Mathematica软件快速上手指南11

合集下载

Mathematica使用教程

Mathematica使用教程

Mathematica教程【Mathematica 简介】Mathematica 软件是由沃尔夫勒姆研究公司(Wolfram Research Inc。

)研发的。

Mathematica 1。

0 版发布于1988年6月23日。

发布之后,在科学、技术、媒体等领域引起了一片轰动,被认为是一个革命性的进步.几个月后,Mathematica 就在世界各地拥有了成千上万的用户。

今天,Mathematica 已经在世界各地拥有了数以百万计的忠实用户。

Mathematica 已经被工业和教育领域被广泛地采用.实际上,Mathematica 负责将高级的数学和计算引入了传统上非技术的领域,极大的增加了科技软件的市场。

一个包含应用、咨询、书籍、和课程软件的行业支持着国际化的Mathematica 用户群,这个行业还在不断地膨胀.随着沃尔夫勒姆研究公司不断地扩大和Mathematica 的使用被不断地扩展到不同的领域,将会看到Mathematica 在全世界范围内对未来产品、重要研究发现、和教学的巨大影响。

数学软件是现在科研工作者的必备的工具,个人比较喜欢用Mathematica,因为它是最接近数学语言的.Mathematica 在15日发布,其最显著的变化是允许自由形式的英文输入,而不再需要严格按照Mathematica语法,这类似于Wolfram|Alpha搜索引擎.Mathematica 8允许用户按照自己习惯的思考过程输入方程式或问题,最令人激动的部分是软件不是逐行执行命令,而是能理解上下文背景。

1。

Enter your queries in plain English using new free-form linguistic input2. Access more than 10 trillion sets of curated,up—to-date,and ready—to-use data3。

Import all your data using a wider array of import/export formats4. Use the broadest statistics and data visualization capabilities on the market5。

mathematica教程中文简单版

mathematica教程中文简单版

M athematica是美国Wolfram研究公司生产的一种数学分析型的软件,以符号计算见长,也具有高精度的数值计算功能和强大的图形功能。

假设在Windows环境下已安装好Mathematica4.0,启动Windows后,在“开始”菜单的“程序”中单击,就启动了Mathematica4.0,在屏幕上显示如图的Notebook窗口,系统暂时取名Untitled-1,直到用户保存时重新命名为止输入1+1,然后按下Shif+Enter键,这时系统开始计算并输出计算结果,并给输入和输出附上次序标识In[1]和Out[1],注意In[1]是计算后才出现的;再输入第二个表达式,要求系统将一个二项式展开,按Shift+Enter输出计算结果后,系统分别将其标识为In[2]和Out[2].如图在Mathematica的Notebook界面下,可以用这种交互方式完成各种运算,如函数作图,求极限、解方程等,也可以用它编写像C那样的结构化程序。

在Mathematica系统中定义了许多功能强大的函数,我们称之为内建函数(built-in function), 直接调用这些函数可以取到事半功倍的效果。

这些函数分为两类,一类是数学意义上的函数,如:绝对值函数Abs[x],正弦函数Sin[x],余弦函数Cos[x],以e为底的对数函数Log[x],以a为底的对数函数Log[a,x]等;第二类是命令意义上的函数,如作函数图形的函数Plot[f[x],{x,xmin,xmax}],解方程函数Solve[eqn,x],求导函数D[f[x],x]等。

必须注意的是:Mathematica 严格区分大小写,一般地,内建函数的首写字母必须大写,有时一个函数名是由几个单词构成,则每个单词的首写字母也必须大写,如:求局部极小值函数FindMinimum[f[x],{x,x0]等。

第二点要注意的是,在Mathematica中,函数名和自变量之间的分隔符是用方括号“[ ]”,而不是一般数学书上用的圆括号“()”,初学者很容易犯这类错误。

Mathcad操作指南

Mathcad操作指南

Mathcad操作指南基础部分........................................................................ LESSON 1. MATHCAD工具栏及面板................................................... LESSON 2:使用MATHCAD工作区域................................................... LESSON 3: 输入数学和文本........................................................ LESSON 4: 使用 MATHCAD模板及样式................................................ LESSON 5: 定义变量.............................................................. LESSON 6: 定义函数.............................................................. LESSON 7: 建立数学表达式........................................................ LESSON 8: 编辑表达式............................................................ LESSON 9: 定义变量范围.......................................................... LESSON 10: 定义矢量和矩阵....................................................... LESSON 11: 图表................................................................. LESSON 12:数字和文本格式........................................................ LESSON 13: 结果格式化........................................................... LESSON 14:单位运算.............................................................. LESSON 15:MATHCAD的编程........................................................ 在哪里可以得到更多帮助:........................................................基础部分注意此稿包含的使用Mathcad 11版本的指南同从软件内置的指南相同。

mathematica教程

mathematica教程

Mathematica 5.0使用教程目录第1章Mathematica概述 (3)1.1 运行和启动:介绍如何启动Mathematica软件,如何输入并运行命令 (3)1.2 表达式的输入:介绍如何使用表达式 (5)1.3 帮助的使用:如何在mathematica中寻求帮助 (6)第2章Mathematica的基本量 (8)2.1 数据类型和常量:mathematica中的数据类型和基本常量 (8)2.2 变量:变量的定义、变量的替换、变量的清除等 (10)2.3 函数:函数的概念,系统函数,自定义函数的方法 (12)2.4 表:表的创建,表元素的操作,表的应用 (15)2.5 表达式:表达式的操作 (16)2.6 常用符号:经常使用的一些符号的意义 (19)第3章Mathematica的基本运算 (19)3.1 多项式运算:多项的四则运算,多项式的化简等 (19)3.2 方程求解:求解一般方程,条件方程,方程数值解以及方程组的求解 (21)3.3 求积、求和:求积与求和 (24)第4章函数作图 (25)4.1 二维函数作图:一般函数的作图,参数方程的绘图 (25)4.2 二维图形元素:点、线等图形元素的使用 (29)4.3 图形样式:图形的样式,对图形进行设置 (31)4.4 图形的重绘和组合:重新显示所绘图形,将多个图形组合在一起 (33)4.5 三维图形的绘制:三维图形的绘制,三维参数方程的图形,三维图形的设置 (36)第5章微积分的基本操作 (42)5.1 函数的极限:如何求函数的极限 (42)5.2 导数与微分:如何求函数的导数、微分 (43)5.3 定积分与不定积分:如何求函数的不定积分和定积分,以及数值积分 (45)5.4 多变量函数的微分:如何求多元函数的偏导数、微分 (47)5.5 多变量函数的积分:如何计算重积分 (49)第6章微分方程的求解 (51)6.1 微分方程的解:微分方程的求解 (51)6.2 微分方程的数值解:如何求微分方程的数值解 (53)第7章Mathematica程序设计 (54)7.1 模块:模块的概念和定义方法 (54)7.2 条件结构:条件结构的使用和定义方法 (56)7.3 循环结构:循环结构的使用 (59)7.4 流程控制 (61)第8章Mathematica中的常用函数 (63)8.1 运算符和一些特殊符号:常用的和不常用一些运算符号 (63)8.2 系统常数:系统定义的一些常量及其意义 (63)8.3 代数运算:表达式相关的一些运算函数 (64)8.4 解方程:和方程求解有关的一些操作 (65)8.5 微积分相关函数:关于求导、积分、泰勒展开等相关的函数 (65)8.6 多项式函数:多项式的相关函数 (66)8.7 随机函数:能产生随机数的函数函数 (67)8.8 数值函数:和数值处理相关的函数,包括一些常用的数值算法 (67)8.9 表相关函数:创建表,表元素的操作,表的操作函数 (68)8.10 绘图函数:二维绘图,三维绘图,绘图设置,密度图,图元,着色,图形显示等函数 (69)8.11 流程控制函数 (72)第1章Mathematica概述1.1 Mathematica的启动和运行Mathematica是由美国物理学家Stephen Wolfram领导的一个小组开发进行量子力学研究的,软件开发成功促使Stephen Wolfram与1987年创建Wolfram研究公司,并推出了Mathematica1.0。

Mathematica软件使用入门

Mathematica软件使用入门

Mathematica软件使用入门目录第一章基本知识与基本操作 (3)1.1 Mathematica的基本语法特征 (3)1.2 Mathematica的启动、基本操作 (5)1.3 操作小技巧 (7)1.4 数值计算 (8)1.5 赋值与替换 (9)1.6 自定义函数 (10)1.7 方程与方程组解 (11)1.8 解不等式与不等式组 (12)1.9 由递推式求数列的通项公式 (14)1.10 作函数图像 (15)页脚内容1第二章运用Mathematica实现高等数学中的基本运算 (17)2.1 求极限运算 (17)2.2 求导数与微分 (20)2.3 求不定积分 (28)2.4 求定积分 (29)第三章实验练习题 (32)Mathematica是当今世界上最为流行的计算机代数系统之一.Mathematica系统是美国物理学家Stephen.Wolfram领导的一个小组开发的,后来他们成立了Wolfram研究公司.1987年推出了系统的1.0版;现在的最新版本是8.0版.页脚内容2Mathematica可以做:符号计算和数值计算问题,如:能做多项式的计算、因式分解和展开等;做各种有理式计算,求多项式、有理式方程和超越方程的精确解和近似解;做向量、矩阵的各种计算;求极限、导数、积分,做幂级数展开,求解某些微分方程等;做任意位数的整数或分子分母为任意大整数的有理数的精确计算,做具有任意位精度的数值(实、复数值)的计算.可以很方便地画出用各种方式表示的一元和二元函数的图形,通过图形,可以立即形象地掌握函数的某些特性,而这些特性一般是很难从函数的符号表达式中看清楚.第一章基本知识与基本操作1.1 Mathematica的基本语法特征使用Mathematica,一定要牢牢记住:Mathematica中大写小写是有区别的,如Name、name、NAME等是不同的变量名或函数名;系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[x],Cos[z]等;页脚内容3页脚内容4乘法即可以用*,又可以用空格表示,如 2 3=2*3=6 , 2 Sin[x]=2* Sin[x]乘幂可以用“^”表示,如x^0.5 表示: Tan[x]^y 表示:自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头.当你赋予变量任何一个值,除非你: 明显地改变该值或 使用Clear[变量名] 或 使用“变量名=.”取消该值,否则它将始终保持原值不变.一定要注意四种括号的用法:( ): 表示项的结合顺序,如: (x+(y^x+1/(2x))); [ ]: 表示函数,如:Log[x], Sin[x];{ }: 表示一个“表”(即是一组数字、或任意表达式、或函数等的一个有序集合),如:{2x,Sin[12 Pi],A ,1}, {1+A,y*x ,1,2};[[ ]]: 双方括号表示“表”或“表达式”的下标,如: a[[2,3]]表示:23a ; {3,5,7}[[2]]=5.Mathematica 的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔).当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果.0.5xyTan[x]Mathematica命令中的标点符号必须是英文的.1.2 Mathematica的启动、基本操作1.2.1 启动“Mathematica”:在windows操作系统中安装了Mathematica后,与其他的常用软件一样,可从“开始”→“程序”→“Mathematica5”Mathematica的主窗口并出现第一个notebook窗口(Untitled-1):1.2.2 简单使用:例1.1 计算+33的值①在“Untitled-1”窗口中输入:329/412+3^3②按下“Shift+Enter”(或数字键盘上的Enter键),就得到计算结果:页脚内容5其中“In[1]:=”是Mathematica自动加上的,表示第一个输入;“Out[1]:=”表示第一个输出.一般地:In[n]:= 表示第n个输入Out[n]:=表示第n个输出.注意:“In[n]:=”自动加上的,不能人工输入!1.2.3 保存结果:保存方法同一般的Windows软件:“文件”→“保存”“另存为”窗口→在“查找范围”内找到目标文件夹→输入文件名(比如输入“1”)→“”.Mathematica 4或Mathematica 5的文件的后缀是“nb”,当输入“1”时,即产生文件“1.nb”.1.2.4打开文件1.nb启动Mathematica →“文件”→“打开”打开”窗口:→在“查找范围”内找到文件“1.nb”→“”即可.页脚内容61.2.5 退出Mathematica:与一般应用软件一样,单击右上方的“”按钮(或用菜单:“文件”→“退出”).1.3 操作小技巧1.3.1Ctrl+K的用途如果只知道命令的首写字母,可在输入该首写字母(要大写),再按下“Ctrl+K”组合键,则所有以该字母为首的命令都列出来,只要用鼠标双击命令名就输入了该命令.1.3.2使用前面已有的结果举例如下:例1.2 做如下操作:①输入:Integrate[x^2*(11-Sin[x]),{x,-1,1}]按:“Shift+Enter”;②输入:%+1,按:“Shift+Enter”;③输入:%+1,按:“Shift+Enter”;④输入:%1+1,按:“Shift+Enter”;Integrate[f,x]是求:()f x dxIntegrate[f,{x,xmin,xmax}]是求:页脚内容7⑤输入:%3+1,按:“Shift+Enter”,计算结果如下:可见,“%”表示前一个计算结果;“%n”表示第n个计算结果.1.3.3 删除行:见下图示1.4 数值计算请看下例:只要选定且删1.5 赋值与替换X=. 或Clear[x] 清除赋给x的值expr/.{x->xval,y->yval} 用xval、yval分别替换expr中的x、y.例1.3输入:x=3;y=4;w=x+y 计算清除变量的定义和值输入:Clear[x,y];计算输入:z=(x+y)^2 计算将(x+y)^2赋给z页脚内容9页脚内容10输入:z/.x->5 计算输入:Clear[x,y]; 计算 输入:u=x+y 计算 输入:u/.{x->5,y->6} 计算 计算结果如下:1.6 自定义函数用户可以自行定义函数,一个函数一旦被定义好之后就可以象系的内部函数一样使用. 例1.4 如要定义函数 f(x)=x 2+3x-2变量替换:变量替换:分别用5、6代替表达式u 中的“:=”是定义符.左边f 是函数名,方括号内x 是自变量,其页脚内容11只要键入: f[x_]:=x^2+3x-2即可.又如要定义分段函数2+1 < 0()= 2sin 0x x g x x x ⎧⎨≥⎩可键入:g[x_]:= Which[x<0,x^2+1,x>=0,2Sin[x]] 或g[x_]:=If[x<0,x^2+1,2Sin[x]] 请见以下计算结果:1.7 方程与方程组解 例1.5 ① 解方程:0652=+-x x输入:Solve[x^2-5x+6==0,x]Solve 是解方程或方程组的函数.其格式为:Solve[eqns,vars] 其中方程用exp==0的形式(其中页脚内容12即可.② 解方程组输入:Solve[{x+y==1,3x^2-y^2==0},{x,y}] 即可(结果见下图).1.8 解不等式与不等式组 例1.6 ① 解不等式组2213x y x y +=⎧⎨-=⎩加载解不等式的程序包,这是必须的,可谓是固定的格式, “< ”为键盘上的小于号, “`”为数字键1的左侧的 Algebra —— 代数类页脚内容13⎪⎩⎪⎨⎧>-<--0101222x x x输入: <<Algebra`InequalitySolve` InequalitySolve[{x^2-5x-6<0,x^2-1>0}, x] 即可. ② 解不等式3)3(12>--x x输入: <<Algebra`InequalitySolve` InequalitySolve[Abs[x-1](x^2-3) > 3, x] 即可(结果见下图)注: Mathematica 系统有内部函数.还有一些系统扩展的功能但不是作为内部函数的、以文件的形式存页脚内容14储在磁盘上的文件,要使用它们,必须用一定的方式来调用这些文件,这些文件我们称之为程序包. 调用方式之一如上所述: <<Algebra`InequalitySolve` 或用:Needs["Algebra`InequalitySolve`"] 1.9 由递推式求数列的通项公式例1.7 设 求数列的通项公式 只要输入:<<DiscreteMath`RSolve`RSolve[{a[n]==n *a[n-1], a[1]==1}, a[n], n] 即可(结果见下图)11,1,nn a na a -==1.10 作函数图像例1.8在同一坐标系中作出2-1y x 和y=sinx在[-2,2]内的图像.输入:Plot[{x^2-1,Sin[x]},{x,-2,2}]结果见下图例1.9作出sinxcosy的三维图形输入:Plot3D[Sin[x]*Cos[y],{x,-2Pi,2Pi},{y,-2Pi,2Pi},PlotPoints->100]即可(结果见下图)增加取样点提高光滑度页脚内容15页脚内容16页脚内容17第二章 运用Mathematica 实现高等数学中的基本运算极限、导数和积分是高等数学中的主要概念和基本运算,如果你在科研中遇到较复杂的求极限、求导数或求积分问题,Mathematica 可以帮你快速解决这些问题。

Mathematica软件使用入门讲解

Mathematica软件使用入门讲解

Mathematica软件使用入门目录第一章基本知识与基本操作 (3)1.1 Mathematica的基本语法特征 (3)1.2 Mathematica的启动、基本操作 (4)1.3 操作小技巧 (7)1.4 数值计算 (8)1.5 赋值与替换 (9)1.6 自定义函数 (10)1.7 方程与方程组解 (11)1.8 解不等式与不等式组 (12)1.9 由递推式求数列的通项公式 (13)1.10 作函数图像 (14)第二章运用Mathematica实现高等数学中的基本运算 (16)2.1 求极限运算 (16)2.2 求导数与微分 (18)2.3 求不定积分 (25)2.4 求定积分 (25)第三章实验练习题 (28)Mathematica是当今世界上最为流行的计算机代数系统之一.Mathematica系统是美国物理学家Stephen.Wolfram领导的一个小组开发的,后来他们成立了Wolfram研究公司.1987年推出了系统的1.0版;现在的最新版本是8.0版.Mathematica可以做:●符号计算和数值计算问题,如:能做多项式的计算、因式分解和展开等;●做各种有理式计算,求多项式、有理式方程和超越方程的精确解和近似解;●做向量、矩阵的各种计算;●求极限、导数、积分,做幂级数展开,求解某些微分方程等;●做任意位数的整数或分子分母为任意大整数的有理数的精确计算,做具有任意位精度的数值(实、复数值)的计算.●可以很方便地画出用各种方式表示的一元和二元函数的图形,通过图形,可以立即形象地掌握函数的某些特性,而这些特性一般是很难从函数的符号表达式中看清楚.第一章 基本知识与基本操作1.1 Mathematica 的基本语法特征使用Mathematica ,一定要牢牢记住:● Mathematica 中大写小写是有区别的,如Name 、name 、NAME 等是不同的变量名或函数名;● 系统所提供的功能大部分以系统函数的形式给出, 内部函数一般写全称, 而且一定是以大写英文字母开头, 如Sin[x], Cos[z]等;● 乘法即可以用*,又可以用空格表示,如2 3=2*3=6 , 2 Sin[x]=2* Sin[x] ● 乘幂可以用“^”表示,如x^0.5 表示: Tan[x]^y 表示: ● 自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头. ● 当你赋予变量任何一个值,除非你:明显地改变该值或 使用Clear[变量名] 或 使用“变量名=.”取消该值,否则它将始终保持原值不变.● 一定要注意四种括号的用法:0.5x yTan[x]( ):表示项的结合顺序,如: (x+(y^x+1/(2x)));[ ]:表示函数,如:Log[x], Sin[x];{ }:表示一个“表”(即是一组数字、或任意表达式、或函数等的一个有序集合),如:{2x,Sin[12 Pi],A,1}, {1+A,y*x,1,2};[[ ]]:双方括号表示“表”或“表达式”的下标,如:a; {3,5,7}[[2]]=5.a[[2,3]]表示:23●Mathematica的语句书写十分方便,一个语句可以分为多行写,同一行可以写多个语句(但要以分号间隔).●当语句以分号结束时,语句计算后不做输出(输出语句除外),否则将输出计算的结果.●Mathematica命令中的标点符号必须是英文的.1.2 Mathematica的启动、基本操作1.2.1 启动“Mathematica”:在windows操作系统中安装了Mathematica后,与其他的常用软件一样,可从“开始”→“程序”→“Mathematica5” Mathematica的主窗口并出现第一个notebook窗口(Untitled-1):1.2.2 简单使用:例1.1 计算+33的值①在“Untitled-1”窗口中输入:329/412+3^3②按下“Shift+Enter”(或数字键盘上的Enter键),就得到计算结果:其中“In[1]:=”是Mathematica自动加上的,表示第一个输入;“Out[1]:=”表示第一个输出.一般地:In[n]:= 表示第n个输入Out[n]:=表示第n个输出.注意:“In[n]:=”自动加上的,不能人工输入!1.2.3 保存结果:保存方法同一般的Windows软件:“文件”→“保存”⇒“另存为”窗口→在“查找范围”内找到目标文件夹→输入文件名(比如输入“1”)→“”.Mathematica 4或Mathematica 5的文件的后缀是“nb”,当输入“1”时,即产生文件“1.nb”.1.2.4打开文件1.nb启动Mathematica →“文件”→“打开”⇒打开”窗口:→在“查找范围”内找到文件“1.nb”→“”即可.1.2.5 退出Mathematica :与一般应用软件一样,单击右上方的“ ”按钮(或用菜单:“文件”→“退出”).1.3 操作小技巧1.3.1 Ctrl+K 的用途如果只知道命令的首写字母, 可在输入该首写字母(要大写),再按下“Ctrl+K ”组合键, 则所有以该字母为首的命令都列出来,只要用鼠标双击命令名就输入了该命令. 1.3.2 使用前面已有的结果 举例如下:例1.2 做如下操作:① 输入:Integrate[x^2*(11-Sin[x]),{x,-1,1}]按:“Shift +Enter ”; ② 输入:%+1,按:“Shift +Enter ”; ③ 输入:%+1,按:“Shift +Enter ”; ④ 输入:%1+1,按:“Shift +Enter ”; ⑤ 输入:%3+1,按:“Shift +Enter ”, 计算结果如下:Integrate[f,x]是求:()f x dx ⎰ Integrate[f,{x,xmin,xmax}]是求:maxmin()x x f x dx ⎰可见,“%”表示前一个计算结果;“%n”表示第n个计算结果.1.3.3删除行:见下图示1.4 数值计算请看下例:只要选定且删除此即可系统默认的计算结果,是精确的.N[],取近似值函数,默认输出6位有效数字.N[],取近似值函数,指定输出3位有效数字.1.5 赋值与替换X=. 或Clear[x] 清除赋给x的值expr/.{x->xval,y->yval} 用xval、yval分别替换expr中的x、y.例1.3输入:x=3;y=4;w=x+y 计算输入:Clear[x,y];计算输入:z=(x+y)^2 计算输入:z/.x->5 计算输入:Clear[x,y];计算输入:u=x+y 计算将(x+y)^2赋给z清除变量的定义和值变量替换:用5代替表达式z中的变量变量替换:输入:u/.{x->5,y->6} 计算 计算结果如下:1.6 自定义函数用户可以自行定义函数,一个函数一旦被定义好之后就可以象系的内部函数一样使用.例1.4 如要定义函数f(x)=x 2+3x-2只要键入:f[x_]:=x^2+3x-2即可.又如要定义分段函数2+1 < 0()= 2sin 0x x g x x x ⎧⎨≥⎩“:=”是定义符.左边f 是函数名,方括号内x 是自变量,其后的下划线“_”不能少.右边是函数的表达式.可键入:g[x_]:= Which[x<0,x^2+1,x>=0,2Sin[x]]或g[x_]:=If[x<0,x^2+1,2Sin[x]]请见以下计算结果:1.7 方程与方程组解例1.5 ① 解方程:0652=+-x x输入:Solve[x^2-5x+6==0,x]即可.② 解方程组 输入:Solve[{x+y==1,3x^2-y^2==0},{x,y}] 即可(结果见下图).Solve 是解方程或方程组的函数.其格式为:Solve[eqns,vars]其中方程用exp==0的形式(其中exp 为未知元的表达式,“= =”必须是2个等号);方程列表 2213x y x y +=⎧⎨-=⎩未知数列表1.8 解不等式与不等式组例1.6 ① 解不等式组⎪⎩⎪⎨⎧>-<--0101222x x x输入: <<Algebra`InequalitySolve`InequalitySolve[{x^2-5x-6<0,x^2-1>0}, x]即可.② 解不等式3)3(12>--x x输入: <<Algebra`InequalitySolve`即可(结果见下图)不等式列表 变量列表加载解不等式的程序包,这是必须的,可谓是固定的格式, “< ”为键盘上的小于号, “`”为数字键1的左侧的Algebra —— 代数类InequalitySolve —— 解不等式程序包绝对值函数注: Mathematica 系统有内部函数.还有一些系统扩展的功能但不是作为内部函数的、以文件的形式存储在磁盘上的文件,要使用它们,必须用一定的方式来调用这些文件,这些文件我们称之为程序包. 调用方式之一如上所述:<<Algebra`InequalitySolve`或用:Needs["Algebra`InequalitySolve`"]1.9 由递推式求数列的通项公式例1.7 设 求数列的通项公式只要输入:<<DiscreteMath`RSolve` RSolve[{a[n]==n *a[n-1], a[1]==1}, a[n], n]即可(结果见下图)11,1,n n a na a -==函数名 递推关系 初始条件调用程序包 类名,此处是函数类 函数类中的这个函数离散类 离散类中的这个函数1.10 作函数图像例1.8在同一坐标系中作出2-1y x 和y=sinx在[-2,2]内的图像.输入: Plot[{x^2-1,Sin[x]},{x,-2,2}] 结果见下图例1.9作出sinxcosy的三维图形输入:Plot3D[Sin[x]*Cos[y],{x,-2Pi,2Pi},{y,-即可(结果见下图)增加取样点提高光滑度第二章 运用Mathematica 实现高等数学中的基本运算极限、导数和积分是高等数学中的主要概念和基本运算,如果你在科研中遇到较复杂的求极限、求导数或求积分问题,Mathematica 可以帮你快速解决这些问题。

Mathcad 快速学习手册

Mathcad 快速学习手册
Mathc Mathcad 快速学习手册 快速学习手册
目 录
1、等号 .....................................................................................................................2 2、输出希腊字母 .....................................................................................................2 3、方程求解,包括解决线性规划和非线性规划 .................................................2 4、符号运算,使用 symbolic 工具箱 ...................................................................3 5、微积分运算 .........................................................................................................4 6、矩阵运算 .............................................................................................................5 6、解微分方程 .........................................................................................................6 7、图形制作 .............................................................................................................6 8、编程应用 .............................................................................................................7 9、概率计算 .............................................................................................................8 10、回归分析与曲线拟合 .......................................................................................9

Mathcad操作指南

Mathcad操作指南

Mathcad操作指南Mathcad操作指南基础部分 (3)LESSON 1. MATHCAD⼯具栏及⾯板 (11)LESSON 2:使⽤MATHCAD⼯作区域 (13)LESSON 3: 输⼊数学和⽂本 (14)LESSON 4: 使⽤MATHCAD模板及样式 (17)LESSON 5: 定义变量 (18)LESSON 6: 定义函数 (19)LESSON 7: 建⽴数学表达式 (21)LESSON 8: 编辑表达式 (23)LESSON 9: 定义变量范围 (25)LESSON 10: 定义⽮量和矩阵 (28)LESSON 11: 图表 (32)LESSON 12:数字和⽂本格式 (39)LESSON 13: 结果格式化 (40)LESSON 14:单位运算 (43)LESSON 15:MATHCAD的编程 (44)在哪⾥可以得到更多帮助: (50)基础部分注意此稿包含的使⽤Mathcad 11版本的指南同从软件内置的指南相同。

最初的资料来源于Mathcad 7的专业版,更新了Mathcad 11版本新增加的内容。

因此, 有可能涉及到MathCad 7相关的信息,也可能在此稿中出现,标识符同MathCad 11版有些不同。

我们已经做了⼀些必要的编辑⼯作,⽤命令表格介绍材料,以满⾜FAMU - FSU 学院的机械⼯程系采⽤MathCad进⾏动⼒系统课程教育的需要。

如果未经著作拥有者许可仅限于本公司使⽤,不得提供给其他公司使⽤,MathSoft公司。

简介: Mathcad 优点Mathcad 是唯⼀的⼀个在同⼀张⼯作表集合了数学公式、数字、⽂本和图表的功能强⼤的⼯程应⽤⼯具。

和其它数学软件不同的是,Mathcad 是⽤和您⼀样的⽅式做数学。

那是因为它的操作界⾯就像是铅笔和纸张。

Mathcad的操作界⾯就是⼀个空⽩的⼯作区域,您可以在上⾯直接输⼊公式、图表或者是⽅程式,⽽且可以在任意的地⽅插⼊⽂字注解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Mathematica 软件快速上手指南(11)
———数学课件制作简介
梁肇军
(华中师范大学数学系,湖北 武汉 430079)
中图分类号:G 434 文献标识码:B 文章编号:0488-7395(2001)09-0005-02
收稿日期:2001-02-20
作者简介:梁肇军(1938—
),男,广西柳州人,华中师范大学数学系教授.1 课件制作的基本程序 一篇优秀的数学课件,必须具备下述三个条件:
1.能体现现代、先进的教育思想,符合教育的科学
原理.2.能充分反映计算机在教学中的独特作用,利用其超强的计算能力,精确、快速的图形效果,能实时调控以及具有动画功能等.3.符合数学的基本原理,内容科学.因此,我们分下述三步来进行一篇数学课件的制作.
1.1 选取数学课件的脚本 
数学课件的脚本,可以是一本教材,也可以是一个讲稿,或者是课本中的某一章某一节内容,按照讲义的要求处理,力求简练.
内容选取以后,我们需要把讲授的文稿设计成框图,框图里的信息力求简明扼要,框图里的内容要有先后顺序安排.同时,要设计一定的师生交流以及人机交流的内容.当然,巩固练习的安排也是必不可少的.由于计算机的内存有限,在这里我们还要考虑课件所需计算机存贮空间的分配.
1.2 按照教育教学原理,把脚本进行适当的编排、
增补 
在排列学习项目时,应注意分析问题、逻辑推理的合理性和思维过程的流畅性.同时,适当地安排一些具有意外性的内容,对学生具有挑战性,能引起学生学习上的兴趣.为了避免学生在长期的紧张、连续的学习中产生疲劳,把学习过程分为若干个阶段是适宜而且应该的.在学习结束时,针对学生在练习中反映的问题,课件的最后应安排一定的小结内容.
在利用计算机进行辅助教学中,对计算机的实时调控,图形的逼真,动画的直观,以及教师与学生的对话、人机互动等等,要能深刻体现教育教学基本规律,要能充分调动学生学习的积极性.
1.3 数学式的软件语言处理 
我们可以把课件内容大致分为两部分:一类是静态的,如中西文文字说明,图形,表格数据等,这部分内容制作者只需将其按Mathematica 系统的对其的输入要求录入到课件中即可;另一类是动态的,如代数式的实时运算,作图,动画,比较(包括代数式中某此数据修改后的结果对比,图形叠加,加色,数学模型中的适时调控等).下面将从中西文文字、作图、动画等三个方面来说明如何用Mathematica 软件语言处理上述数学式.至于Mathematica 系统在建立数学模型、开放实验等方面的有关问题,我们将另文说明.
中西文文字、图形、表格、数据(含代数式)在数学课件中主要起说明作用,除图形外其它的都可以直接利用键盘输入,只不过代数式的输入要按照Mathem 2
atica 系统规定的格式对它进行处理.对于图形,我们
可以通过函数作图或者是图元作图,即先输入一行正确的命令,然后运行它,输出结果即为需要的图形,存盘后即可保留在文稿上.对某些需要输出结果的代数式,也可如上办理.需要运算的代数式要放在独立的单元Cell 里,一个完整代数式建立一个独立的单元.由于计算机的计算速度快,一般几秒钟即可完成,为了教学的需要,我们需要把代数式分成几个部分,一步一步地让计算机执行.如化简一个代数式,我们可
5
2001年第9期 数学通讯
以先作代数式的通分(或约分)运算,合并同类项等,这样就能让学生看得清楚些,便于掌握.
作图之前,我们首先要调用相应的软件包.在课件中,我们只须输入作图命令,在讲课时再去运行它,这里要设计一些相应的情况,准备适时调整的数据.如我们在考察抛物线的开口与其方程系数的关系时,我们可设计几种不同a 值的抛物线方程以及作图的方式(如把它们叠加在一起、着色、粗细分开等).
2 中西文录入 
进入Mathematica 系统后,打开记事本(notebo 2
ok ),在Windows98
的下方单击En 即可选择中文状
态的录入方式.Notebook 是具有多级单元的交互式文件.每个单元中包容了一种特殊的材料.文本、图形和Mathematica 的输入或输出等,这些有序的单元可以分成组来代表相关的内容.这样的一组单元可以与用户文件中的一节或一章相对应.下面我们将介绍的是数学课件的输入格式.
首先,我们在记事本notebook 的子目录下建立课件的文件名,确认后进入Mathematica 系统的交互状态下,然后在第一单元里录入课程名称,如“第一章 幂函数、指数函数和对数函数”,按回车键,移动光标使之成为一个独立的单元Cell .(这样可方便地进行文字编辑,如选择字体大小、颜色等)随后可在新的单元Cell 里记述录入内容.在输入过程中,中西文(包括不需作运算的数学表达式等)文字符号可以在同一个单元Cell 里存在,此时输入状态为中文输入状态.遇到需作运算的数学表达式时,一是必须把输入状态转换为英文状态,二是一个数学表达式(可以直接运算的、独立的)应有一个独立的单元Cell .内容属于同一个单元Cell 的标志是屏幕最右端用方括号将其括起来,一个独立的单元Cell 里的内容输入后会在最右端自动形成一个方括号.分单元Cell 的方法是:输入内容完成后,按回车键,则系统会自动生成一新的单元Cell ,供你输入新的内容.如果在一段已输入的文字中夹杂了需要演算的数学表达式时,由于此时是在中文系统状态下输入的数学表达式,系统认为其只是一段中西文符号,不予运算.此时可以通过下述操作将其独立出来:把光标移至数学表达式前与中西文文字连接的地方,通过鼠标器点击系统的图标Cell ,打开Cell 栏目,在Divide Cell 栏上点击它,则方括号在光标所在行自动断开.然后,把光标移至数学表达式的尾部,如上操作,数学表达式就与中西文文字部分脱离,成为一个独立的
单元Cell .但是,此时的数学表达式还不能进行运算,我们可通过下述方法:先击活它,然后将其剪下,按回车键,产生一个新的单元,将上述数学表达式重新输入即可.
文字编辑方法是:单击Format ,再单击ChooseF 2
ont ,即弹出所要选择的字体、大小的子菜单.即可克
服录入过程中的乱码.
3 公式的运算 
Mathematica 系统最大的特点是可以进行符号
计算,具有智能化.例如我们要对三角函数sin (x +
y )展开,第一步用鼠标选中(将Sin [x +y ]用光标涂
黑);第二步单击File 中的Palettes 选项,弹出对话框,再单击TrigExpand [■],即得
Cos [y ]Sin [x ]+Cos [x ]Sin [y ]
上述显示方式与教科书略有差别,为此,必要时,第三步:化为常规形式.方法是:只要将上述表达式选中(将Cos [y ]Sin [x ]+Cos [x ]Sin [y ]用光标涂黑),单击Cell ,通过Convert To 中的TraditionlForm 即可将所要的表达式化为常规形式.
Cos (y )Sin (x )+Cos (x )Sin (y )4 图形进一步处理 
由于软件是通用的.图形的坐标系中没有标出原点,方向,字母,为了与教科书一致,将其补上.通过下面例子,可以看到解决问题的办法
In [1]:=Plot [Sin [x ],{x ,0,2pi},
AxesLabel →{“x ”,“y ”},Plotstyle →{Text [“^”,{0,1}],Text [“>”,{7.1,0}],Text [“O ”,{-0.1,
0.1}]}]5 文件压缩 
如果每一节课内容由若于细胞段落组成,选中每个细胞后,可在Cell 中.单击“Group cells ”,这样将多个细胞合成一个大的细胞组,同
一组的用“]”标识,再双击它,即可将文件压缩.
如果是一组动画命令生成的图形,也可用同样方法来压缩成“一个”图形,再播放动画.
6 课件后期创作 
由于涉及技术问题较多,如创建按扭及超级连接,此处略.
作者感谢美国Wolf ram 公司提供M athem atica
4.0试用版.
6数学通讯 2001年第9期。

相关文档
最新文档