指对函数幂函数高考题-题型

合集下载

幂、指、对数的大小比较-高考数学复习

幂、指、对数的大小比较-高考数学复习

B.a<c<b
C.b<a<c
D.c<b<a
lg5
lg7
lg5lg9-lg2 7
解析 因为 log75-log97=lg7 − lg9 = lg7lg9 ,lg 7lg 9>0,
lg5+lg9 2 lg45 2 lg49 2
又因为 lg 5lg 9<( 2 ) =( 2 ) <( 2 ) =lg27,所以 log75-log97<0,即
1
3
例 5(1)(2024·山西晋中模拟)设 a=2 ,b= ,c=3 ,则( A )
A.a<c<b
B.a<b<c
C.b<a<c
D.c<b<a
1
1
1
解析 依题意 ln a=2ln 2,ln b=eln e,ln c=3ln 3,
1
1
1
因此只需比较 ln 2, ln e, ln 3 的大小.
2
e
3ln==源自32 ∈(5,6),n=b所以 n>m>p,故选 C.
5 2 25
5
=( ) = =6.25,p=logab=log2
2
4
2
a
∈(1,2),
(2)(2024·云南昆明模拟)已知实数a,b,c满足ln(ln b)=a=ln c,则a,b,c的大小关
系为( C )
A.a>b>c
B.c>b>a
C.b>c>a
为( C )
A.a<b<c
B.a<c<b
C.c<b<a
D.b<c<a

2023高考一轮热题---幂指对三角函数值比较大小归纳

2023高考一轮热题---幂指对三角函数值比较大小归纳

02 幂指对三角函数值比较大小归纳【题型一】 临界值比较:0、1临界【典例分析】设0.2515log 4,log 4,0.5a b c −===,则,,a b c 的大小关系是( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【提分秘籍】基本规律因为幂指对函数的特殊性,往往比较大小,可以借助于临界值0与1(或者-1)比较大小。

【变式演练】1.已知120212022202212022,log 2021,log 2021a b c ===,则a ,b ,c 的大小关系为( ) A .a >b >c B .b >a >c C .c >a >b D .a >c >b2.若0.3220.32,log 0.3,0.3,log 2a b c d ====,则a ,b ,c ,d 的大小关系为( ) A .a <b <c <d B .d <b <c <a C .b <d <c <a D .d <c <b <a3.9.01.17.01.1,9.0log ,8.0log ===c b a 的大小关系是 ( ) A. c a b >> B. a b c >> C. b c a >> D.c b a >>【题型二】 临界值比较:选取适当的常数临界值(难点)【典例分析】已知3422,log e a b c ===,则a ,b ,c 的大小关系为( )A .a c b >>B .a b c >>C .b a c >>D .b c a >>【提分秘籍】基本规律寻找中间变量是属于难点,可以适当的总结积累规律 1.估算要比较大小的两个值所在的大致区间2.可以对区间使用二分法(或者利用指对转化)寻找合适的中间值【变式演练】1.已知 6ln a π=,3ln 2b π=,4ln1.5c π=,则a b c 、、大小关系为( ) A .c b a << B .c a b << C .b a c << D .b c a <<2.已知0.350.11log 2,,0.7log 0.7a b c ===,则a ,b ,c 的大小关系为( ) A .a c b << B .a b c << C .b c a << D .c a b <<3.若0.60.590.5,0.6,log 3a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c a b << C .c b a << D .b c a <<【题型三】 差比法与商比法【典例分析】1C .b c a >>D .c a b >>【提分秘籍】基本规律1. 一般情况下,作差或者做商,可处理底数不一样的的对数比大小2. 作差或者做商的难点在于后续变形处理,注意此处的常见技巧和方法解【变式演练】1.已知0.40.8a −=,5log 3b =,8log 5c =,则( ) A .a b c << B .b c a << C .c b a << D .a c b <<2.已知324log 0.3log 3.4log 3.615,5,5a b c ⎛⎫=== ⎪⎝⎭,则 ( ) A .a b c >> B .b a c >>C .a c b >>D .c a b >>3.已知3610a b ==,则2,ab ,a b +的大小关系是( ) A .2ab a b <+< B .2ab a b <<+ C .2a b ab <+< D .2ab a b <<+【题型四】 利用对数运算分离常数比大小【典例分析】已知m =log 4ππ,n =log 4e e ,p =e 13−,则m ,n ,p 的大小关系是(其中e 为自然对数的底数)( ) A .p <n <m B .m <n <pC .n <m <pD .n <p <m【提分秘籍】基本规律这是对数值所独有的技巧,类似于分式型的分离常数,借助此法可以把较复杂的数据,转化为某一单调区间,或者某种具有单调性的形式,以利于比较大小【变式演练】1.2log 3、8log 12、lg15的大小关系为( ) A .28log 3log 12lg15<< B .82log 12lg15log 3<< C .28log 3log 12lg15>> D .82log 12log 3lg15<<2.已知b 0,b 1a a >>=,若()21,log ,2a b x y a b z a b ==+=+,则()log 3x x ,()log 3y y ,()log 3z z 的大小关系为( )A .()()()log 3log 3log 3x y z x y z >>B .()()()log 3log 3log 3y x z y x z >>C .()()()log 3log 3log 3x z y x z y >>D .()()()log 3log 3log 3y z x y z x >>log 15a =log 40b =c【题型五】 构造函数:lnx/x 型函数【典例分析】设24ln 4e a −=,1eb =,ln 22c =,则a ,b ,c 的大小关系为( )A .a c b <<B .c a b <<C .a b c <<D .b a c <<【提分秘籍】基本规律学习和积累“构造函数比大小”,要先从此处入手,通过这个函数,学习观察,归纳,总结“同构”规律,还要进一步总结“异构”规律,为后续积累更复杂的“构造函数”能力做训练。

高中数学考点6指数函数、对数函数、幂函数(含近年年高考试题)新人教A版[1]

高中数学考点6指数函数、对数函数、幂函数(含近年年高考试题)新人教A版[1]

考点6 指数函数、对数函数、幂函数一、选择题1.(2016·全国卷Ⅰ高考理科·T8)若a〉b〉1,0〈c〈1,则()A。

a c〈b c B。

ab c<ba cC.alog b c〈blog a cD.log a c〈log b c【解析】选C。

对A:由于0<c<1,所以函数y=x c在R上单调递增,因此a>b〉1⇔a c>b c,A错误.对B:由于—1〈c-1<0,所以函数y= 1c x-在(1,+∞)上单调递减,所以a>b>1⇔1c a-<1c b-⇔ba c〈ab c,B错误。

对C:要比较alog b c和blog a c,只需比较alnclnb 和blnclna,只需比较lncblnb和lncalna,只需比较blnb和alna,构造函数f(x)=xlnx(x>1),则f'(x)=lnx+1>1>0,f(x)在(1,+∞)上单调递增,因此f(a)〉f(b)>0⇔alna〉blnb>0⇔1alna <1 blnb.又由0<c〈1得lnc<0,所以lncalna >lncblnb⇔blog a c>alog b c,C正确。

对D:要比较log a c和log b c,只需比较lnclna 和lnclnb,而函数y=lnx在(1,+∞)上单调递增,故a>b〉1⇔lna>lnb>0⇔1lna <1lnb。

又由0〈c<1得lnc<0,所以lnclna 〉lnclnb⇔log a c>log b c,D错误.2。

(2016·全国卷Ⅰ高考文科·T8)若a>b 〉0,0<c 〈1,则 ( ) A.log a c<log b c B.log c a 〈log c bC 。

a c<b cD.c a>c b【解析】选B 。

专题 幂、指数、对数函数(七大题型)(解析版)

专题  幂、指数、对数函数(七大题型)(解析版)

专题幂、指数、对数函数(七大题型)目录:01幂函数的相关概念及图像02幂函数的性质及应用03指数、对数式的运算04指数、对数函数的图像对比分析05比较函数值或参数值的大小06指数、对数(函数)的实际应用07指数、对数函数的图像与性质综合及应用01幂函数的相关概念及图像1(2024高三·全国·专题练习)若幂函数y=f x 的图象经过点2,2,则f16=()A.2B.2C.4D.12【答案】C【分析】利用已知条件求得幂函数解析式,然后代入求解即可.【解析】设幂函数y=f x =xα,因为f x 的图象经过点2,2,所以2α=2,解得α=1 2,所以f x =x 12,所以f16=1612=4.故选:C2(2024高三·全国·专题练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数?(2)写出每个函数的定义域、值域;(3)写出每个函数的单调区间;(4)从图中你发现了什么?【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】根据已知函数图象,数形结合即可求得结果.【解析】(1)数形结合可知,y =x 2的图象关于y 轴对称,故其为偶函数;y =x ,y =x 3,y =1x的图象关于原点对称,故都为奇函数.(2)数形结合可知:y =x 的定义域是0,+∞ ,值域为0,+∞ ;y =x ,y =x 3的定义域都是R ,值域也是R ;y =1x的定义域为-∞,0 ∪0,+∞ ,值域也为-∞,0 ∪0,+∞ ;y =x 2的定义域为R ,值域为0,+∞ .(3)数形结合可知:y =x 的单调增区间是:0,+∞ ,无单调减区间;y =x ,y =x 3的单调增区间是:R ,无单调减区间;y =1x的单调减区间是:-∞,0 和0,+∞ ,无单调增区间;y =x 2的单调减区间是-∞,0 ,单调增区间是0,+∞ .(4)数形结合可知:幂函数均恒过1,1 点;幂函数在第一象限一定有图象,在第四象限一定没有图象.对幂函数y =x α,当α>0,其一定在0,+∞ 是单调增函数;当α<0,在0,+∞ 是单调减函数.3(2022高一上·全国·专题练习)如图所示是函数y =x mn(m 、n ∈N *且互质)的图象,则()A.m ,n 是奇数且mn<1 B.m 是偶数,n 是奇数,且m n<1C.m 是偶数,n 是奇数,且mn>1 D.m ,n 是偶数,且mn>1【答案】B【分析】根据图象得到函数的奇偶性及0,+∞ 上单调递增,结合m 、n ∈N *且互质,从而得到答案.【解析】由图象可看出y =x mn为偶函数,且在0,+∞ 上单调递增,故m n ∈0,1 且m 为偶数,又m 、n ∈N *且互质,故n 是奇数.故选:B02幂函数的性质及应用4(2023高三上·江苏徐州·学业考试)已知幂函数f x =m 2+2m -2 x m 在0,+∞ 上单调递减,则实数m 的值为()A.-3 B.-1C.3D.1【答案】A【分析】根据幂函数的定义,求得m =-3或m =1,结合幂函数的单调性,即可求解.【解析】由函数f x =m 2+2m -2 x m 为幂函数,可得m 2+2m -2=1,即m 2+2m -3=0,解得m =-3或m =1,当m =-3时,函数f x =x -3在0,+∞ 上单调递减,符合题意;当m =1时,函数f x =x 在0,+∞ 上单调递增,不符合题意.故选:A .5(23-24高三上·安徽·阶段练习)已知幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,且函数g x =f x -2a -6 x 在区间1,3 上单调递增,则实数a 的取值范围是()A.-∞,4B.-∞,4C.6,+∞D.-∞,4 ∪6,+∞【答案】B【分析】根据幂函数的定义与奇偶性求出m 的值,可得出函数f x 的解析式,再利用二次函数的单调性可得出关于实数a 的不等式,即可解得实数a 的取值范围.【解析】因为幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,则m 2-5m +5=1,解得m =1或m =4,当m =1时,f x =x -1,该函数是定义域为x x ≠0 的奇函数,不合乎题意;当m =4时,f x =x 2,该函数是定义域为R 的偶函数,合乎题意.所以,f x =x 2,则g x =x 2-2a -6 x ,其对称轴方程为x =a -3,因为g x 在区间1,3 上单调递增,则a -3≤1,解得a ≤4.故选:B .6(23-24高三上·上海静安·阶段练习)已知a ∈-1,2,12,3,13,若f x =x a为奇函数,且在0,+∞ 上单调递增,则实数a 的取值个数为()A.1个 B.2个C.3个D.4个【答案】B【分析】a =-1时,不满足单调性,a =2或a =12时,不满足奇偶性,当a =3或a =13时,满足要求,得到答案.【解析】当a =-1时,f x =x -1在0,+∞ 上单调递减,不合要求,当a =2时,f -x =-x 2=x 2=f x ,故f x =x 2为偶函数,不合要求,当a =12时,f x =x 12的定义域为0,+∞ ,不是奇函数,不合要求,当a =3时,f -x =-x 3=-x 3=-f x ,f x =x 3为奇函数,且f x =x 3在0,+∞ 上单调递增,满足要求,当a =13时,f -x =-x 13=-x 13=-f x ,故f x =x 13为奇函数,且f x =x 13在0,+∞ 上单调递增,满足要求.故选:B7(22-23高三下·上海·阶段练习)已知函数f x =x 13,则关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为.【答案】-13,1 【分析】利用幂函数的性质及函数的奇偶性和单调性即可求解.【解析】由题意可知,f x 的定义域为-∞,+∞ ,所以f -x =-x 13=-x 13=-f x ,所以函数f x 是奇函数,由幂函数的性质知,函数f x =x 13在函数-∞,+∞ 上单调递增,由f t 2-2t +f 2t 2-1 <0,得f t 2-2t <-f 2t 2-1 ,即f t 2-2t <f 1-2t 2 ,所以t 2-2t <1-2t 2,即3t 2-2t -1<0,解得-13<t <1,所以关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为-13,1 .故答案为:-13,1 .8(23-24高三上·河北邢台·期中)已知函数f x =m 2-m -1 x m 2+m -3是幂函数,且在0,+∞ 上单调递减,若a ,b ∈R ,且a <0<b ,a <b ,则f a +f b 的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】B【分析】由幂函数的定义与性质求得函数解析式,确定其是奇函数,然后利用单调性与奇偶性可判断.【解析】由m 2-m -1=1得m =2或m =-1,m =2时,f (x )=x 3在R 上是增函数,不合题意,m =-1时,f (x )=x -3,在(0,+∞)上是减函数,满足题意,所以f (x )=x -3,a <0<b ,a <b ,则b >-a >0,f (-a )>f (b ),f (x )=-x 3是奇函数,因此f (-a )=-f (a ),所以-f (a )>f (b ),即f (a )+f (b )<0,故选:B .9(2023·江苏南京·二模)幂函数f x =x a a ∈R 满足:任意x ∈R 有f -x =f x ,且f -1 <f 2 <2,请写出符合上述条件的一个函数f x =.【答案】x 23(答案不唯一)【分析】取f x =x 23,再验证奇偶性和函数值即可.【解析】取f x =x 23,则定义域为R ,且f -x =-x 23=x 23=f x ,f -1 =1,f 2 =223=34,满足f -1 <f 2 <2.故答案为:x 23.10(2022高三·全国·专题练习)已知函数f (x )=x 2,g (x )=12x-m(1)当x ∈[-1,3]时,求f (x )的值域;(2)若对∀x ∈0,2 ,g (x )≥1成立,求实数m 的取值范围;(3)若对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,求实数m 的取值范围.【答案】(1)[0,9];(2)m ≤-34;(3)m ≥-8.【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求g (x )在0,2 的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围;(3)将问题转化为g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9,从而得出实数m 的取值范围.【解析】(1)当x ∈[-1,3]时,函数f (x )=x 2∈[0,9]∴f (x )的值域0,9(2)对∀x ∈0,2 ,g (x )≥1成立,等价于g (x )在0,2 的最小值大于或等于1.而g (x )在0,2 上单调递减,所以12 2-m ≥1,即m ≤-34(3)对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,等价于g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9由1-m ≤9,∴m ≥-803指数、对数式的运算11(23-24高三上·山东泰安·阶段练习)(1)计算14-124ab -1 30.1-1⋅a 3⋅b -312的值;.(2)log 37+log 73 2-log 949log 73-log 73 2; (3)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e 【答案】(1)85;(2)2;(3)4【分析】根据指数幂运算公式和对数运算公式计算即可.【解析】(1)原式=412⋅4ab -13210⋅a 32b -32=2⋅8a 32b-3210⋅a 32b-32=85;(2)原式=log 37+log 73 2-log 73 2-log 3272×log 37=log 37×log 37+2log 73 -log 37×log 37=log 37×2log 73=2;(3)原式=log 31232+lg5+lg2-log 2232×log 323+2log 23×2-1+ln e12=4+1-3+32+12=4.12(23-24高一上·湖北恩施·期末)(1)计算:lg 12-lg 58+lg12.5-log 89⋅log 278.(2)已知a 12+a -12=3,求a +a -1+2a 2+a -2-2的值.【答案】(1)13;(2)15【分析】(1)根据对数的运算法则和运算性质,即可求解;(2)根据实数指数幂的运算性质,准确运算,即可求解.【解析】(1)由对数的运算公式,可得原式=-lg2-lg5-3lg2 +3lg5-1-23log 32×log 23=13.(2)因为a 12+a -12=3,所以a +a -1+2=9,可得a +a -1=7,所以a 2+a -2+2=49,可得a 2+a -2=47,所以a +a -1+2a 2+a -2-2=7+247-2=15.04指数、对数函数的图像对比分析13(2024·四川·模拟预测)已知函数y =x a ,y =b x ,y =log c x 在同一平面直角坐标系的图象如图所示,则()A.log 12c <b a <sin bB.log 12c <sin b <b aC.sin b <b a <log 12cD.sin b <log 12c <b a【答案】B【分析】根据幂函数,指数与对数函数的性质可得a ,b ,c 的取值范围,进而根据指对数与三角函数的性质判断即可.【解析】因为y =x a 图象过1,1 ,故由图象可得a <0,又y =b x 图象过0,1 ,故由图象可得0<b <1,又y =log c x 图象过1,0 ,故由图象可得c >1.故log 12c <log 121=0,0<sin b <1,b a >b 0=1,故log 12c <sin b <b a .故选:B14(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1a x,y =log a x +12 (a >0,且a ≠1)的图象可能是()A. B.C. D.【答案】D 【解析】略15(2024·陕西·模拟预测)已知函数f x 的部分图象如图所示,则f x 的解析式可能为()A.f x =e x -e -xB.f x =1-2e x+1C.f x =x xD.f x =x ln x 2+2【答案】D【分析】结合指数函数的图象与性质即可判断AB 选项错误,对C 代入x =2判断C 错误,则可得到D 正确.【解析】根据函数f (x )的图象,知f (1)≈1,而对A 选项f 1 =e -e -1>2排除A ;对B 选项f x =1-2e x +1,因为e x +1>1,则2e x +1∈0,2 ,则f x =1-2e x +1∈-1,1 ,但图象中函数值可以大于1,排除B ;根据C 选项的解析式,f (2)=22≈2.8,而根据函数f (x )的图象,知f (2)≈1,排除C . 故选:D .16(23-24高三上·山东潍坊·期中)已知指数函数y =a x ,对数函数y =log b x 的图象如图所示,则下列关系成立的是()A.0<a <b <1B.0<a <1<bC.0<b <1<aD.a <0<1<b【答案】B【分析】根据题意,由指数函数以及对数函数的单调性即可得到a ,b 的范围,从而得到结果.【解析】由图象可得,指数函数y =a x 为减函数,对数函数y =log b x 为增函数,所以0<a <1,b >1,即0<a <1<b .故选:B17(23-24高三上·黑龙江哈尔滨·阶段练习)函数f (x )=x 22x -2-x 的图象大致为()A. B.C. D.【答案】A【分析】利用函数的性质和特值法对不符合题意的选项加以排除,即可得出答案.【解析】因为2x -2-x ≠0,所以x ≠0,定义域为-∞,0 ∪0,+∞ ;因为f (x )=x 22x -2-x ,所以f -x =x 22-x -2x ,故f x =-f -x ,所以f x 为奇函数,排除B ,当x 趋向于正无穷大时,x 2、2x -2-x 均趋向于正无穷大,但随x 变大,2x -2-x 的增速比x 2快,所以f x 趋向于0,排除D ,由f 1 =23,f 12 =24,则f 1 >f 12,排除C .故选:A .05比较函数值或参数值的大小18(2024·全国·模拟预测)已知a =12a,12b=log a b ,a c=log12c ,则实数a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】D【分析】由函数单调性,零点存在性定理及画出函数图象,得到a ,b ,c ∈0,1 ,得到log a b <1=log a a ,求出b>a ,根据单调性得到c =12 a c<12a=a ,从而得到答案.【解析】令f x =12x-x ,其在R 上单调递减,又f 0 =1>0,f 1 =12-1=-12<0,由零点存在性定理得a ∈0,1 ,则y =log a x 在0,+∞ 上单调递减,画出y 1=12x与y =log a x 的函数图象,可以得到b ∈0,1 ,又y 2=a x 在R 上单调递减,画出y 2=a x 与y 3=log 12x 的函数图象,可以看出c∈0,1,因为12b<12 0=1,故log a b<1=log a a,故b>a,因为a,c∈0,1,故a c>a1=a,由a c=log12c得,c=12a c<12 a=a.综上,c<a<b.故选:D.【点睛】指数和对数比较大小的方法有:(1)画出函数图象,数形结合得到大小关系;(2)由函数单调性,可选取适当的“媒介”(通常以“0”或“1”为媒介),分别与要比较的数比较大小,从而间接地得出要比较的数的大小关系;(3)作差(商)比较法是比较两个数值大小的常用方法,即对两值作差(商),看其值与0(1)的关系,从而确定所比两值的大小关系.19(2023·江西赣州·二模)若log3x=log4y=log5z<-1,则()A.3x<4y<5zB.4y<3x<5zC.4y<5z<3xD.5z<4y<3x【答案】D【分析】设log3x=log4y=log5z=m<-1,得到x=3m,y=4m,z=5m,画出图象,数形结合得到答案.【解析】令log3x=log4y=log5z=m<-1,则x=3m,y=4m,z=5m,3x=3m+1,4y=4m+1,5z=5m+1,其中m+1<0,在同一坐标系内画出y=3x,y=4x,y=5x,故5z<4y<3x故选:D20(2024高三下·全国·专题练习)已知函数f x =e x,g x =ln x,正实数a,b,c满足f a =ga ,fb g b =g a ,gc +f g a c=0,则()A.b<a<cB.c<a<bC.a<c<bD.c<b<a【答案】B【分析】由f a =g a 可得0<a <1,结合f b g b =g a 可判断b 的范围,再由g c +f g a c =0可得ln c +a c =0,结合e a =1a 可判断a ,c 大小关系,进而可得答案.【解析】由题得,g x =1x ,由f a =g a ,得e a =1a ,即1a>1,所以0<a <1.由f b g b =g a ,得e b ln b =ln a ,因为ln a <0,e b >0,所以ln b <0,又e b >1,所以ln a =e b ln b <ln b ,所以0<a <b <1.由g c +f g a c =0,得ln c +e ln a c=0,即ln c +a c =0.易知a c >0,所以ln c <0,所以0<c <1,故a <a c .又e a =1a,所以a =-ln a ,所以-ln c =a c >a =-ln a ,所以ln c <ln a ,所以c <a ,所以c <a <b .故选:B .【点睛】思路点睛:比较大小常用方法:(1)同构函数,利用单调性比较;(2)取中间值进行比较;(3)利用基本不等式比较大小;(4)利用作差法比较大小.21(2023·浙江绍兴·二模)已知f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,a =f ln2.04 ,b =f -1.04 ,c =f e 0.04 ,则()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】A【分析】令g x =e x -x -1,利用导数求得g x 在(0,1)单调递增,得到g x >g 0 =0,得到e 0.04>1.04,再由对数函数的性质,得到ln2.04<1.04<e 0.04,再由函数f x 的单调性与奇偶性f ln2.04 <f 1.04 <f e 0.04 ,即可求解.【解析】令g x =e x -x -1,x ∈(0,1),可得g x =e x -1>0,所以g x 在(0,1)单调递增,又由g 0 =0,所以g x >g 0 =0,即g 0.04 >0,可得e 0.04>0.04+1=1.04,又由ln2.04∈(0,1),所以ln2.04<1.04<e 0.04,因为f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,则f x 在(0,+∞)上单调递增,且b =f -1.04 =f (1.04),所以f ln2.04 <f 1.04 <f e 0.04 ,即f ln2.04 <f -1.04 <f e 0.04 ,所以a <b <c .故选:A .06指数、对数(函数)的实际应用22(2024·安徽合肥·二模)常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为T 1,T 2.开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则T 1,T 2满足的关系式为()A.-2+512T1=512T2B.2+512T1=512T2C.-2+log2512T1=log2512T2D.2+log2512T1=log2512T2【答案】B【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【解析】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:1 2512T1,乙的质量为:12 512T2,由题意可得12512T2=14⋅12 512T1=12 2+512T1,所以2+512T1=512T2.故选:B.23(2024·黑龙江哈尔滨·一模)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/mL.如果停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶?( )(结果取整数,参考数据:lg3≈0.48,lg7≈0.85)A.1B.2C.3D.4【答案】D【分析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20,再根据指数函数的性质及对数的运算计算可得.【解析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20即0.7x<1 3 .由于y=0.7x在定义域上单调递减,x>log0.713=lg13lg0.7=lg1-lg3lg7-1=-0.480.85-1=0.480.15=3.2.他至少经过4小时才能驾驶.故选:D.07指数、对数函数的图像与性质综合及应用24(2024·山东聊城·二模)已知函数f x 为R上的偶函数,且当x>0时,f x =log4x-1,则f-223=()A.-23B.-13C.13D.23【答案】A【分析】根据偶函数的定义可得f-22 3=f223 ,结合函数解析式和对数的运算性质即可求解.【解析】因为f(x)为偶函数,所以f(-x)=f(x),则f-22 3=f223 =log4223-1=log22223-1=log2213-1=13-1=-23.故选:A25(2023·江西南昌·三模)设函数f x =a x0<a<1,g x =log b x b>1,若存在实数m满足:①f (m )+g (m )=0;②f (n )-g (n )=0,③|m -n |≤1,则12m -n 的取值范围是()A.-12,-14B.-12,-3-54C.-34,-12D.-3+54,-12【答案】D【分析】由①f (m )+g (m )=0,②f (n )-g (n )=0解出0<m <1,n >1,解出12m -n <-12;结合③转化为线性规划问题解出z >-3+54.【解析】函数f x =a x 0<a <1 ,g x =log b x b >1 ,若存在实数m 满足:①f (m )+g (m )=0;②f (n )-g (n )=0,即a m =-log b m ,且a n =log b n ,则a n -a m =log b mn <0,则0<mn <1,且0<m <1,n >1,所以12m -n <-12,又因为③|m -n |≤1,则0<mn <1m -n ≤1 ,令z =12m -n ,不防设x =m ,y =n ,则转化为线性规划问题,在A 点处z 取最小值.由y =1xy =x +1 解得x =-1+52y =5+12,代入解得z >-3+54.故选:D .26(2022高三·全国·专题练习)已知函数f x =log a ax +9-3a (a >0且a ≠1).(1)若f x 在1,3 上单调递增,求实数a 的取值范围;(2)若f 3 >0且存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,求a 的最小整数值.【答案】(1)1,92 (2)7【分析】(1)设g x =ax +9-3a ,得到g x 在1,3 上是增函数,且g 1 >0,即可求解;(2)由f 3 >0,的得到a >1,把不等式f x 0 >2log a x 0,转化为a >x 0+3,结合题意,即可求解.【解析】(1)解:由函数f x =log a ax +9-3a ,设g x =ax +9-3a ,由a >0且a ≠1,可得函数g x 在1,3 上是增函数,所以a >1,又由函数定义域可得g 1 =9-2a >0,解得a <92,所以实数a 的取值范围是1,92.(2)解:由f 3 =log a 9>0,可得a >1,又由f x 0 >2log a x 0,可得log a ax 0+9-3a >log a x 20,所以ax 0+9-3a >x 20,即a >x 0+3,因为存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,可得a >6,所以实数a 的最小整数值是7.27(23-24高二下·湖南·阶段练习)已知函数f x =x 2+x ,-2≤x ≤14log 12x ,14<x ≤c ,若f (x )的值域是[-2,2],则c 的值为()A.2B.22C.4D.8【答案】C【分析】画出函数图像,由分段函数中定义域的范围分别求出值域的取值范围再结合二次函数和对数运算可得正确结果.【解析】当-2≤x ≤14时,f x =x 2+x =x +12 2-14∈-14,2,因为f x 的值域是-2,2 ,又f x =log 12x 在14,c上单调递减,所以log 12c =-2,∴c =4.故选:C .28(22-23高一上·辽宁本溪·期末)若不等式x -1 2<log a x (a >0,且a ≠1)在x ∈1,2 内恒成立,则实数a 的取值范围为()A.1,2B.1,2C.1,2D.2,2【答案】B【分析】分析出0<a <1时,不成立,当a >1时,画出f x =log a x ,g x =x -1 2的图象,数形结合得到实数a 的取值范围.【解析】若0<a <1,此时x ∈1,2 ,log a x <0,而x -1 2≥0,故x -1 2<log a x 无解;若a >1,此时x ∈1,2 ,log a x >0,而x -1 2≥0,令f x =log a x ,g x =x -1 2,画出两函数图象,如下:故要想x -1 2<log a x 在x ∈1,2 内恒成立,则要log a 2>1,解得:a ∈1,2 .故选:B .29(2022高二下·浙江·学业考试)已知函数f x =3⋅2x +2,对于任意的x 2∈0,1 ,都存在x 1∈0,1 ,使得f x 1 +2f x 2+m =13成立,则实数m 的取值范围为.【答案】log 216,log 213 【分析】双变量问题,转化为取值范围的包含关系,列不等式组求解【解析】∵f x 1 ∈5,8 ∴13-f x 1 2∈52,4,∴f x 2+m =3⋅2x 2+m+2∈3⋅2m +2,3⋅21+m +2 ,由题意得3⋅2m +2≥523⋅2m +1+2≤4⇒2m≥162m +1≤23⇒log 216≤m ≤log 213 故答案为:log 216,log 21330(21-22高三上·湖北·阶段练习)已知函数p (x )=m x -4+1(m >0且m ≠1)经过定点A ,函数-∞,2 且a ≠1)的图象经过点A .(1)求函数y =f (2a -2x )的定义域与值域;(2)若函数g x =f (2x λ)⋅f (x 2)-4在14,4上有两个零点,求λ的取值范围.【答案】(1)定义域为(-∞,2),值域为(-∞,2);(2)[1,+∞)【分析】(1)根据对数函数的性质,求得定点A (4,2),代入函数f x =log a x ,求得a =2,进而求得y =f (2a -2x )=log 2(4-2x ),结合对数函数的性质,求得函数的定义域与值域;(2)由(1)知,化简得到函数g x =2λ(log 2x )2+2log 2x -4,设t =log 2x ,则t ∈[-2,2],转化为h x =2λt 2+2t -4在[-2,2]上有两个零点,结合二次函数的性质,分类讨论,即可求解.【解析】(1)解:令x -4=0,解得x =4,所以p (4)=m 0+1=2,所以函数p (x )过点A (4,2),将点A 的坐标代入函数f x =log a x ,可得log a 4=2,解得a =2,又由函数y =f (2a -2x )=log 2(4-2x ),由4-2x >0,解得x <2,所以函数y =f (2a -2x )的定义域为(-∞,2),又由0<4-2x <4,所以函数y =f (2a -2x )的值域为(-∞,2).(2)解:由(1)知,函数g x =f (2x λ)⋅f (x 2)-4=log 2(2x λ)⋅log 2x 2-4=2λ(log 2x )2+2log 2x -4在14,4上有两个零点,设t =log 2x ,则t ∈[-2,2],因为t 为关于x 的单调递增函数,所以g x 在14,4有两个零点,等价于函数h x =2λt 2+2t -4在[-2,2]上有两个零点,①当λ=0时,由h x =2t -4=0,可得t =2,函数h x 只有一个零点,所以λ=0不合题意;②当λ>0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≥0h 2 =8λ≥0,解得λ≥1;③当λ<0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≤0h 2 =8λ≤0,此时不等式组的解集为空集,综上可得,实数λ的取值范围是[1,+∞).一、单选题1(2024·黑龙江·二模)已知函数y =a 12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则ab =()A.-1 B.-2C.-4D.-9【答案】C【分析】由题意可得a +b =0且b =2,求出a ,即可求解.【解析】因为函数y =f (x )=a 12 x +b 图象过原点,所以a 12+b =0,得a +b =0,又该函数图象无限接近直线y =2,且不与该直线相交,所以b =2,则a =-2,所以ab =-4.故选:C2(2024·上海闵行·二模)已知y =f (x ),x ∈R 为奇函数,当x >0时,f (x )=log 2x -1,则集合{x |f (-x )-f (x )<0}可表示为()A.(2,+∞)B.(-∞,-2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】D【分析】利用函数奇偶性可得不等式f (-x )-f (x )<0等价于f (x )>0,再求出函数解析式,利用对数函数单调性解不等式可得结果.【解析】因为y =f (x )为奇函数,所以f (-x )-f (x )<0等价于-2f (x )<0,即f (x )>0;当x >0时,f (x )=log 2x -1,即f (x )=log 2x -1>0,解得x >2;当x <0时,-x >0,可得f (-x )=-f x =log 2-x -1,所以f x =1-log 2-x ,解不等式f x =1-log 2-x >0,可得-2<x <0,综上可得集合{x |f (-x )-f (x )<0}可表示为(-2,0)∪(2,+∞).故选:D3(2024·北京通州·二模)某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为S =a t +1(a >0,且a ≠1),图象如图所示.则下列结论正确的个数为()①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.A.0B.1C.2D.3【答案】B【分析】由已知可得出S =2t +1,计算出萍蔓延1月至2月份增长的面积和2月至3月份增长的面积,可判断①的正误;计算出浮萍蔓延4个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【解析】由已知可得a 1=2,则S =2t +1.对于①,浮萍蔓延1月至2月份增长的面积为23-22=4(平方米),浮萍蔓延2月至3月份增长的面积为24-23=8(平方米),①错;对于②,浮萍蔓延4个月后的面积为25=32(平方米),②对;对于③,浮萍蔓延第n 至n +1个月的增长率为2n +2-2n +12n +1=1,所以,浮萍蔓延每个月增长率相同,都是100%,③错;对于④,若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则2t 1+1=3,2t 2+1=4,2t 3+1=12=3×4=2t 1+1⋅2t 2+1=2t 1+t 2+2,所以t 3=t 1+t 2+1,④错.故选:B .4(2024·天津红桥·二模)若a =2313,b =log 1225,c =3-14,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.a <b <c【答案】C【分析】根据给定条件,利用幂函数、对数函数性质,并借助媒介数比较大小.【解析】b =log 1225>log 1212=1,a =23 13=23 4 112=1681 112>381 112=1314=c ,而a =2313<1,所以a ,b ,c 的大小关系为b >a >c .故选:C5(2024·全国·模拟预测)已知函数f (x )=log a x 3-ax 2+x -2a (a >0且a ≠1)在区间(1,+∞)上单调递减,则a 的取值范围是()A.0,23 B.23,1C.(1,2]D.[2,+∞)【答案】A【分析】对数函数的单调性与底数有关,分0<a <1和a >1两种情况讨论,此外还要注意对数函数的定义域,即真数为正;复合函数单调性满足“同增异减”,根据对数函数单调性结合题干中“在区间(1,+∞)上单调递减”得到真数部分函数的单调性,从而求得a 的取值范围.【解析】设函数g x =x 3-ax 2+x -2a ,则g x =3x 2-2ax +1.①若0<a <1,则y =log a x 在定义域上单调递减.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递增,故gx ≥0对任意的x ∈1,+∞ 恒成立.又g 1 =4-2a ≥0,所以对任意的x ∈1,+∞ ,g x ≥0显然成立.又因为g x >0对任意x ∈1,+∞ 恒成立,所以g 1 =2-3a ≥0,故0<a ≤23.②若a >1,则y =log a x 在定义域上单调递增.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递减,故gx ≤0对任意的x ∈1,+∞ 恒成立.因为抛物线y =3x 2-2ax +1的开口向上,所以g x ≤0不可能对任意的x ∈1,+∞ 恒成立.所以a 的取值范围为0,23.故选:A .6(2024·宁夏固原·一模)已知函数f x 的部分图像如图所示,则f x 的解析式可能为()A.f x =e x -e -x 4x -3 B.f x =e x -e -x3-4x C.f x =e x +e -x4x -3D.f x =x x -1【答案】A【分析】利用f x 在1,+∞ 上的值排除B ,利用奇偶性排除排除C ,利用f x 在1,+∞ 上的单调性排除D ,从而得解.【解析】对于B ,当x >1时,f x =e x -e -x 3-4x,易知e x -e -x >0,3-4x <0,则f x <0,不满足图象,故B 错误;对于C ,f x =e x +e -x 4x -3,定义域为-∞,-34 ∪-34,34 ∪34,+∞ ,又f (-x )=e -x +e x 4-x -3=e x +e -x4x -3=f (x ),则f x 的图象关于y 轴对称,故C 错误;对于D ,当x >1时,f x =x x -1=x x -1=1+1x -1,由反比例函数的性质可知,f x 在1,+∞ 上单调递减,故D 错误;检验选项A ,f x =e x -e -x4x -3满足图中性质,故A 正确.故选:A .7(2024·陕西西安·模拟预测)已知函数f x =12x +1,x <01x +2,x ≥0,则不等式f a 2-1 >f 3 的解集为()A.-2,2B.0,+∞C.-∞,0D.-∞,-2 ∪2,+∞【答案】A【分析】判断函数f x 的单调性,再利用单调性解不等式即可.【解析】f x =12x +1,x <01x +2,x ≥0,易知y =12x +1在-∞,0 单调递减,y =1x +2在0,+∞ 单调递减,且f x 在x =0处连续,故f x 在R 上单调递减,由f a 2-1 >f 3 ,则a 2-1<3,解得-2<a <2,故不等式f a 2-1 >f 3 的解集为-2,2 .故选:A8(2024·甘肃兰州·一模)已知y =f x 是定义在R 上的奇函数,且对于任意x 均有f x +1 +f x -1 =0,当0<x ≤1时,f x =2x -1,若f [ln (ea )]>f (ln a )(e 是自然对数的底),则实数a 的取值范围是()A.e -1+2k <a <e 1+2k (k ∈Z )B.e -32+k <a <e 12+2k(k ∈Z )C.e -1+4k <a <e 1+4k (k ∈Z ) D.e-32+4k <a <e 12+4k(k ∈Z )【答案】D【分析】首先分析函数的周期性与对称性,画出函数在-2,2 上的函数图象,结合图象可知在-2,2 内要满足f [ln (ea )]>f (ln a ),只需-32<ln a <12,即可求出a 的范围,再结合周期性即可得解.【解析】因为y =f x 是定义在R 上的奇函数,所以f 0 =0且图象关于原点对称,又f x +1 +f x -1 =0,所以f x +1 =-f x -1 =f 1-x ,所以f x +4 =f 1-x +3 =-f 2+x =-f 1-x +1 =-f -x =f x ,f -1+x =f 3+x =f 1-2+x =f -1-x ,f 2+x =f -2+x =-f 2-x ,所以函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,又当0<x ≤1时,f x =2x -1,所以f x 在区间-2,2 上的图象如下所示:由图可知,在-2,2 内要满足f [ln (ea )]=f (1+ln a )>f (ln a ),则-32<ln a <12,即e -32<a <e 12,再根据函数的周期性可知e -32+4k <a <e12+4k(k ∈Z ).故选:D【点睛】关键点点睛:本题关键是由题意分析出函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,再结合函数在-2,2 上的图象.二、多选题9(2024·河南洛阳·模拟预测)下列正确的是()A.2-0.01>2-0.001B.log 23>log 2π-1C.log 1.85<log 1.75D.log 33.01>e -0.01【答案】BCD【分析】利用指数函数的性质判断A ;由对数函数的性质判断B ,C ;由对数函数的性质可得log 33.01>1,由指数函数的性质可得e -0.01<1,即可判断.【解析】解:对于A ,因为-0.01<-0.001,所以2-0.01<2-0.001,所以A 错误;对于B ,因为log 23>log 2π2=log 2π-1,所以B 正确;对于C ,因为log 1.85>0,log 1.75>0,所以log 1.85=ln5ln1.8<ln5ln1.7=log 1.75,所以C 正确;对于D ,因为log 33.01>log 33=1,e -0.01<e 0=1,所以log 33.01>e -0.01,所以D 正确.故选:BCD .10(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【分析】由原方程可得log 3b -1log 3b=log 3a -1log 4a ,构适函数,由函数的单调性得出值域,根据函数的值域判断A ;令ab =1,代入原方程转化为判断(ln b )2=ln3×ln122是否有解即可判断B ;条件变形放缩后构造函数,利用函数的单调性得出a ,b 大小,判断CD .【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .【点睛】关键点点睛:本题的关键是根据对数式的运算规则和对数函数的单调性求解.11(2024·重庆·三模)已知函数f x =log 62x +3x ,g x =log 36x -2x .下列选项正确的是()A.f 12<g 12 B.∃x 0∈0,1 ,使得f x 0 =g x 0 =x 0C.对任意x ∈1,+∞ ,都有f x <g xD.对任意x ∈0,+∞ ,都有x -f x ≤g x -x【答案】BCD【分析】根据2+3>6,3>6-2即可判断A ;根据2x 0+3x 0=6x 0,令h x =6x -2x -3x ,结合零点的存在性定理即可判断B ;由f x -x =log 613 x +12 x 、g x -x =log 32x-23 x ,结合复合函数的单调性可得f x -x 和g x -x 的单调性,即可判断C ;由选项BC 的分析可得6f x-6x =3x -3g x,分类讨论当x ∈0,x 0 、x ∈x 0,+∞ 时x -f x 与g x -x 的大小,进而判断D .【解析】A :因为2+3 2=5+26>6 2,所以2+3>6,3>6- 2.因为f 12 =log 62+3 >log 66=12,g 12 =log 36-2 <log 33=12,所以f 12 >g 12,故A 错误;B :若f x 0 =g x 0 =x 0,则f x 0 =log 62x 0+3x 0=x 0=log 66x 0,即2x 0+3x 0=6x,g x 0 =log 36x 0-2x 0 =x 0=log 33x 0,可得6x 0-2x 0=3x 0,令h x =6x -2x -3x ,因为h 0 =-1,h 1 =1,所以∃x 0∈0,1 ,使得h x 0 =0,即2x 0+3x 0=6x 0,故B 正确;C :因为f x -x =log 62x +3x -log 66x =log 62x +3x 6x =log 613 x +12 x ,且y =13 x +12 x 在1,+∞ 上单调递减,所以f x -x 也单调递减,可得f x -x <log 612+13<0,因为g x -x =log 36x -2x -log 33x =log 36x -2x 3x =log 32x -23 x .又y =2x -23 x 在1,+∞ 上单调递增,所以g x -x 也单调递增,得g x -x >log 32-23>0,即f x -x <g x -x ,因此,对于任意的x ∈1,+∞ ,都有f x <g x ,故C 正确;D :由B 可知:∃x 0∈0,1 ,使得h x 0 =0,结合C 的结论,可知当x ∈0,x 0 ,f x >x ,g x <x ,即g x <x <f x ,当x ∈x 0,+∞ 时,f x <x ,g x >x ,即f x <x <g x ,因为6f x =2x +3x ,3g x =6x -2x ,得2x =6f x -3x =6x -3g x ,即6f x -6x =3x -3g x ,当x ∈0,x 0 时,有6x 6f x -x -1 =3g x 3x -g x -1 ,因为6x >3g x ,所以6f x -x -1<3x -g x -1,所以0<f x -x <x -g x ,因此可得g x -x ≤x -f x <0,即x -f x ≤g x -x ,当x ∈x 0,+∞ ,有6f x 6x -f x -1 =3x 3g x -x -1 ,因为6f x >3x ,所以6x -f x -1<3g x -x -1,可得0<x -f x <g x -x ,即x -f x ≤g x -x ,因此,对于任意的x ∈0,+∞ ,都有x -f x ≤g x -x ,故D 正确.故选:BCD .【点睛】方法点睛:证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数或基本函数的单调性求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.三、填空题12(2023·河南·模拟预测)已知幂函数f x =m 2-6m +9 x m 满足f 1 =2,则f 2 =.【答案】4【分析】由幂函数的定义结合导数求得m ,进而可得答案.【解析】由幂函数的定义可得m 2-6m +9=1,解得m =2或m =4,当m =2时,f x =x 2,f x =2x ,f 1 =2符合题意;当m =4时,f x =x 4,f x =4x 3,f 1 =4,不符合题意.故f x =x 2,f 2 =4.故答案为:4.13(2024·全国·模拟预测)已知函数f x =x x -1,g x =e x -1-e -x +1+1,则f x 与g x 的图象交点的纵坐标之和为.【答案】2【分析】分析函数的奇偶性,由图象的平移变换求解即可.【解析】对于f x =x x -1=1x -1+1,可以把f x 的图象看作:由f 1x =1x -1的图象向上平移1个单位长度得到,而f 1x 的图象可看作由f 2x =1x 的图象向右平移1个单位长度得到;对于g x =e x -1-e -x +1+1=e x -1-1e x -1+1的图象可看作由g 1x =e x -1-1e x -1的图象向上平移1个单位长度得到,而g 1x 的图象可看作由g 2x =e x -1e x 的图象向右平移1个单位长度得到.易知f 2x =1x 与g 2x =e x -1ex 都为奇函数,公众号:慧博高中数学最新试题则易知f 2x 与g 2x 的图象共有两个关于原点对称的交点,且交点的纵坐标之和为0.因为将函数图象向右平移不改变f 1x 与g 1x 两函数图象交点处函数值的大小,所以f 1x 与g 1x 的图象交点的纵坐标之和为0,又将函数图象向上平移1个单位长度会使得原交点处的函数值都增加1,则f x 与g x 的图象的两个交点的纵坐标与f 1x 与g 1x 的图象两个交点的纵坐标相比都增加1,故f x 与g x 的图象交点的纵坐标之和为2.故答案为:214(2024·全国·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x ,对于定义域内任意的x ,y ,都有f xy =f x +f y ,且f x 在0,+∞ 上单调递减,则不等式f x <log 2x +12的解集为.【答案】x x <-1 或x >1【分析】由f xy =f x +f y ,利用赋值法,得到函数f x 的奇偶性,构造函数F x =f x -log 2x +12,研究其单调性和奇偶性,再由F 1 =0,将不等式f x <log 2x +12转化为F x <F 1 求解.【解析】由f xy =f x +f y ,令x =y =1,得f 1 =f 1 +f 1 ,所以f 1 =0.令x =y =-1,得f -1 =0.令y =-1,得f -x =f x +f -1 =f x ,所以函数f x 为偶函数.构造函数F x =f x -log 2x +12,因为F -x =F x ,所以F x 为偶函数,且在0,+∞ 上为减函数.因为F 1 =f 1 -log 21+12=0,所以不等式f x <log 2x +12等价于F x =f x -log 2x +12<0=F 1 ,所以F x <F 1 ,即x >1,所以x <-1或x >1,故不等式f x <log 2x +12的解集为x |x <-1 或x >1 .故答案为:x |x <-1 或x >1 .。

高考数学历年(2018-2022)真题按知识点分类(指数函数、对数函数、幂函数)练习

高考数学历年(2018-2022)真题按知识点分类(指数函数、对数函数、幂函数)练习

高考数学历年(2018-2022)真题按知识点分类(指数函数、对数函数、幂函数)练习一、单选题1.(2022ꞏ天津ꞏ统考高考真题)化简()()48392log 3log 3log 2log 2++的值为( ) A .1B .2C .4D .62.(2022ꞏ天津ꞏ统考高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b >>3.(2022ꞏ浙江ꞏ统考高考真题)已知825,log 3ab ==,则34a b -=( )A .25B .5C .259 D .534.(2022ꞏ全国ꞏ统考高考真题)已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>5.(2022ꞏ北京ꞏ统考高考真题)已知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x -+= B .()()0f x f x --= C .()()1f x f x -+=D .1()()3f x f x --=6.(2022ꞏ北京ꞏ统考高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是( )A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态7.(2022ꞏ全国ꞏ统考高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b << 8.(2021ꞏ天津ꞏ统考高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c <<B .c<a<bC .b<c<aD .a c b <<9.(2021ꞏ天津ꞏ统考高考真题)若2510a b ==,则11a b+=( ) A .1- B .lg 7 C .1D .7log 1010.(2021ꞏ天津ꞏ统考高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .11.(2021ꞏ全国ꞏ统考高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( )A .c b a <<B .b a c <<C .a c b <<D .a b c <<12.(2021ꞏ全国ꞏ统考高考真题)设2ln1.01a =,ln1.02b =,1c =-.则( ) A .a b c <<B .b<c<aC .b a c <<D .c<a<b13.(2021ꞏ全国ꞏ高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )( 1.259≈) A .1.5 B .1.2 C .0.8 D .0.614.(2021ꞏ全国ꞏ统考高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+15.(2020ꞏ山东ꞏ统考高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞16.(2020ꞏ山东ꞏ统考高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01x y a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .17.(2020ꞏ海南ꞏ高考真题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( )A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞18.(2020ꞏ天津ꞏ统考高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b<c<aD .c<a<b19.(2020ꞏ全国ꞏ统考高考真题)若2233x y x y ---<-,则( ) A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<20.(2020ꞏ全国ꞏ统考高考真题)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b21.(2020ꞏ全国ꞏ统考高考真题)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3)A .60B .63C .66D .6922.(2020ꞏ全国ꞏ统考高考真题)设3log 2a =,5log 3b =,23c =,则( ) A .a c b <<B .a b c <<C .b<c<aD .c<a<b23.(2020ꞏ全国ꞏ统考高考真题)设3log 42a =,则4a -=( ) A .116B .19C .18D .1624.(2020ꞏ全国ꞏ统考高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减25.(2019ꞏ全国ꞏ高考真题)已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c<a<bD .b<c<a26.(2019ꞏ全国ꞏ高考真题)若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │27.(2019ꞏ北京ꞏ高考真题)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为mk 的星的亮度为Ek (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A .1010.1B .10.1C .lg10.1D .10.110-28.(2019ꞏ天津ꞏ高考真题)已知2log 7a =,3log 8b =,0.20.3c =,则,,a b c 的大小关系为A .c b a <<B .a b c <<C .b<c<aD .c<a<b29.(2019ꞏ天津ꞏ高考真题)已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b<c<aD .c<a<b30.(2018ꞏ天津ꞏ高考真题)已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>31.(2018ꞏ全国ꞏ高考真题)设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+32.(2018ꞏ全国ꞏ高考真题)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+33.(2018ꞏ天津ꞏ高考真题)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>二、多选题34.(2020ꞏ海南ꞏ统考高考真题)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n== ,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )三、填空题35.(2020ꞏ山东ꞏ统考高考真题)若212log log 40x -=,则实数x 的值是______.36.(2020ꞏ北京ꞏ统考高考真题)函数1()ln 1f x x x =++的定义域是____________. 37.(2020ꞏ江苏ꞏ统考高考真题)已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____.38.(2018ꞏ全国ꞏ高考真题)已知函数()()22log f x x a =+,若()31f =,则=a ________.四、双空题39.(2022ꞏ全国ꞏ统考高考真题)若()1ln 1f x a b x++-=是奇函数,则=a _____,b =______.参考答案1.B【要点分析】根据对数的性质可求代数式的值.【答案详解】原式2233111(2log 3log 3)(log 2log 2)232=⨯++2343log 3log 2232=⨯=, 故选:B2.C【要点分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系. 【答案详解】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C.3.C【要点分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【答案详解】因为25a=,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa bb b -====. 故选:C.4.A【要点分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【答案详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数)由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=-, 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b > ,又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)m f x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.5.C【要点分析】直接代入计算,注意通分不要计算错误.【答案详解】()()1121112121212x xx x x f x f x --+=+=+=++++,故A 错误,C 正确; ()()11212121121212122121x x x x x x x x f x f x ----=-=-==-++++++,不是常数,故BD 错误; 故选:C .6.D【要点分析】根据T 与lg P 的关系图可得正确的选项.【答案详解】当220T =,1026P =时,lg 3P >,此时二氧化碳处于固态,故A 错误. 当270T =,128P =时,2lg 3P <<,此时二氧化碳处于液态,故B 错误.当300T =,9987P =时,lg P 与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C 错误.当360T =,729P =时,因2lg 3P <<, 故此时二氧化碳处于超临界状态,故D 正确. 故选:D7.C【要点分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小.【答案详解】方法一:构造法设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1((0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C. 方法二:比较法 解: 0.10.1a e = , 0.110.1b =- , ln(10.1)c =-- , ①ln ln 0.1ln(10.1)a b -=+- ,令 ()ln(1),(0,0.1],f x x x x =+-∈ 则 1()1011x f x x x-'=-=<-- , 故 ()f x 在 (0,0.1] 上单调递减,可得 (0.1)(0)0f f <= ,即 ln ln 0a b -< ,所以 a b < ;②0.10.1ln(10.1)a c e -=+- ,令 ()ln(1),(0,0.1],x g x xe x x =+-∈则 ()()()1111'11x xxx x e g x xe e x x+--=+-=-- , 令 ()(1)(1)1x k x x x e =+-- ,所以 2()(12)0x k x x x e '=--> ,所以 ()k x 在 (0,0.1] 上单调递增,可得 ()(0)0k x k >> ,即 ()0g x '> ,所以 ()g x 在 (0,0.1] 上单调递增,可得 (0.1)(0)0g g >= ,即 0a c -> ,所以 .a c > 故 .c a b <<8.D【要点分析】根据指数函数和对数函数的性质求出,,a b c 的范围即可求解. 【答案详解】22log 0.3log 10<= ,<0a ∴,122225log 0.4log 0.4log log 212=-=>= ,1b ∴>, 0.3000.40.41<<= ,01c ∴<<, a c b ∴<<. 故选:D.9.C【要点分析】由已知表示出,a b ,再由换底公式可求. 【答案详解】 2510a b ==,25log 10,log 10a b ∴==, 251111lg 2lg 5lg101log 10log 10a b ∴+=+=+==. 故选:C.10.B【要点分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解.【答案详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称, 又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.11.C【要点分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论.【答案详解】5881log 2log log log 32a b =<==<=,即a c b <<. 故选:C.12.B【要点分析】利用对数的运算和对数函数的单调性不难对a ,b 的大小作出判定,对于a 与c ,b 与c 的大小关系,将0.01换成x ,分别构造函数()()2ln 11f x x =+,()()ln 121g x x =++,利用导数要点分析其在0的右侧包括0.01的较小范围内的单调性,结合f (0)=0,g (0)=0即可得出a 与c ,b 与c 的大小关系. 【答案详解】[方法一]:2ln1.01a =2ln1.01=()2ln 10.01=+()2ln 120.010.01=+⨯+ln1.02b >=,所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 11f x x =+,则()00f =,()2121x f x x -='=+, 由于()()2214122x x x x x x +-+=-=-所以当0<x <2时,()21410x x +-+>()1x >+,()0f x ¢>,所以()f x 在[]0,2上单调递增,所以()()0.0100f f >=,即2ln1.011>,即a c >;令()()ln 121g x x =++,则()00g =,()212212x g x x --==+' 由于()2214124x x x +-+=-,在x >0时,()214120x x +-+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100g g <=,即ln1.021<,即b <c ;综上,b<c<a , 故选:B. [方法二]:令()21ln 1(1)2x f x x x ⎛⎫+=--> ⎪⎝⎭()()221-01x f x x =+'-<,即函数()f x 在(1,+∞)上单调递减()10,ff b c <=∴<令()232ln 1(13)4x g x x x ⎛⎫+=-+<< ⎪⎝⎭()()()21303x x g x x --+'=>,即函数()g x 在(1,3)上单调递增()10,gg a c =∴综上,b<c<a , 故选:B.【名师点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.13.C【要点分析】根据,L V 关系,当 4.9L =时,求出lg V ,再用指数表示V ,即可求解. 【答案详解】由5lg L V =+,当 4.9L =时,lg 0.1V =-, 则10.110110100.81.259V --===≈≈. 故选:C.14.C【要点分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意.故选:C .【名师点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.15.B【要点分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ . 故选:B16.B【要点分析】根据偶函数,指数函数的知识确定正确选项.【答案详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增. 注意到01a =, 所以B 选项符合. 故选:B17.D【要点分析】首先求出()f x 的定义域,然后求出2()lg(45)f x x x =--的单调递增区间即可. 【答案详解】由2450x x -->得5x >或1x <- 所以()f x 的定义域为(),1(5,)-∞-⋃+∞因为245y x x =--在(5,)+∞上单调递增 所以2()lg(45)f x x x =--在(5,)+∞上单调递增 所以5a ≥ 故选:D【名师点睛】在求函数的单调区间时一定要先求函数的定义域.18.D【要点分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系. 【答案详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D.【名师点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围. 比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减; (2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减; (3)借助于中间值,例如:0或1等.19.A【要点分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果. 【答案详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23t tf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数, x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.【名师点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.20.A【要点分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系. 【答案详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【名师点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.21.C【要点分析】将t t *=代入函数()()0.23531t K I t e--=+结合()0.95I tK *=求得t*即可得解.【答案详解】()()0.23531t K I t e--=+ ,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【名师点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.22.A【要点分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可.【答案详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A.【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.23.B【要点分析】根据已知等式,利用指数对数运算性质即可得解【答案详解】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=, 故选:B.【名师点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.24.D【要点分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.25.B【要点分析】运用中间量0比较,a c ,运用中间量1比较,b c【答案详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【名师点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.26.C【要点分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【答案详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【名师点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.27.A【解析】由题意得到关于12,E E 的等式,结合对数的运算法则可得亮度的比值. 【答案详解】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.28.A【要点分析】利用利用0,1,2等中间值区分各个数值的大小.【答案详解】0.200.30.31c =<=;22log 7log 42>=;331log 8log 92<<=. 故c b a <<. 故选A .【名师点睛】利用指数函数、对数函数的单调性时要根据底数与1的大小区别对待.29.A【解析】利用10,,12等中间值区分各个数值的大小.【答案详解】551log 2log 2a =<<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A .【名师点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.30.D【答案详解】要点分析:由题意结合对数函数的性质整理计算即可求得最终结果. 答案详解:由题意结合对数函数的性质可知: 2log e >1a =,()21ln 20,1log ==∈b e ,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.名师点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.31.B【答案详解】要点分析:求出0.2211log0.3,0.3log a b ==,得到11a b+的范围,进而可得结果.答案详解:.0.30.3log0.2,2a b log == 0.2211log0.3,0.3log a b∴== 0.3110.4log a b∴+= 1101a b∴<+<,即01a bab +<< 又a 0,b 0><ab 0∴<即ab a b 0<+<故选B.名师点睛:本题主要考查对数的运算和不等式,属于中档题.32.B【答案详解】要点分析:确定函数y lnx =过定点(1,0)关于x=1对称点,代入选项验证即可.答案详解:函数y lnx =过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有()y ln 2x =-过此点. 故选项B 正确名师点睛:本题主要考查函数的对称性和函数的图像,属于中档题.33.D【答案详解】要点分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.答案详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 名师点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.34.AC【要点分析】对于A 选项,求得()H X ,由此判断出A 选项;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项;对于D 选项,计算出 ()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项.【答案详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确.对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n== ,则 ()222111log log log H X n n n n n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且 ()21j m j P Y j p p +-==+( 1,2,,j m = ).()2222111log log m mi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅ . ()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++ 12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++ 由于()01,2,,2i p i m >= ,所以 2111i i m i p p p +->+,所以 222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+, 所以()()H X H Y >,所以D 选项错误. 故选:AC【名师点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查要点分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.35.14【要点分析】根据对数运算化简为2log 2x =-,求解x 的值. 【答案详解】21222log log 40log log 40x x -=⇔+=, 即2log 2x =-,解得:14x =. 故答案为:1436.(0,)+∞【要点分析】根据分母不为零、真数大于零列不等式组,解得结果.【答案详解】由题意得010x x >⎧⎨+≠⎩,0x ∴> 故答案为:(0,)+∞【名师点睛】本题考查函数定义域,考查基本要点分析求解能力,属基础题.37.4-【要点分析】先求(8)f ,再根据奇函数求(8)f - 【答案详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-【名师点睛】本题考查根据奇函数性质求函数值,考查基本要点分析求解能力,属基础题. 38.-7【答案详解】要点分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.答案详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 名师点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.39. 12-; ln 2. 【要点分析】根据奇函数的定义即可求出.【答案详解】[方法一]:奇函数定义域的对称性若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称 0a ∴≠ 若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x +≠- 1x ∴≠且11x a ≠+,函数()f x 为奇函数,定义域关于原点对称, 111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=, 故答案为:12-;2ln . [方法二]:函数的奇偶性求参111()111a ax ax a f x ln a b ln b ln b x x x -+--=++=+=+--- 1()1ax a f x ln b x++-=++ 函数()f x 为奇函数11()()2011ax a ax a f x f x ln ln b x x--++∴+-=++=-+ 2222(1)201a x a lnb x -+∴+=- 22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln-==-⇒=∴=-= [方法三]:因为函数()1ln 1f x a b x ++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.。

数学专题 指对幂比较大小必刷100题

数学专题 指对幂比较大小必刷100题

专业专心专注µ专题 指对幂比较大小必刷100题1任务一:善良模式(基础)1-40题一、单选题1已知a =53-12,b =log 25,c =log 37,则a ,b ,c 的大小顺序是()A.a >b >cB.c >a >bC.c >b >aD.b >c >a【答案】D【解析】因为a =53 -12=3512<1,b =log 25>log 24=2,1=log 33<c =log 37<log 39=2,所以b >c >a 故选:D2已知a =ln 1π,b =e 13,c =log π3,则a ,b ,c 大小顺序为()A.a >b >cB.b >a >cC.c >a >bD.b >c >a【答案】D 【解析】∵a =ln 1π<ln1=0,b =e 13>e 0=1,0=log π1<c =log π3<log ππ=1,∴b >c >a .故选:D .3已知a =ln 1π,b =e 13,c =log π3,则a ,b ,c 大小顺序为()A.a >b >cB.b >a >cC.c >a >bD.b >c >a【答案】D 【解析】因为a =ln 1π<ln1=0,b =e 13>e 0=1,c =log π3∈0,1 所以b >c >a 故选:D【点睛】本题考查的是对数、指数幂的比较,较简单.4设a =34-34,b =432,c =log 232,则a ,b ,c 的大小顺序是A.b <a <c B.c <a <b C.b <c <aD.a <c <b【答案】B 【解析】a =34-34=4334>1,且4334<432=b ,又c =log 232<log 22=1.故c <a <b .故选:B【点睛】本题主要考查了利于指数对数函数的单调性对函数值大小进行比较,属于基础题型.5a ,b ,c 均为正实数,且2a =log 12a ,12b=log 12b ,12c=log 2c ,则a ,b ,c 的大小顺序为第1页共31页A.a<c<bB.b<c<aC.c<b<aD.a<b<c 【答案】D【解析】试题分析:∵a,b,c均为正实数,∴2a>2-b=log12b,而2a=log12a,∴log12a>log12b,∴a<b.又12c=log2c且12 b=log12b,由图象可知c>1,0<b<1,故a<b<c,故选D.考点:利用函数图象比较大小.6若a=0.20.8,b=0.80.2,c=1.10.3,d=lg0.2,则a,b,c,d的大小关系是()A.c>b>a>dB.c>a>b>dC.b>c>a>dD.a>c>b>d【答案】A【解析】由指数函数的单调性知:0.20.2>0.20.8,1.10.3>1.10=1由幂函数的单调性知:0.80.2>0.20.2,所以c>1>b=0.80.2>0.20.2>0.20.8=a>0,又由对数函数的单调性可知:d=lg0.2<lg1=0综上有:c>b>a>d.故选:A7设a=log3π,b=2log32,c=4ln1e,则a,b,c大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b【答案】B【解析】解:因为ln1e<ln1=0,所以0<4ln1e<40=1,即0<c<1,又2log32=log322=log34>log3π> log33=1,即b>a>1,所以b>a>c;故选:B8已知5a=2,b=ln2,c=20.3,则a,b,c的大小关系为()A.a>b>cB.c>b>aC.b>c>aD.c>a>b【答案】B【解析】由5a=2⇒a=log52=log54<log55⇒a<12,由ln e2>ln4>ln e⇒1>b>12,c=20.3>1,所以c>b>a,故选:B9已知a=454.1,b=45 -0.9,c=54 0.1,则这三个数的大小关系为()A.a>c>bB.b>c>aC.c>a>bD.c>b>a【答案】B第2页共31页专业专注专心专业专心专注【解析】b =45-0.9=540.9,因为y =54x在R 上单调递增﹐则b >c >1,又a =454.1<45=1.故b >c >a .故选:B .10若a =225,b =325,c =12 25,d =1325,则a ,b ,c ,d 的大小关系是()A.a >b >c >dB.b >a >d >cC.b >a >c >dD.a >b >d >c【答案】C【解析】解:a =225>20=1,b =325>30=1,c =1225<12=1,d =1325<13=1,另外a b =225325=2325<23=1,则b >acd =12 251325=3225>32=1,则c >d故b >a >c >d 故选:C .11已知a =12-0.8,b =log 1223,c =40.5则a ,b ,c 的大小关系是()A.a <c <bB.a <b <cC.c <b <aD.b <a <c【答案】D 【解析】a =12-0.8=20.8∈1,2 ,b =log 1223=log 232∈0,1 ,c =40.5=2,显然b <a <c ,故选:D12已知3a =2,b =ln2,c =20.3,则a ,b ,c 的大小关系为()A.a >b >cB.c >b >aC.b >c >aD.c >a >b【答案】B【解析】由3a =2可得,a =log 32=ln2ln3,因为ln3>1>ln2>0,所以ln2ln3<ln2<1,又因为c =20.3>20=1,所以c >b >a .故选:B .13已知a =43,b =log 34,c =3-0.1,则a 、b 、c 的大小关系为()A.a >b >cB.c >b >aC.b >a >cD.a >c >b【答案】A 【解析】因为a =43=log 3343,343 3=34=81>43=64,所以log 3343>log 34,即a >b .第3页共31页又因为b=log34>log33=1,c=3-0.1<30=1,即b>c,所以a>b>c.故选:A14设0<x<π2,记a=lnsin x,b=sin x,c=esin x,则比较a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.b<c<a 【答案】A【解析】因为0<x<π2,所以b=sin x∈0,1,a=lnsin x<0,c=e sin x>1,所以a<b<c,故选:A15若a=2 23,b=323,c=1223,d=13 23,则a,b,c,a的大小关系是()A.a>b>c>dB.b>a>d>cC.b>a>c>dD.a>b>d>c 【答案】C【解析】∵23>0∴幂函数y=x23在0,+∞上单调递增,又∵3>2>12>13>0,∴323>223>1223>13 23,∴b>a>c>d故选:C.16已知a=0.31.7,b=1.70.3,c=log0.31.7,则a,b,c的大小关系为() A.a<c<b B.c<b<a C.c<a<b D.b<c<a【答案】C【解析】解:根据指数函数的性质知,0<0.31.7<0.30=1,1.70.3>1.70=1所以0<a<1<b;根据对数函数的性质知,log0.31.7<log0.31=0,所以c<0;所以a,b,c的大小关系是c<a<b.故选:C.17已知a=log262,b=log3142,c=232,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<a<bD.b<c<a【答案】A【解析】解:c=232>20=1,0<a=log262<log22=12,12=log33<log3142=b<1,∴a<b<c.故选:A.18已知a=1.20.5,b=0.51.5,c=22,则这三个数的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a第4页共31页专业专注专心专业专心专注【答案】D【解析】因为a =1.20.5>1.20=1,所以a >1.因为b =0.51.5<0.51=12,所以0<b <12.而c =22,所以12<c <1,故b <c <a .故选D .19已知a =ln22,b =ln33,c =ln55,则a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.b <a <cD.c <a <b【答案】D【解析】因为a -b =ln22-ln33=3ln2-2ln36=ln8-ln96<0,所以a <b ;又a -c =ln22-ln55=5ln2-2ln510=ln32-ln2510>0,所以a >c ,所以c <a <b .故选:D .20设a =log 20.3,b =log 120.4,c =0.40.3,则a ,b ,c 的大小关系为()A.a <b <cB.c <a <bC.b <c <aD.a <c <b【答案】D【解析】∵log 20.3<log 21=0,∴a <0,∵log 120.4=-log 20.4=log 252>log 22=1,∴b >1,∵0<0.40.3<0.40=1,∴0<c <1,∴a <c <b .故选:D .21若x ∈(e -1,1),a =ln x ,b =12ln x,c =2ln x ,则a ,b ,c 的大小关系为()A.c >b >aB.b >a >cC.a >b >cD.b >c >a【答案】D【解析】因x ∈(e -1,1),且函数y =ln x 是增函数,于是-1<a <0;函数y =2x 是增函数,-1<ln x <0<-ln x <1,而12ln x=2-ln x ,则1<12ln x<2,12<2ln x <1,即12<c <1<b <2,综上得:b >c >a 故选:D22已知a =log 32,b =15 35,c =13-23,则a ,b ,c 的大小关系是()A.a <b <cB.b <a <cC.a <c <bD.b <c <a【答案】B【解析】由函数y =log 3x 在0,+∞ 上单调递增,可得12=log 33<log 32=a <1,,由函数y =15x 在R 上单调递减,可得b =15 35<15 12=15<12,由函数y =13 x 在R 上单调递减,可得c =13 -23>13 0=1, 因此b <a <c故选:B 第5页共31页23设a=4323,b=43 34,c=32 34,则a,b,c的大小关系是()A.a>c>bB.a>b>cC.c>b>aD.b>c>a 【答案】C【解析】因为函数y=43x在R上是增函数,所以43 23<43 34,即a<b,又因为函数y=x34在(0,+∞)上是增函数,所以4334<32 34,所以b<c,故a<b<c.故选:C24已知a=ln12020+20192020,b=ln12021+20202021,c=ln12022+20212022,则a,b,c的大小关系是()A.a>b>cB.a>c>bC.c>b>aD.c>a>b 【答案】A【解析】构造函数f x =ln x+1-x,f x =1x-1=1-xx,当0<x<1时,fx >0,f x 单调递增,所以f12020>f12021>f12022,a>b>c.故选:A25已知a=log35,b=1213,c=log1316,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b 【答案】D【解析】c=log1316=log36,因为函数y=log3x在0,∞上单调递增,所以log33=1<a=log35<log36<log1316=c,因为函数y=12x在R上单调递减,所以b=12 13<12 0=1,所以c>a>b故选:D【点睛】思路点睛:指数式、对数式、幂值比较大小问题,思路如下:思路一、对于同底数的幂值或对数式,直接根据指数函数或对数函数的单调性比较大小;思路二、对于不同底数的幂值或对数式,化为同底数的幂值或对数式,再根据思路一进行比较大小;或者找中间量(通常找0和1)进行比较.26已知1<1a<1b,M=a a,N=a b,P=b a,则M,N,P的大小关系正确的为()A.N<M<PB.P<M<NC.M<P<ND.P<N<M 【答案】B【解析】解:∵1<1a<1b,∴0<b<a<1,∴指数函数y=a x在R上单调递减,∴a b>a a,即N>M,又幂函数y=x a在0,+∞上单调递增,∴a a>b a,即M>P,∴N>M>P,第6页共31页专业专注专心专业专心专注故选:B .27已知a =sin3,b =log 3sin3,c =3sin3,则a ,b ,c 的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.c >b >a【答案】C 【解析】因为π2<3<π,所以a =sin3∈0,1 ,b =log 3sin3<log 31=0,c =3sin3>30=1,所以c >a >b .故选:C28设a =315,b =153,c =log 315,则a ,b ,c 的大小关系为().A.b <a <cB.a <c <bC.c <a <bD.c <b <a【答案】D【解析】指数函数y =3x ,y =15x分别是R 上的增函数和减函数,15>0,3>0,则315>30>153>0,对数函数y =log 3x 在(0,+∞)上单调递增,0<15<1,则log 315<log 31=0,所以有315>15 3>log 315,即c <b <a .故选:D 29已知e a =π,2b =3,c =sin2021∘,则a ,b ,c 大小关系为()A.c <a <bB.c <b <aC.a <c <bD.a <b <c【答案】A【解析】由e a =π,得a =lnπ,因为π≈3.14,e ≈2.7128,e e ≈4.48,所以ln e <lnπ<ln e e ,即ln e <a <ln e e ,所以1<a <32,由2b =3,得b =log 23>log 222=32,又c =sin2021∘=sin 5×360∘+221∘ =sin221∘<0,所以c <a <b ,故选:A30已知a =log 53,b =log 169,c =0.3a -2,则a ,b ,c 的大小关系是()A.a >b >cB.a >c >bC.c >a >bD.c >b >a【答案】D【解析】b =log 4232=log 43<log 44=1,所以0<a <b <1,c =0.3a -2=0.3log 53-2=310log 5325=103 log 5253>103 log 55=103>1,所以c >b >a .故选:D31已知a =log 31.5,b =log 0.50.1,c =0.50.2,则a 、b 、c 的大小关系为()A.a <b <cB.a <c <bC.b <c <aD.c <a <b第7页共31页。

指、对、幂函数题型归纳(精编超全)

指、对、幂函数题型归纳(精编超全)

幂、指、对函数与函数与方程一轮复习题型归纳题型一:幂函数的图像与性质考点:图像分布、单调性、奇偶性1. 已知幂函数()223()(22)nn f x n n x n Z -=+-∈的图像关于y 轴对称,且在()0,+∞上是减函数,则n 的值为2. (2020江苏7)已知()y f x =是奇函数,当0x ≥时,23()f x x =,则(8)f -的值是 .3. (2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____.题型二:幂函数性质的应用考点:比较大小、解不等式、值域与最值4.已知幂函数()12f x x-=,若(1)(102)f a f a +<-,则a 的取值范围是5.已知点(),9m 在幂函数()(2)nf x m x =-的图像上,设13a f m -⎛⎫= ⎪⎝⎭,1ln ,32b f c f ⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭则,,a b c 的大小关系为题型三:根式与分数指数幂的运算6.化简)34的结果是7.化简211511336622133a b a b a b ⎛⎫⎛⎫⎛⎫-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭题型四:指数型函数图像与性质考点:图像分布、指数型复合函数的定义域、值域、单调性、过定点8:设d c b a ,,,都是不等于1的正数,x x x xy b y a y ==,,如图所示,则d c b a ,,,的大小顺序是 ( ) A .a b c d <<< B .a b d c <<< C .b a d c <<< D .b a c d <<<9.(2013浙江)已知为正实数,则A .B .C .D .10. 函数24325x x y +=-⋅-在[]0,2x ∈上的值域11. (2012山东)若函数在[1,2]-上的最大值为4,最小值为m ,且函数上是增函数,则a = .题型五:指数型函数性质的应用考点:比较大小、解指数方程与不等式、求参数范围、最值与恒成立问题12.(2014安徽)设3log 7a =, 1.12b =, 3.10.8c =,则A .c a b <<B .b a c <<C .a b c <<D .b c a <<13.(2017新课标Ⅰ)设,,x y z 为正数,且235x y z ==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<14.(2015江苏)不等式224x x -<的解集为_______.15.(2020北京卷6)已知函数12)(--=x x f x ,则不等式()0f x >的解集是( )A .()1,1-B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞+∞ y x ,y x y x lg lg lg lg 222+=+lg()lg lg 222x y x y +=y x y x lg lg lg lg 222+=•lg()lg lg 222xy x y =()(0,1)x f x a a a =>≠()(14g x m =-[0,)+∞16.(2011湖南文8)已知函数,若有,则的取值范围为题型六:恒过定点问题17. 函数0.(12>+=-a a y x 且)1≠a 的图像必经过点18.函数()132log +-=x y a 的图像必经过点19. 函数123+-+=m x mx y 的图像恒过定点20. 函数02432=-+++-m y my x mx 的图像必经过点题型七:对数运算21.(2012安徽)23(log 9)(log 4)⋅=A . 14 B .12 C . 2 D . 422. 3128x y ==,则11______x y -=23. 若a =2lg ,b =3lg ,则=12lg ,45lg =24. (2015高考浙江文9)计算:2log = ,24log 3log 32+= .25. (2015高考四川文12)lg 0.01+log 216=_____________.26. (2015高考上海文8)方程的解为 .27.(2020全国Ⅰ文8)设3log 42a =,则4a -=( )A .116 B .19 C .18 D .16 ⋅2()1,()43x f x e g x x x =-=-+-()()f a g b =b题型八:对数型函数图像与性质考点:图像分布、对数型复合函数的定义域、值域、单调性、过定点28.(2011北京)如果,0log log 2121<<y x 那么A .1y x <<B .1x y <<C .1x y <<D .1y x <<29. (2018江苏)函数()f x =的定义域为 .30. (2017新课标Ⅰ)已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点(1,0)对称31. 函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( ) A.x 轴对称 B.y 轴对称 C.原点对称 D.直线y x =对称32. (2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________题型九:对数型函数性质应用考点:比较大小、解对数方程与不等式、恒成立与最值问题、求参数范围33.(2013新课标)设,则A .B .C .D .34. (2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+35.(2015四川)设,a b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件357log 6,log 10,log 14a b c ===c b a >>b c a >>a c b >>a b c >>36.(2015天津)已知定义在R 上的函数()21x m f x -=- (m 为实数)为偶函数,记0.5log 3a =,()2log 5b f =,()2c f m =则,,a b c 的大小关系为A .a b c <<B .a c b <<C .c a b <<D .c b a <<37.(2011辽宁)设函数122,1()1log ,1x x f x x x -⎧=⎨->⎩≤,则满足()2f x ≤的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞)D .[0,+∞)38.(2012新课标)当102x <≤时,4log x a x <,则a 的取值范围是 ( ) A.2 B.(2C. D.39.(2014重庆)函数2()log )f x x =的最小值为_________.40.(2013天津)已知函数是定义在R 上的偶函数, 且在区间单调递增.若实数a 满足, 则a 的取值范围是A .B .C .D . ()f x [0,)+∞212(log )(log )2(1)f a f f a ≤+[1,2]10,2⎛⎤ ⎥⎝⎦1,22⎡⎤⎢⎥⎣⎦(0,2]。

2022届新高考数学高频考点专题07 指对幂比较大小必刷100题(解析版)

2022届新高考数学高频考点专题07 指对幂比较大小必刷100题(解析版)
故选:B
23.设 ,则 的大小关系是()
A. B. C. D.
【答案】C
【分析】
根据指数函数 与幂函数 的单调性判断 的大小关系.
【详解】
因为函数 在 上是增函数,所以 ,即 ,又因为函数 在 上是增函数,所以 ,所以 ,故 .
故选:C
24.已知 , , ,则 , , 的大小关系是()
A. B.
C. D.
【答案】D
【分析】
根据指数函数和对数函数的性质求出 的范围即可求解.
【详解】
, ,
, ,
, ,
.
故选:D.
21.若 , , , ,则a,b,c的大小关系为()
A. B.
C. D.
【答案】D
【分析】
先利用 的单调性求出a值范围;再利用 的单调性比较b和c的大小而得解.
【详解】
因 ,且函数 是增函数,于是 ;
C. D.
【答案】B
【分析】
根据指数式与对数式互化公式,结合指数函数和对数函数的性质进行判断即可.
【详解】
由 ,
由 , ,所以 ,
故选:B
9.已知 ,则这三个数的大小关系为()
A. B. C. D.
【答案】B
【分析】
利用指数函数的单调性即可比较大小.
【详解】

因为 在 上单调递增﹐则 ,
又 .
故 .
4.设 , , ,则 , , 的大小顺序是
A. B. C. D.
【答案】B
【分析】
判断 的大致范围再排序即可.
【详解】
,且 ,又 .
故 .
故选:B
【点睛】
本题主要考查了利于指数对数函数的单调性对函数值大小进行比较,属于基础题型.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 指对幂函数
(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )
A .a <b <c
B .c <a <b
C . b <a <c
D . b <c <a
(2009
全国卷Ⅱ文)设2lg ,(lg ),a e b e c ===
(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >>
(2009天津卷文)设3.02131)
21(,3log ,2log ===c b a ,则
A a<b<c
B a<c<b
C b<c<a
D b<a<c
(2009
全国卷Ⅱ理)设323log ,log log a b c π===
A. a b c >>
B. a c b >>
C. b a c >>
D. b c a >> ( 2010年高考全国卷I 理科8)设a=3log 2,b=In2,c=1
25
-,则 A a<b<c Bb<c<a C c<a<b D c<b<a
(2010全国卷2理数)(10)若曲线1
2y x -
=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =
(A )64 (B )32 (C )16 (D )8
(2010全国卷2理数)(2).函数1ln(1)(1)2
x y x +-=>的反函数是 (A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+>
(C )211(R)x y e x +=-∈ (D )211(R)x y e x +=+∈
(2010全国卷2文数)(4)函数y=1+ln(x-1)(x>1)的反函数是
(A )y=1x e +-1(x>0) (B) y=1x e -+1(x>0)
(C) y=1x e +-1(x ∈R) (D )y=1
x e -+1 (x ∈R) (2010天津理数)(8)若函数f(x)=212
log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是 (A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)
(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)
(重庆卷1(安徽卷20).(本小题满分12分) 设函数1()(01)ln f x x x x x
=>≠且 (Ⅰ)求函数()f x 的单调区间;
(Ⅱ)已知12a
x x >对任意(0,1)x ∈成立,求实数a 的取值范围。

(2010年高考安徽卷理科17)(本小题满分12分)
设a 为实数,函数()22,x f x e x a x =-+∈R 。

(Ⅰ)求()f x 的单调区间与极值;
(Ⅱ)求证:当ln 21a >-且0x >时,221x e x ax >-+。

22.(本小题满分12分)
设函数()()2
1f x x aIn x =++有两个极值点12x x 、,且12x x < (I )求a 的取值范围,并讨论()f x 的单调性;
(II )证明:()21224
In f x ->
(22)(本小题满分12分)
设函数()1x f x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥
+; (Ⅱ)设当0x ≥时,()1x f x ax ≤
+,求a 的取值范围.
22.(本小题满分12分)
设函数()()2ln 12
x f x x x =+-+,证明:当0x >时,()0f x > 证明:(Ⅰ)0x >时,()()()()()
2
22222101212x x x f x x x x x +-'=-=>++++, 于是()f x 在()0,+∞上单调增,所以()()00f x f >=
2.三角函数
1.为得到函数πcos 23y x ⎛⎫=+
⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12
个长度单位
C .向左平移5π6个长度单位
D .向右平移5π6
个长度单位 5.把函数sin y x =(x R ∈)的图象上所有点向左平行移动
3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12
倍(纵坐标不变),得到的图象所表示的函数是 (A )sin(2)3y x π
=-,x R ∈ (B )sin()26
x y π=+,x R ∈ (C )sin(2)3y x π=+,x R ∈ (D )sin(2)32y x π=+,x R ∈ 7.将函数sin(2)3y x π=+
的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( ) A .(,0)12π
- B .(,0)6π
- C .(,0)12π
D .(,0)6π
10.函数2()sin cos f x x x x =在区间,42ππ⎡⎤⎢⎥⎣⎦
上的最大值是( )
A.1 C. 32 16.0
203sin 702cos 10
--=( )
A. 12 C. 2 3. 已知ABC ∆中,12cot 5A =-
, 则cos A = A. 1213 B.513 C.513- D. 1213
- 8. 若将函数()tan 04y x πωω⎛⎫=+
> ⎪⎝⎭的图像向右平移6π个单位长度后,与函数tan 6y x πω⎛⎫=+ ⎪⎝⎭的图像重合,则ω的最小值为
A .16 B. 14 C. 13 D. 12
(7)已知α为第二象限角,3
3cos sin =+αα,则cos2α=
(A) (B ) (C) (14)已知α为第三象限的角,3cos 25α=-
,则tan(2)4πα+= .
17.函数f (x )=3sin x +sin(π2
+x )的最大值是
20.已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 \
22.设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=
. (Ⅰ)求tan cot A B 的值;
(Ⅱ)求tan()A B -的最大值.
24.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+
⎪⎝⎭(0ω>)的最小正周期为π. (Ⅰ)求ω的值;
(Ⅱ)求函数()f x 在区间2π03
⎡⎤⎢⎥⎣⎦,上的取值范围.
30.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,a =,tan tan 4,22
A B C ++= 2sin cos sin B C A =,求,A B 及,b c
17(本小题满分10分)
设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c ,3cos()cos 2
A C
B -+=,2b ac =,求B 。

(17)(本小题满分10分)(注意:在试题卷上作答无效............
) 已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .
17.(本小题满分10分)
ABC ∆的内角A 、B 、C 的对边分别为,,a b c 。

已知90,A C a c -=+=,求C
(17)(本小题满分10分)(注意:在试卷上作答无效...........
) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a=2c ,求c.。

相关文档
最新文档