确定的K 个划分到达平方误差最小。
当聚类是密集的,且类与类之间区别明显时,效果较好。
对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。
一般来说,K<<N,t<<N 。
缺点主要有三个:
① 在 K-means 算法中 K 是事先给定的,这个 K 值的选定是非常难以估计的。
很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。
这也是 K-means 算法的一个不足。
有的算法是通过类的自动合并和分裂,得到较为合理的类型数目 K,例如 ISODATA 算法。
关于 K-means 算法中聚类数目K 值的确定在文献[23]中,是根据方差分析理论,应用混合 F 统计量来确定最佳分类数,并应用了模糊划分熵来验证最佳分类数的正确性。
在文献[24]中,使用了一种结合全协方差矩阵的 RPCL 算法,并逐步删除那些只包含少量训练数据的类。
而文献[25]中使用的是一种称为次胜者受罚的竞争学习规则,来自动决定类的适当数
目。
它的思想是:对每个输入而言,不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。
② 在 K-means 算法中,首先需要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化。
这个初始聚类中心的选择对聚类结果有较大的影响[26-29],一旦初始值选择的不好,可能无法得到有效的聚类结果,这也成为 K-means 算法的一个主要问题。
对于该问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法(GA)进行初始化,以内部聚类准则作为评价[30]指标。
③ 从 K-means 算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大的。
所以需要对算法的时间复杂度进行分析、改进,提高算法应用范围。
在文献[31,32]中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的侯选集。
而在文献[33]中,使用的 K-means 算法是对样本数据进行聚类,无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。