第5章_对流传热的理论基础与工程计算
合集下载
对流传热的理论基础与工程计算

热对流中起着举足轻重的作用 ❖ 物理意义-单位体积流体携带并转移热量的能
力大小 ❖ 体积热容越大,表明单位体积流体携带并转移
热量的能力越强
❖ 水和空气冷却能力的对比 ❖ ——常温下:水的体积热容量约等于4175kJ
/(m3·℃),空气仅为1.21 kJ/(m3·℃),两者 差数千倍! ❖ ——一般用水作为冷却介质
❖ (2)导热系数 ❖ 对流换热过程中也包含有流体导热的作用 ❖ 流体导热系数的大小会直接影响流体内部的热
量传递过程和温度分布状态 ❖ 特别是对紧贴固体壁面的那部分流体来说,导
热系数更是起着关键的作用
❖ 紧贴固体壁面的流体相对于壁面来说是静止的 ❖ 显然,导热系数越大,对流换热过程越强烈
❖ 仍以水和空气作比较,常温下水的导热系数比 空气高大约二十几倍
为Re
Re ulc ulc
❖ 确定流态的实验(雷诺试验)
❖ 层流—流体只沿着与流道轴心平行的流线流动 ,或者说在轴线或沿表面方向上作规则的缓慢 分层运动,仅有非常微弱的横向(指和流速垂 直的方向)混合
❖ 湍流—流线处于不规则的状态,除了存在纵向 (流动方向)速度外,在流动截面上也存在横 向速度。流体内部存在强烈的涡旋运动,处于 充分的混合算
❖ 热对流——流体(气体或液体)中温度不同各 部分发生相互混合的宏观运动引起的热量传递 现象,以流体整体作为研究对象
❖ 热对流的机理 ❖ ——(1)流体分子间微观的导热作用 ❖ ——(2)流体微团间宏观的对流作用
❖ 对流传热——相对运动的流体与其温度不同的 壁面接触时,流体与壁面之间的热量传递过程
❖ 粘度越大的流体,分子间的约束力就越强,相同流速 下越不容易发展成湍流状态
❖ 高粘度的油类较多地处于层流状态,表面传热系数一 般比较小
力大小 ❖ 体积热容越大,表明单位体积流体携带并转移
热量的能力越强
❖ 水和空气冷却能力的对比 ❖ ——常温下:水的体积热容量约等于4175kJ
/(m3·℃),空气仅为1.21 kJ/(m3·℃),两者 差数千倍! ❖ ——一般用水作为冷却介质
❖ (2)导热系数 ❖ 对流换热过程中也包含有流体导热的作用 ❖ 流体导热系数的大小会直接影响流体内部的热
量传递过程和温度分布状态 ❖ 特别是对紧贴固体壁面的那部分流体来说,导
热系数更是起着关键的作用
❖ 紧贴固体壁面的流体相对于壁面来说是静止的 ❖ 显然,导热系数越大,对流换热过程越强烈
❖ 仍以水和空气作比较,常温下水的导热系数比 空气高大约二十几倍
为Re
Re ulc ulc
❖ 确定流态的实验(雷诺试验)
❖ 层流—流体只沿着与流道轴心平行的流线流动 ,或者说在轴线或沿表面方向上作规则的缓慢 分层运动,仅有非常微弱的横向(指和流速垂 直的方向)混合
❖ 湍流—流线处于不规则的状态,除了存在纵向 (流动方向)速度外,在流动截面上也存在横 向速度。流体内部存在强烈的涡旋运动,处于 充分的混合算
❖ 热对流——流体(气体或液体)中温度不同各 部分发生相互混合的宏观运动引起的热量传递 现象,以流体整体作为研究对象
❖ 热对流的机理 ❖ ——(1)流体分子间微观的导热作用 ❖ ——(2)流体微团间宏观的对流作用
❖ 对流传热——相对运动的流体与其温度不同的 壁面接触时,流体与壁面之间的热量传递过程
❖ 粘度越大的流体,分子间的约束力就越强,相同流速 下越不容易发展成湍流状态
❖ 高粘度的油类较多地处于层流状态,表面传热系数一 般比较小
第5章 对流传热理论与计算-5-实验关联式与自然对流

39
六 计算中需要注意的问题
3 注意的问题
(1)判断问题的性质
这是正确求解对流传热问题的关键。流体有无发生相 变?是自然对流还是强制对流?内部流动还是外部流动? 流态是层流还是湍流?
(2)选择正确的实验关联式
切忌张冠李戴,特别注意公式的适用范围,切不可随
意外推
40
六 计算中需要注意的问题
f w
0.14
2
33
(2) Hausen公式
若 Ref Prf
L /d
10时
Nuf
3.66
1
0.0668
0.04
Ref dL
Prf d L Ref Prf
2
3
可用于热入口段或混合段的层流对流传热
34
四 过渡区强迫对流传热的计算
过渡区:难以找到既简便又精确的计算公式
气体被加热时
气体被冷却时
c t
T T 0.55 fw
ct 1
对液体
m
c t
f w
m 0.11 液体受热时
m 0.25
液体被冷却时
24
引入修正系数ct来考虑不均匀物性场对换热的影响
Nu f
0.023
Ref0.8
Prfn
c t
气体被加热时
气体被冷却时
5.5 管内强迫对流传热的实验关联式
说明:
(1)管槽的含义:流动截面是圆形、椭圆形、正 方形、矩形、三角形等
(2)本节内容的重要性: ——指导工程计算的基础、给出的关联式是工程计算 的依据,必须掌握 ——考试的必考内容
六 计算中需要注意的问题
3 注意的问题
(1)判断问题的性质
这是正确求解对流传热问题的关键。流体有无发生相 变?是自然对流还是强制对流?内部流动还是外部流动? 流态是层流还是湍流?
(2)选择正确的实验关联式
切忌张冠李戴,特别注意公式的适用范围,切不可随
意外推
40
六 计算中需要注意的问题
f w
0.14
2
33
(2) Hausen公式
若 Ref Prf
L /d
10时
Nuf
3.66
1
0.0668
0.04
Ref dL
Prf d L Ref Prf
2
3
可用于热入口段或混合段的层流对流传热
34
四 过渡区强迫对流传热的计算
过渡区:难以找到既简便又精确的计算公式
气体被加热时
气体被冷却时
c t
T T 0.55 fw
ct 1
对液体
m
c t
f w
m 0.11 液体受热时
m 0.25
液体被冷却时
24
引入修正系数ct来考虑不均匀物性场对换热的影响
Nu f
0.023
Ref0.8
Prfn
c t
气体被加热时
气体被冷却时
5.5 管内强迫对流传热的实验关联式
说明:
(1)管槽的含义:流动截面是圆形、椭圆形、正 方形、矩形、三角形等
(2)本节内容的重要性: ——指导工程计算的基础、给出的关联式是工程计算 的依据,必须掌握 ——考试的必考内容
《传热学》第5章_对流传热的理论基础分析

动量守恒定律
能量守恒定律
t t t 2t 2t u v 2 2 x y c p x y
12
第5章 对流传热的理论基础
2. 定解条件 (1)规定边界上流体的温度分布(第一类边界条件)
(2)给定边界上加热或冷却流体的热流密度(第二类边界条件)
1
第5章 对流传热的理论基础
5.1 对流传热概说
5.1.1 对流传热的影响因素
影响流动的因素和影响流体中热量传递的因素包括:
1. 流体流动的成因:强制对流or自然对流 2. 流体有无相变:流体显热or相变热
3. 流体的流动状态:层流or湍流,后者较大
4. 换热表面的几何因素:形状、大小、相对位置、换热表面状态 5. 流体的物理性质:密度、粘度、导热系数等等
(2) 稳态的对流问题,非稳态项消失,公式(5-6a)可以改写为:
2t 2t 对流项为速度矢量与温度梯度的点积 c p U gradt x 2 y 2 (3) 如果流体中有内热源,那么直接在(5-6)右端添加内热源项:
2 2 2 u v u v x, y 2 y y x x
第5章 对流传热的理论基础
复习:
对流传热:流体经过固体表面时流体与固体间的热量交换。
对流传热的表达形式——牛顿冷却公式:
Ahtm
t m 是流体与固体表面间的平均温差,总取正值。
关键点:表面传热系数h的定义式,没有揭示表面传热系数与影响它的 各物理量之间的内在联系。 主要内容:(1) 对流传热过程的物理本质 (2) 对流传热的数学描述方法 (3) 分析解的应用 关键点:(1) 掌握各种数学表达式所反映的物理意义 (2) 理解对流传热过程的物理本质
传热学-第五章1-2

假设边界层内的速度分布和温度分布,解积分方程 c)数值解法:近年来发展迅速 可求解很复杂问题:三维、紊流、变物性、超音速 (2)动量传递和热量传递的类比法 利用湍流时动量传递和热量传递的类似规律,由湍流 时的局部表面摩擦系数推知局部表面传热系数 (3)实验法 用相似理论指导
五、
对流换热过程的单值性条件
c [J (kg C) ]
[N s m2 ]
[1 K ]
运动粘度 [m 2 s]
1 v 1 v T p T p
h (流体内部和流体与壁 面间导热热阻小)
、c h (单位体积流体能携带更多能量)
流动引起的对流相项 非稳态项
导热引起的扩散项
1)如u=0、v=0上式即为二维导热微分方程。 2)如控制体内有内热源,在其右端加上
1 ( x, y) c
3)由能量方程说明,运动的流体除了依靠流体的 宏观位移传递热量,还依靠导热传递热量。
归纳对流换热微分方程组:(常物性、无内热源、 二维、不可压缩牛顿流体)
前面4个方程求出温度场之后,可以利用牛顿冷 却微分方程: t
hx t y w, x
计算当地对流换热系数 hx
四、表面传热系数的确定方法 (1)微分方程式的数学解法 a)精确解法(分析解):根据边界层理论,得到 边界层微分方程组 常微分方程 求解
b)近似积分法:
单值性条件:能单值地反映对流换热过程特点的条件 完整数学描述:对流换热微分方程组 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界 (1) 几何条件 说明对流换热过程中的几何形状和大小 平板、圆管;竖直圆管、水平圆管;长度、 直径等 (2) 物理条件 说明对流换热过程的物理特征
传热学第五章对流换热

1.流动边界层(Velocity boundary layer )
如果流体为没有粘性流体,流体流过平板时,流速在截 面上一直保持不变。 如果流体为粘性流体,情况会如何呢?我们用一测速仪 来测量壁面附近的速度分布。测量发现在法向方向上, 即y方向上,壁面上速度为零,随着y方向的增加,流速 急剧增加,到达一薄层后,流速接近或等于来流速度, 德国科学家普朗特L.Prandtl研究了这一现象,并且在 1904年第一次提出了边界层的、分类 三、对流换热的机理 四、影响因素 五、研究方法 六、h的物理意义
一.定义
流体流过与其温度不同的固体表面时所发生的热量交换称为 对流换热。 对流换热与热对流不同, 既有热对流,也有导热; 不是基本传热方式。 对流换热遵循牛顿冷却定律:
qw tw
x
y
t∞
u∞
图5-1 对流换热过程示意
圆管内强制对流换热 其它形式截面管道内的对流换热 外掠平板的对流换热 外掠单根圆管的对流换热 外掠圆管管束的对流换热 外掠其它截面形状柱体的对流换热 射流冲击换热
外部流动
对 流 换 热
有相变
自然对流(Free convection) 混合对流 沸腾换热 凝结换热
大空间自然对流 有限空间自然对流
大容器沸腾 管内沸腾 管外凝结 管内凝结
λ ∂t 换热微分方程(描写h的本质,hx = − ∆t ( ∂y ) y =0 dA) 连续性方程(描写流体流动状态,即质量守恒) 动量微分方程(描写流动状态,即动量守恒) 能量微分方程(描写流体中温度场分布)
对流换热微分方程组 先作假设: (1)仅考虑二维问题; (2)流体为不可压缩的牛顿流体,稳定流动; (3)常物性,无内热源; (4)忽略由粘性摩擦而产生的耗散热。 以二维坐标系中的微元体为分析对象,根据热力学第一定 律,对于这样一个开口系统,有:
第5章对流传热的理论基础资料

5.3.1 流动边界层(Velocity boundary layer)及边界层动量方 程 1.流动边界层及其厚度的定义
由于粘性作用,流体流速在靠近壁面处随离壁面的距离的缩短而逐渐 降低;在贴壁处被滞止,处于无滑移状态。
从 y = 0、u = 0 开始,u 随着 y 方向离壁面距离的增加而迅速增ห้องสมุดไป่ตู้大;经过厚度为 的薄层,u 接近主流速度 u
体物性为常数、无内热源;(4)粘性耗散产生的耗散热(高速气
体的流动除外)可以忽略不计。
2.微元体能量收支平衡的分析
二维、常物性、无内热源的能量微分方程:
c
p
(
t
u
t x
v t ) y
( 2t
x 2
+ 2t ) y 2
扩散项:导热引起的扩散作用
非稳态项:控制 对流项:流体流进与流出控制
容积中,流体温 容积净带走的热量
第5章 对流传热的理论基础
5.1 对流传热概说 5.2 对流传热问题的数学描写 5.3 边界层型对流传热问题的数学描写 5.4 流体外掠平板传热层流分析解及比拟理论
第5章 对流传热的理论基础
1
5.1.1 对流传热的影响因素 对流换热是流体的导热和对流两种基本传热方式共同作用的结果。
其影响因素主要有以下五个方面:(1)流体流动的起因; (2)流体有无相 变;(3)流体的 流动状态; (4)换热表面的几何因素; (5)流体的热物理性质。
那么,如何从流体中的温度分布来进一步得到表面传热系数呢? 表面传热系数h与流体温度场间的关系:
第5章 对流传热的理论基础
4
当粘性流体在壁面上流动时,由于粘性的作用,在靠近壁面的地方 流速逐渐减小,而在贴壁处流体将被滞止而处于无滑移状态。
由于粘性作用,流体流速在靠近壁面处随离壁面的距离的缩短而逐渐 降低;在贴壁处被滞止,处于无滑移状态。
从 y = 0、u = 0 开始,u 随着 y 方向离壁面距离的增加而迅速增ห้องสมุดไป่ตู้大;经过厚度为 的薄层,u 接近主流速度 u
体物性为常数、无内热源;(4)粘性耗散产生的耗散热(高速气
体的流动除外)可以忽略不计。
2.微元体能量收支平衡的分析
二维、常物性、无内热源的能量微分方程:
c
p
(
t
u
t x
v t ) y
( 2t
x 2
+ 2t ) y 2
扩散项:导热引起的扩散作用
非稳态项:控制 对流项:流体流进与流出控制
容积中,流体温 容积净带走的热量
第5章 对流传热的理论基础
5.1 对流传热概说 5.2 对流传热问题的数学描写 5.3 边界层型对流传热问题的数学描写 5.4 流体外掠平板传热层流分析解及比拟理论
第5章 对流传热的理论基础
1
5.1.1 对流传热的影响因素 对流换热是流体的导热和对流两种基本传热方式共同作用的结果。
其影响因素主要有以下五个方面:(1)流体流动的起因; (2)流体有无相 变;(3)流体的 流动状态; (4)换热表面的几何因素; (5)流体的热物理性质。
那么,如何从流体中的温度分布来进一步得到表面传热系数呢? 表面传热系数h与流体温度场间的关系:
第5章 对流传热的理论基础
4
当粘性流体在壁面上流动时,由于粘性的作用,在靠近壁面的地方 流速逐渐减小,而在贴壁处流体将被滞止而处于无滑移状态。
传热学 第五章 对流原理.

层流边界层 紊流核心区
过渡区 紊流边界层 层流底层 主流区 速度边界层厚度 临界距离
层流
过渡流
湍流
u
y
x
xc
层流底层 缓冲层
根据流体力学知识,层流边界层厚度 xv 5x 5x 5 vf vf x Re x
在层流边界层内的速度分布线为抛物线型; 在紊流边界层内,层流底层部分的速度 分布较陡,接近于直线,而在底层以外 的区域,由于流体微团的紊流运动,动 量传递被强化了,速度变化趋于平缓。
如果流体的流动是由于流体冷热部分的密度不同 引起的浮升力造成的,则称为自然对流。暖气 片的散热,蒸汽或其他热流体输送管道的热量 损失,都与这类换热有关。 一般来讲:强迫对流 换热优于自然对流。
二、 在分析对流换热时,还应分清流体的流态。 流体力学告诉我们,流体受迫在流道内流 动时可以有两种不同性质的流态。流体分 层地平行于流道的壁面流动,呈现层流状 态。但当流动状态到超过某一临界值时, 流体的流动出现了旋涡,而且在不断地发 展和扩散,引起不规则的脉动,使流动呈 现紊流状态。
α =q/(tf-tw) W
对流换热系数 α表征着对流换热的强弱 。
在数值上,它等于流体和壁面之间的温度 差为 1℃时,通过对流换热交换的热流密 度。单位为W/(m2·℃)。 对流换热量以及相应的换热系数的大小,将 更多地取决于流体的运动性质和情况。
一、速度边界层
流体力学指出,具有粘性且能湿润固 体壁面的流体,流过壁面会产生粘性力。 根据牛顿粘性(内摩擦)定律,流体粘性 力 τ 与垂直于运动方程速度梯度 (dv/dy ) 成正比,即: τ=μ(dv/dy) N/m2 (5-2) 式中,μ 称为流体的动力粘度,单位为Pa· s 或kg/(m· s)。
传热学第五章_对流换热原理-1

Velocity = v Velocity = 0
Velocity Temperature
Boundary Boundary
Layer
Layer
HOT SURFACE, TEMP = TH
3. 热边界层厚度δt和流动边界层厚度δ的区 别与联系
(2) 边界层产生原因:
由于粘性的作用,流体与 壁面之间产生一粘滞力, 粘滞力使得靠近壁面处的 速度逐渐下降,最后使壁 面上的流体速度降为零, 流体质点在壁面上产生一 薄层。随着流体的流动, 粘滞力向内传递,形成的 薄层又阻碍邻近流体层中 微粒运动的作用,依此类 推,形成的薄层又阻碍邻 近流体层微粒运动,到一 定程度,粘滞力不再起作 用。
➢ 如果流体为粘性流体,情况会如何呢?我们用一测速仪来 测量壁面附近的速度分布。测量发现在法向方向上,即y 方向上,壁面上速度为零,随着y方向的增加,流速急剧 增加,到达一薄层后,流速接近或等于来流速度,普朗特 研究了这一现象,并且在1904年第一次提出了边界层的概 念。
普朗特在仔细观察了粘性流体流过固体表面的特性后提出了 突破性的见解。他认为,粘滞性起作用的区域仅仅局限在 靠近壁面的薄层内。在此薄层以外,由于速度梯度很小粘 滞性所造成的切应力可以略而不计,于是该区域中的流动 可以作为理想流体的无旋流动。这种在固体表面附近流体 速度发生剧烈变化的薄层称为流动边界层(又称速度边界 层).图5—5示出了产生流动边界层的两种常见情形。如 图5—5a所示,从y=o处u=0开始,流体的速度随着离开 壁面距离y的增加而急剧增大,经过一个薄层后u增长到接 近主流速度。这个薄层即为流动边界层,其厚度视规定的 接近主流速度程度的不同而不同。通常规定达到主流速度 的99%处的距离y为流动边界层的厚度,记为δ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ ▲介质类型的影响 ❖ 工程中常见的气液两相流动的对流传热过程非
3 换热表面的形状、大小和位置
❖ 换热面的情况对换热强度也有不容忽视的影响 。
❖ 分析对流传热问题首先必须先区分对流换热问 题在几何特征方面的类型
❖ 分清是内部流动还是外部流动换热问题,这两 者在速度场、温度场以及换热的特征方面均有 相当显著的差异
❖ 内部流动:流体的流动是受流动空间的限制,如 管内、不规则通道内
❖ (2)导热系数 ❖ 对流换热过程中也包含有流体导热的作用 ❖ 流体导热系数的大小会直接影响流体内部的热
量传递过程和温度分布状态 ❖ 特别是对紧贴固体壁面的那部分流体来说,导
热系数更是起着关键的作用
❖ 紧贴固体壁面的流体相对于壁面来说是静止的 ❖ 显然,导热系数越大,对流换热过程越强烈
❖ 仍以水和空气作比较,常温下水的导热系数比 空气高大约二十几倍
❖ 粘度越大的流体,分子间的约束力就越强,相同流速 下越不容易发展成湍流状态
❖ 高粘度的油类较多地处于层流状态,表面传热系数一 般比较小
(4)体积膨胀系数
V
1 v v T
p
1
T
p
❖ 式中,v为流体的比容,密度的倒数 ❖ 正是由于流体的密度随温度的变化才导致了自
然对流现象的发生 ❖ 体积膨胀系数主要影响自然对流传热 ❖ 与水相比,空气更容易发生自然对流
❖ 外部流动:流体的流动不受空间的限制,外掠平 板、圆管和管束
❖ 自然对流传热中:几何布置对流动传热亦有决 定性影响
❖ 如图所示的水平壁面,热面朝上时散热的流动 与热面朝下散热的流动就截然不同
4 其它因素 ❖ ▲流体相变的影响 ❖ ——无相变对流换热:热量交换依靠流体显热
的变化而实现的,流体得到或失去热量温度必 然要发生变化 ❖ ——有相变对流传热:流体相变热(潜热)的 释放或吸收起主要作用,汽化潜热要比比热容 大得多,流体温度不发生变化 ❖ 同时,相变时对流体的扰动也要剧烈的多,如 沸腾时的气泡。显然,有无相变的换热规律应 当有所不同
热对流中起着举足轻重的作用 ❖ 物理意义-单位体积流体携带并转移热量的能
力大小 ❖ 体积热容越大,表明单位体积流体携带并转移
热量的能力越强
❖ 水和空气冷却能力的对比 ❖ ——常温下:水的体积热容量约等于4175kJ
/(m3·℃),空气仅为1.21 kJ/(m3·℃),两者 差数千倍! ❖ ——一般用水作为冷却介质
hA thA twtf
❖ 表面传热系数h与导热系数λ不同,它不是一个 物性参数,而是一个过程量
❖ ——对流传热的类型不同、流体的种类、温度 不同、流速不同、壁面的形状和温度不同,表 面传热系数都是不同的
hA thA twtf
❖ 对流传热过程传热量的计算是非常简单的,但 确定h却不是一件容易的事
机械功,使管道中流体的动能和静压力提高, 从而获得宏观速度。这种流动称为强迫对流( forced convection) ❖ 又称为强制对流、受迫对流
❖ 二是由于流体中存在温度差,由此产生密度 差异从而导致浮升力引起流体的运动,称为 自然对流(natural convection)
❖ 流动成因不同,流体的速度不同,对流的剧 烈程度不同
❖ 热对流的机理 ❖ ——(1)流体分子间微观的导热作用 ❖ ——(2)流体微团间宏观的对流作用
❖ 对流传热——相对运动的流体与其温度不同的 壁面接触时,流体与壁面之间的热量传递过程
❖ 三个要素:流动着的流体、固体壁面、温差 ❖ 对流传热的计算公式为牛顿冷却定律
hA thA twtf
h A th A tf tw
第5章_对流传热的理论基础与工程计 算
❖ 作业: ❖ 习题5-1、5-5、5-8; ❖ 5-10、5-14、5-16(强迫对流) ❖ 5-21、5-22(自然对流)
§5-1 概述
❖ 一 对流传热的概念与计算
❖ 热对流——流体(气体或液体)中温度不同各 部分发生相互混合的宏观运动引起的热量传递 现象,以流体整体作为研究对象
❖ 注意! ❖ ——不能将流动状态和流动的起因简单地一一
对应 ❖ 事实上,层流和湍流既可能发生在强迫流动中
,也可能发生在自然对流中
❖ 传热特点 ❖ 层流-热量传递主要依靠分子扩散作用 ❖ 湍流—热量传递除了导热外,更多地依靠热对
流作用
h湍流 h层流
2 流体的热物理性质 ❖ (1)密度和比热容 ❖ 密度和比热容的乘积称为流体的体积热容,在
❖ 形式简单的牛顿冷却定律仅可作为表面传热系 数的定义,它把影响对流传热过程的一切复杂 因素归结到对流换热系数上
❖ 本章的目标——用理论或实验的方法具体给出 各种场合下h的计算关系式(经验半经验公式)
二 影响对流传热过程的因素
❖ 1 流动的影响—流动起因和流态 ❖ 使流体产生运动的原因: ❖ 一是通过外界施加强迫力,泵、风机对流体作
为Re
Re ulc ulc
❖ 确定流态的实验(雷诺试验)
❖ 层流—流体只沿着与流道轴心平行的流线流动 ,或者说在轴线或沿表面方向上作规则的缓慢 分层运动,仅有非常微弱的横向(指和流速垂 直的方向)混合
❖ 湍流—流线处于不规则的状态,除了存在纵向 (流动方向)速度外,在流动截面上也存在横 向速度。流体内部存在强烈的涡旋运动,处于 充分的混合状态
❖ 20℃ :水-0.599W/(m.K);空气- 0.0259W/(m.K)
❖ 从体积热容和导热系数二者来看:相同条件下 水的冷却能力必定大大强于空气
❖ 生活和工业中通常采用水作为冷却介质,夏天 游泳、冲凉,比较在水中和空来自中的冷热感觉❖ (3)粘度
❖ 流体的粘度是通过流态影响对流换热的强弱
R e ulc
❖ 流速越高,流体的掺混就越强烈,对流传热就 越强
❖ 强迫对流时的速度一般高于自然对流,强迫对 流传热的表面传热系数也多半高于后者
h强制 h自然
❖ 夏天,有风吹着比没风时感觉更凉快。 ❖ 风扇的转速
❖ 流态-流动的状态 ❖ 层流(laminar flow) ❖ 湍(紊)流(turbulent flow) ❖ 过渡流(transition region) ❖ 区分流体处于何种流态的特征数为雷诺数,记