2017-2018年江苏省南京一中七年级(下)期中数学试卷(解析版)
2017-2018学年度下学期七年级下册期中数学试卷(有答案与解析)

2017-2018学年年级(下)期中数学试卷一、选择题(每题2分,共12分)1.下列是一名同学做的6道练习题:①(﹣3)0=1;②a3+a3=a6;③(﹣a5)÷(﹣a3)=﹣a2;④4m﹣2=;⑤(xy2)3=x3y6;⑥22+22=25,其中做对的题有()A.1道B.2道C.3道D.4道2.下列各式能用平方差公式进行计算的是()A.(x﹣3)(﹣x+3)B.(a+2b)(2a﹣b)C.(a﹣1)(﹣a﹣1)D.(x﹣3)23.已知x2﹣2(m﹣3)x+16是一个完全平方式,则m的值是()A.﹣7B.1C.﹣7或1D.7或﹣14.已知是方程组的解,则a,b间的关系是()A.4b﹣9a=1B.3a+2b=1C.4b﹣9a=﹣1D.9a+4b=15.小明在学习之余去买文具,打算购买5支单价相同的签字笔和3本单价相同的笔记本,期间他与售货员对话如图:1支笔和1本笔记本应付()A.10元B.11元C.12元D.13元6.一个六边形ABCDEF纸片上剪去一个角∠BGD后,得到∠1+∠2+∠3+∠4+∠5=430°,则∠BGD =()A.60°B.70°C.80°D.90°二、填空(每题2分,共16分)7.计算:(﹣2x)3=,=.8.若(x+2)(x﹣n)=x2+mx+8,则m=,n=,9.据测算,5万粒芝麻才200g,则1粒芝麻有千克.(结果用科学记数法表示)10.已知a+b=3,ab=﹣2,则a2+b2的值是.11.当a=时,方程组的解为x=y.12.如图是我们常用的折叠式小刀,刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成∠1与∠2,若∠1=75°,则∠2的度数为.13.小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有种.14.如图,在△ABC中,点D、E分别在边BC、AC上,∠DCE=∠DEC,点F在AC、点G在DE 的延长线上,∠DFG=∠DGF.若∠EFG=35°,则∠CDF的度数为.三、简答题15.(18分)计算或解方程组(1)(2)(3x3)2•(﹣2y2)3÷(﹣6xy4)(3)(y+x)(x﹣y)﹣(x﹣y)2(4)(5)(6)已知9m÷32m+2=m,求m2+2m+1.16.(18分)因式分解①4m2﹣16n2②(a﹣b)(3a+b)2+(a+3b)2(b﹣a)③(x2+2x)2+2(x2+2x)+1④(a2+4)2﹣16a2⑤(x+2)(x+4)+1⑥(x2+4x)2﹣x2﹣4x﹣2017.(6分)在解方程组时,哥哥正确地解得,弟弟因把c写错而解得.求:(1)a+b+c的值.(2)弟弟把c写错成了什么数?18.(6分)已知关于x,y的二元一次方程组的解满足二元一次方程,求m的值.19.(6分)某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?20.(8分)把几个图形拼成一个新的图形,再通过两种不同的方法计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由1,可得等式:(a+2b)(a+b)=a2+3ab+2b2(1)如图2,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,试用不同的形式表示这个大正方形的面积,你能发现什么结论?请用等式表示出来.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF.若这两个正方形的边长满足a+b=10,ab=20,请求出阴影部分的面积.21.(10分)现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°)如图(1)放置,其中一块三角板的直角边AC垂直于数轴,AC的中点过数轴的原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应数轴上的数是,点H对应数轴上的数是;(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=α,试用α来表示∠M的大小;(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC 的平分线交于点N,求∠N+∠M的值.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题2分,共12分)1.【分析】原式各式计算得到结果,即可作出判断.【解答】解:①(﹣3)0=1,正确;②a3+a3=2a3,错误;③(﹣a5)÷(﹣a3)=a2,错误;④4m﹣2=,错误;⑤(xy2)3=x3y6,正确;⑥22+22=2×22=23,错误,则做对的题有2道.故选:B.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.2.【分析】本题是平方差公式的应用,在所给的两个式子中,必须有一项完全相同,有一项相反才可用平方差公式.【解答】解:A、B中不存在相同的项,C、﹣1是相同的项,互为相反项是a与﹣a,所以(a﹣1)(﹣a﹣1)=1﹣a2.D、(x﹣3)2符合完全平方公式.因此A、B、D都不符合平方差公式的要求;故选:C.【点评】本题考查了平方差公式,熟记公式结构是解题的关键.3.【分析】利用完全平方公式的特征判断即可得到结果.【解答】解:∵x2﹣2(m﹣3)x+16是一个完全平方式,∴﹣2(m﹣3)=8或﹣2(m﹣3)=﹣8,解得:m=﹣1或7,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.4.【分析】解此题时可将x,y的值代入方程,化简可得出结论.【解答】解:根据题意得,原方程可化为要确定a和b的关系,只需消去c即可,则有9a+4b=1.故选:D.【点评】此题考查的是对方程组性质的理解,运用加减消元法来求解.5.【分析】设1支签字笔的价格为x元,1本笔记本的价格为y元,根据小明与售货员的对话,列出关于x和y的二元一次方程组,解之即可.【解答】解:设1支签字笔的价格为x元,1本笔记本的价格为y元,根据题意得:,解得:,8+4=12(元),即1支笔和1本笔记本应付12元,故选:C.【点评】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.6.【分析】由多边形的内角和公式,即可求得六边形ABCDEF的内角和,又由∠1+∠2+∠3+∠4+∠5=430°,即可求得∠GBC+∠C+∠CDG的度数,继而求得答案.【解答】解:∵六边形ABCDEF的内角和为:180°×(6﹣2)=720°,且∠1+∠2+∠3+∠4+∠5=430°,∴∠GBC+∠C+∠CDG=720°﹣430°=290°,∴∠G=360°﹣(∠GBC+∠C+∠CDG)=70°.故选:B.【点评】此题考查了多边形的内角和公式.此题难度不大,注意掌握整体思想的应用.二、填空(每题2分,共16分)7.【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:(﹣2x)3=﹣8x3,=(﹣)101×3101×3=﹣3,故答案为:﹣8x3;﹣3.【点评】此题主要考查了积的乘方,关键是掌握积的乘方的计算法则.8.【分析】直接利用多项式乘以多项式运算法则去括号,进而得出关于m,n的等式,即可求出答案.【解答】解:∵(x+2)(x﹣n)=x2+mx+8,∴x2﹣nx+2x﹣2n=x2+mx+8,x2+(2﹣n)x﹣2n=x2+mx+8则,解得:.故答案为:6,﹣4.【点评】此题主要考查了多项式乘以多项式,正确掌握多项式乘法运算法则是解题关键.9.【分析】根据题意用200÷5万,求出1粒芝麻的质量,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:5万=50000,200÷50000=0.004.将0.004用科学记数法表示为4×10﹣3.故答案为:4×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【分析】首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab的值整体代入求值.【解答】解:∵a+b=3,ab=﹣2,∴a2+b2=(a+b)2﹣2ab,=32﹣2×(﹣2),=9+4,=13.故答案为:13.【点评】本题考查了完全平方公式,关键是要熟练掌握完全平方公式的变形,做到灵活运用.11.【分析】把x=y代入方程组得到新的方程组.求解即可.【解答】解:∵x=y,∴,解得a=﹣3,故答案为:﹣3.【点评】本题主要考查了二元一次方程组的解,解题的关键是把x=y代入方程组得到新的方程组.12.【分析】过点E作EF∥AB,利用平行线的性质可知∠1+∠2=∠AEC=90°,进而得到∠2的度数.【解答】解:如图,过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠1=∠AEF,∠2=∠CEF,∴∠1+∠2=∠AEF+∠CEF=∠AEC=90°,又∵∠1=75°,∴∠2=15°.故答案为:15°.【点评】本题主要考查平行线的性质,掌握平行线的性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.13.【分析】设付款时用了x张5元面值的人民币,y张2元面值的人民币,根据“小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元”,列出关于x和y的二元一次方程,分情况讨论x和y的取值情况,找出符合实际情况的x和y的值即可.【解答】解:设付款时用了x张5元面值的人民币,y张2元面值的人民币,根据题意得:5x+2y=27,当x=1时,5+2y=27,y=11,(符合题意),当x=2时,10+2y=27,y=8.5,(不合题意,舍去),当x=3时,15+2y=27,y=6,(符合题意),当x=4时,20+2y=27,y=3.5,(不合题意,舍去),当x=5时,25+2y=27,y=1,(符合题意),当x=6时,30+2y=27,y=﹣1.5(不合题意,舍去),当x≥6时,y<0,不符合实际,即有3种情况符合实际情况,付款的方式有3种,故答案为:3.【点评】本题考查了二元一次方程的应用,正确找出等量关系,列出二元一次方程是解题的关键.14.【分析】根据三角形内角和定理求出x+y=145,在△FDC中,根据三角形内角和定理求出即可.【解答】解:∵∠DCE=∠DEC,∠DFG=∠DGF,∴设∠DCE=∠DEC=x°,∠DFG=∠DGF=y°,则∠FEG=∠DEC=x°,∵在△GFE中,∠EFG=35°,∴∠FEG+∠DGF=x°+y°=180°﹣35°=145°,即x+y=145,在△FDC中,∠CDF=180°﹣∠DCE﹣∠DFC=180°﹣x°﹣(y°﹣35°)=215°﹣(x°+y°)=70°,故答案为:70°.【点评】本题考查了三角形内角和定理,能求出x+y=145是解此题的关键.三、简答题15.【分析】(1)先算乘方,再算乘法,最后算加减;(2)先算乘方,再算乘法即可;(3)先算乘法,再合并同类项即可;(4)①×2﹣②得出3y=15,求出y,把y=5代入①求出x即可;(5)整理后①+②得出6x=18,求出x,把x=3代入①求出y即可;(6)先变形,根据同底数幂的乘法法则进行计算,求出m,最后代入求出即可.【解答】解:(1)原式=3+×(﹣8)﹣1=3﹣2﹣1=0;(2)原式=9x6•(﹣8y6)÷(﹣6xy4)=12x5y2;(3)原式=x2﹣y2﹣x2+xy﹣y2=xy﹣y2;(4)①×2﹣②得:3y=15,解得:y=5,把y=5代入①得:2x﹣5=﹣4,解得:x=0.5,所以原方程的解为;(5)整理得:①+②得:6x=18,解得:x=3,把x=3代入①得:y=0.5,所以原方程的解为:;(6)∵9m÷32m+2=m,∴32m﹣(2m+2)=3﹣m,∴2m﹣(2m+2)=﹣m,∴m=2,∴m2+2m+1=4+4+1=9.【点评】本题考查了整式的混合运算,有理数的混合运算和解二元一次方程组等知识点,能正确运用运算法则进行化简和计算是解此题的关键.16.【分析】①先提公因式,再利用平方差公式因式分解;②先提公因式,再利用平方差公式因式分解;③利用完全平方公式因式分解;④先利用平方差公式,再利用完全平方公式因式分解;⑤先根据多项式乘多项式的运算法则计算,再利用完全平方公式因式分解;⑥利用十字相乘法和完全平方公式因式分解.【解答】解:①4m2﹣16n2=4(m2﹣4n2)=4(m+2n)(m﹣2n);②(a﹣b)(3a+b)2+(a+3b)2(b﹣a)=(a﹣b)(3a+b)2﹣(a+3b)2(a﹣b)=(a﹣b)[(3a+b)2﹣(a+3b)2]=(a﹣b)[(3a+b)+(a+3b)][(3a+b)﹣(a+3b)]=(a﹣b)(4a+4b)(2a﹣2b)=8(a﹣b)2(a+b);③(x2+2x)2+2(x2+2x)+1=(x2+2x+1)2=(x+1)4;④(a2+4)2﹣16a2=(a2+4)2﹣(4a)2=(a2+4a+4)(a2﹣4a+4)=(a+2)2(a﹣2)2;⑤(x+2)(x+4)+1=x2+6x+8+1=x2+6x+9=(x+3)2;⑥(x2+4x)2﹣x2﹣4x﹣20=(x2+4x)2﹣(x2+4x)﹣20=(x2+4x﹣5)(x2+4x+4)=(x+5)(x﹣1)(x+2)2.【点评】本题考查的是多项式的因式分解,掌握提公因式法,公式法和十字相乘法因式分解的一般步骤是解题的关键.17.【分析】(1)把两个解代入方程组得出三个方程,组成方程组,求出方程组的解,代入即可求出答案;(2)把弟弟因把c写错而解得代入cx﹣7y=8,得到关于c的方程,解方程即可求解.【解答】解:(1)∵哥哥正确地解得,弟弟因把c写错而解得,∴代入得:3a﹣2b=2,3c+14=8,﹣2a+2b=2,即,解方程②得:c=﹣2,①+③得:a=4,把a=4代入①得:12﹣2b=2,b=5,∴a+b+c=4+5+(﹣2)=7.(2)∵弟弟因把c写错而解得,∴﹣2c﹣7×2=8,解得c=﹣11.故弟弟把c写错成了﹣11.【点评】本题考查了二元一次方程组得解,关键是得出关于a,b,c的方程组.18.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用m表示出来,代入方程求出m的值.【解答】解:由题意得三元一次方程组:化简得①+②﹣③得:2y=8m﹣60,y=4m﹣30 ④,②×2﹣①×3得:7y=14m,y=2m⑤,由④⑤得:4m﹣30=2m,2m=30,∴m=15.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.19.【分析】通过理解题意可知本题的两个等量关系,即定价﹣进价=48,6×(90%×定价﹣进价)=9×(定价﹣30﹣进价),根据这两个等量关系可列出方程组,求解即可.【解答】解:设该电器每台的进价为x元,定价为y元,由题意得,解得:.答:该电器每台的进价是162元,定价是210元.【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,根据等量关系,列出方程组.注意获利=定价﹣进价.20.【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;=正方形ABCD的面积+正方形ECGF的面积﹣三角形BGF的面积﹣三角形ABD (3)利用S阴影的面积求解.【解答】解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2 =(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×20=阴影50﹣30=20.【点评】本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.21.【分析】(1)由于∠OCB=90°,则OG=OA=4,再根据三角形面积公式可计算出GH=5,FH=4,所以OH=1,OF=5,所以点F对应的数轴上的数是﹣5,点H对应的数轴上的数是﹣1;(2)由∠AHF的平分线和∠AGH的平分线交于点M得到∠FHM=∠FHA,∠HGM=∠HGA,根据三角形外角性质得∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,则2∠M+2∠HGM=∠HGA+∠HAG,所以∠M=∠HAG=(∠HAO+∠OAG)=α+22.5°;(3)根据(2)中证明方法,可得到∠N=90°﹣∠FAO=90°﹣∠FAH﹣∠OAH=90°﹣15°﹣∠OAH=75°﹣∠OAH,再根据∠M=∠OAH+22.5°,即可得到∠M+∠N=97.5°.【解答】解:(1)如图1,∵AC的中点过数轴的原点O,AC=8,∴AO=4,∵△AGH的面积是10,∴×4×GH=10,解得GH=5,又∵∠AOG=90°,∠OAG=45°,∴OG=OA=4,∴OH=1,∴点H对应的数轴上的数是﹣1,∵△AHF的面积是8,∴FH•4=8,解得FH=4,∴OF=OH+FH=5,∴点F对应的数轴上的数是﹣5,故答案为:﹣5,﹣1;(2)如图2,∵∠AHF的平分线和∠AGH的平分线交于点M,∴∠FHM=∠FHA,∠HGM=∠HGA,∵∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,∴2∠M+2∠HGM=∠HGA+∠HAG,即2∠M=∠HAG,∴∠M=∠HAG=(∠HAO+∠OAG)=(α+45°)=α+22.5°;(3)如图2,∵∠EFH的平分线和∠FOC的平分线交于点N,∴∠NFO=∠EFO,∠NOF=∠COF,∴△FON中,∠N=180°﹣(∠NFO+∠NOF)=180°﹣(∠EFO+∠COF)=180°﹣(180°﹣∠AFO+180°﹣∠AOF)=180°﹣(360°﹣∠AFO﹣∠AOF)=180°﹣[360°﹣(180°﹣∠FAO)]=180°﹣(180°+∠FAO)=90°﹣∠FAO,即∠N=90°﹣∠FAH﹣∠OAH=90°﹣15°﹣∠OAH=75°﹣∠OAH,又∵∠M=∠OAH+22.5°,∴∠M+∠N=75°﹣∠OAH+∠OAH+22.5°=97.5°.【点评】本题属于三角形综合题,主要考查了等腰直角三角形的性质、三角形内角和定理、三角形的外角性质、角平分线的定义以及三角形面积的计算等知识的综合应用,熟练掌握等腰直角三角形的性质和三角形内角和定理是解决问题的关键.。
2017-2018学年度七年级(下)期中数学试卷(有答案及解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共16小题,共42.0分)1.下列运算正确的是()A. B. C. D.2.用加减法解方程组时,下列四种变形中正确的是()A. B. C. D.3.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为()A. B. C. D.4.根据图中提供的信息,可知一个杯子的价格是()A. 51元B. 35元C. 8元D. 元5.已知a,b满足方程组,则a-b的值为()A. B. 0 C. 1 D. 26.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角7.已知x+y=6,xy=4,则x2y+xy2的值为()A. 12B.C.D. 248.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.B.C.D.9.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19B. 18C. 16D. 1510.如图,点在延长线上,下列条件中不能判定BD∥AC的是()A.B.C.D.11.已知x a=3,x b=5,则x3a-2b=()A. 52B.C.D.12.如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成为一个矩形,通过计算两个图形(阴影部分)的面积,可以验证的等式是()A. B.C. D.13.如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A. 10,4B. 4,10C. 3,10D. 10,314.已知方程组和有相同的解,则a,b的值为()A. B. C. D.15.四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有()A. 4种B. 11种C. 6种D. 9种16.如图,AB∥EF,∠C=90°,则α、β、γ的关系是()A.B.C.D.二、填空题(本大题共4小题,共12.0分)17.若方程 2x m-1+y2n+m=是二元一次方程,则mn=______.18.如图,将三角板与直尺贴在一起,使三角板的直角顶点C(∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于______.19.已知2x+5y=1,则4x•32y的值为______.20.已知21=2,22=4,23=8,24=16,25=32,……,观察规律,试猜想22016的末位数字是______.三、计算题(本大题共3小题,共24.0分)21.用代入法解方程组:22.化简求值:(3a+b)2-(3a-b)(3a+b)-5b(a-b),其中a=1,b=-2.23.列方程解应用题在“元旦”期间,小明,小亮等同学随家长一同到我市某景区游玩,下面是买门票时,小明与他爸爸看了票价后的对话:票价:成人:每张35元;学生:按成人票价的5折优惠;团体票(16人以上含16人):按成人票价的a折优惠.爸爸:大人门票是每张35元,学生门票是5折优惠,我们一共12人,共需350元.小明:爸爸,等一下,让我算一算,如果按团体票方式买票,还可节省14元.试根据以上信息,解答以下问题:(1)小明他们一共去了几个成人?几个学生?(2)求票价中a的值.四、解答题(本大题共4小题,共42.0分)24.(1)已知:如图1,AE∥CF,易知∠A P C=∠A+∠C,请补充完整证明过程:证明:过点P作MN∥AE∵MN∥AE(已作)∴∠APM=______(______),又∵AE∥CF,MN∥AE∴∠MPC=∠______(______)∴∠APM+∠CPM=∠A+∠C即∠APC=∠A+∠C(2)变式:如图2-4,AE∥CF,P1,P2是直线EF上的两点,猜想∠A,∠A P1P2,∠P1P2C,∠C这四个角之间的关系,并直接写出以下三种情况下这四个角之间的关系.25.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.26.27.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的______.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底______.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.28.探索发现:如图1,已知直线l1∥l2,且l3和l1、l2分别相交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP记作∠1,∠BDP记作∠2,∠CPD记作∠3.点P在线段AB上.(1)若∠1=20°,∠2=30°,请你求出∠3的度数.归纳总结:(2)请你根据上述问题,请你找出图1中∠1、∠2、∠3之间的数量关系,并直接写出你的结论.实践应用:(3)应用(2)中的结论解答下列问题:如图2,点A在B的北偏东 40°的方向上,在C的北偏西45°的方向上,请你根据上述结论直接写出∠BAC的度数.拓展延伸:(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系(点P和A、B两点不重合),写出你的结论并说明理由.答案和解析1.【答案】D【解析】解:A、(a4)3=a12,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(2ab)3=8a3b3,故此选项错误;D、-a5•a5=-a10,故此选项正确.故选:D.分别利用同底数幂的除法、同底数幂的乘法、积的乘方法则分别判断得出即可.本题考查了同底数幂的除法、同底数幂的乘法、积的乘方,解题的关键是掌握相关运算的法则.2.【答案】C【解析】解:用加减法解方程组时,下列四种变形中正确的是,故选:C.方程组中第一个方程左右两边乘以2,第二个方程左右两边乘以3,将两方程y系数化为互为相反数,利用加减法求解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.【答案】A【解析】解:将150 000 000用科学记数法表示为:1.5×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选:C.要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.此题的关键是如何把左图中一杯一壶的已知量用到右图中,这就要找规律,仔细看不难发现,右图是左图的2倍+一个杯子.5.【答案】A【解析】解:②-①得:a-b=-1.故选:A.要求a-b的值,经过观察后可让两个方程相减得到.其中a的符号为正,所以应让第二个方程减去第一个方程即可解答.要想求得二元一次方程组里两个未知数的差,有两种方法:求得两个未知数,让其相减;观察后让两个方程式(或整理后的)直接相加或相减.6.【答案】B【解析】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.本题考查了余角和垂线的定义以及对顶角相等的性质.7.【答案】D【解析】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故选:D.直接利用提取公因式法分解因式进而求出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.【答案】A【解析】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°-∠BAC=40°,故选:A.根据角平分线定义求出∠BAC,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可.本题考查了角平分线定义和平行线的性质的应用,关键是求出∠BAC的度数,再结合∠ACD+∠BAC=180°.9.【答案】C【解析】解:设一个笑脸气球为x元,一个爱心气球为y元,由题意得,,解得:,则2x+2y=16.故选:C.设一个笑脸气球为x元,一个爱心气球为y元,根据图形找出等量关系:3个笑脸+一个爱心=14元,3个爱心+1个笑脸=18元,据此列方程组求出x和y的值,继而可求得第三束气球的价格.本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.10.【答案】B【解析】解:选项A中,∠1与∠2是直线AC、BD被AD所截形成的内错角,因为∠1=∠2,所以应是AC∥BD,故A选项不合题意.选项B中,∵∠3=∠4,∴AB∥CD (内错角相等,两直线平行),不能判定BD∥AC,所以B选项符合题意;选项C中,∵∠5=∠C,∴BD∥AC (内错角相等,两直线平行),所以C选项不合题意;选项D中,∵∠C+∠BDC=180°,∴BD∥AC(同旁内角互补,两直线平行),所以D 选项不合题意;故选:B.根据平行线的判定方法直接判定即可.本题主要考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.【答案】B【解析】解:∵x a=3,x b=5,∴x3a-2b=(x a)3÷(x b)2=33÷52=.故选:B.直接利用同底数幂的乘除运算法则将原式变形得出答案.此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.12.【答案】D【解析】解:由题意得:a2-b2=(a+b)(a-b).故选:D.利用正方形的面积公式可知剩下的面积=a2-b2,而新形成的矩形是长为a+b,宽为a-b,根据两者相等,即可验证平方差公式.此题主要考查平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.13.【答案】A【解析】解:把代入2x+y=16得12+■=16,解得■=4,再把代入x+y=★得★=6+4=10,故选:A.把代入2x+y=16先求出■,再代入x+y求★.本题主要考查了二元一次方程组的解,解题的关键是理解题意,代入法求解.14.【答案】D【解析】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选:D.因为方程组和有相同的解,所以把5x+y=3和x-2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.本题主要考查了二元一次方程的解及二元一次方程组的解法,正确理解题意,然后根据题意得到关于待定系数的方程组,解方程组是解答此题的关键.15.【答案】C【解析】解:设6人帐篷用了x个,4人帐篷用了y个,根据题意得:6x+4y=60,即y==,当x=0时,y=15;当x=2时,y=12;当x=4时,y=9;当x=6,y=6;当x=8时,y=3;当x=10时,y=0;则不同的搭建方案有6种.故选:C.设6人帐篷用了x个,4人帐篷用了y个,根据题意列出方程,求出方程的解即可得到结果.此题考查了二元一次方程的应用.(1)找出问题中的已知条件和未知量及它们之间的关系.(2)找出题中的两个关键的未知量,并用字母表示出来.(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.(4)根据未知数的实际意义求其整数解.16.【答案】C【解析】解:延长DC交AB与G,延长CD交EF于H.在直角△BGC中,∠1=90°-α;△EHD中,∠2=β-γ,∵AB∥EF,∴∠1=∠2,∴90°-α=β-γ,即α+β-γ=90°.故选:C.此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.17.【答案】-1【解析】解:由题意得:m-1=1,2n+m=1,解得:m=2.n=-,mn=-1,故答案为:-1.根据二元一次方程的定义可得m-1=1,2n+m=1,解方程可得m、n的值,进而得到答案.主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.18.【答案】65°【解析】解:∵∠ACB=90°,∠1=25°,∴∠3=90°-25°=65°,∵直尺的两边互相平行,∴∠2=∠3=65°.故答案为:65°.先求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,余角的定义,熟记性质是解题的关键.19.【答案】2【解析】【分析】根据同底数幂的运算法则即可求出答案.本题考查了幂的运算法则,解题的关键是熟练运用同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:当2x+5y=1时,4x•32y=22x•25y=22x+5y=21=2,故答案为2.20.【答案】6【解析】解:这组数个位数位:2、4、8、6…,每4个一个循环,2016÷4=506,余0,∴22016的个位数是6,故答案为6.这组数个位数位:2、4、8、6…,每4个一个循环,2016÷4=506,余0,故22016的个位数是6,本题考查的是位数特征,找到尾数循环的规律即可求解.21.【答案】解:由②得:x=1-5y③把③代入①得:2(1-5y)+3y=-19解这个方程,得y=3,把y=3代入③,得x=-14所以原方程组的解是.【解析】由方程组第二个方程表示出x,代入第一个方程消元x求出y的值,进而求出x的值,即可确定出方程组的解.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】解:原式=9a2+6ab+b2-9a2+b2-5ab+5b2=ab+7b2,当a=1,b=-2,原式=-2+28=26.【解析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:(1)设他们一共去了x个成人,则有(12-x)个学生,由题意得,35x+35×0.5×(12-x)=350,解得:x=8,12-x=12-8=4,答:他们一共去了8个成人,4个学生;(2)由题意,得35×16×=350-14,解得:a=6.答:a的值为6.【解析】(1)设他们一共去了x个成人,则有(12-x)个学生,根据总票价话费350元,列出方程,求出x的值即可;(2)根据团体价可节省14元,求出团体价所花费的钱数,然后列方程求出a的值即可.本题考查了一元一次方程的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.【答案】∠A两直线平行,内错角相等∠C两直线平行,内错角相等【解析】(1)证明:过点P作MN∥AE,∵MN∥AE(已作),∴∠APM=∠A(两直线平行,内错角相等),又∵AE∥CF,MN∥AE,∴∠MPC=∠C(两直线平行,内错角相等),∴∠APM+∠CPM=∠A+∠C,即∠APC=∠A+∠C,故答案为:∠A,两直线平行两直线平行;C,两直线平行两直线平行;(2)∠AP1P2+∠P1P2C-∠A-∠C=180°,∠AP1P2+∠P1P2C+∠A-∠C=180°,∠AP1P2+∠P1P2C-∠A+∠C=180°.(1)根据平行线的性质得到∠APM=∠A,∠MPC=∠C,于是得到∠APM+∠CPM=∠A+∠C,即可得到结论;(2)根据(1)的结论即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.25.【答案】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC-∠PBC,∠2=∠BCD-∠BCQ,∴∠1=∠2.【解析】先判定AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.26.【答案】C不彻底(x-2)4【解析】解:(1)运用了C,两数和的完全平方公式;(2)x2-4x+4还可以分解,分解不彻底;(3)设x2-2x=y.(x2-2x)(x2-2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2-2x+1)2,=(x-1)4.(1)完全平方式是两数的平方和与这两个数积的两倍的和或差;(2)x2-4x+4还可以分解,所以是不彻底.(3)按照例题的分解方法进行分解即可.本题考查了运用公式法分解因式和学生的模仿理解能力,按照提供的方法和样式解答即可,难度中等.27.【答案】解:(1)∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2=50°;(2)∠1+∠2=∠3,理由:∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3;(3)如图2,过A点作AF∥BD,则AF∥BD∥CE,∴∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)当P点在A的外侧时,如图3,过P作PF∥l1,交l4于F,∴∠1=∠FPC,∵l1∥l4,∴PF∥l2,∴∠2=∠FPD,∵∠CPD=∠FPD-∠FPC,∴∠CPD=∠2-∠1,当P点在B的外侧时,如图4,过P作PG∥l2,交l4于G,∴∠2=∠GPD,∵l1∥l2,∴PG∥l1,∴∠1=∠CPG,∵∠CPD=∠CPG-∠GPD,∴∠CPD=∠1-∠2.【解析】(1)根据两直线平行,同旁内角互补,即可得出∠1+∠PCD+∠PDC+∠2=180°,再根据在△PCD中,∠3+∠PCD+∠PDC=180°,即可得到∠3=∠1+∠2=50°;(2)根据l1∥l2,可得∠1+∠PCD+∠PDC+∠2=180°,再根据在△PCD中,∠3+∠PCD+∠PDC=180°,即可得到∠1+∠2=∠3;(3)过A点作AF∥BD,根据AF∥BD∥CE,即可得到∠BAC=∠DBA+∠ACE=40°+45°=85°;(4)分两种情况进行讨论:P点在A的外侧,P点在B的外侧,分别根据平行线的性质进行求解即可.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.解决问题的关键是作平行线,构造内错角.。
江苏省苏科版2017-2018学年七年级下期中考试数学试题含答案

2017~2018学年度第二学期期中考试七年级数学试题(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效.一、选择题(每小题3分,共18分)1.如图所示的图案是一些汽车的车标,可以看作由“基本图案”经过平移得到的是A .B .C .D .2.下列每组数分别是三根木棒的长度,能用它们搭成三角形的是 A .2cm ,2cm ,4cm B .3cm ,9cm ,5cm C .5cm ,12cm ,13cmD .6cm ,10cm ,4cm3.下列运算中,正确的是A .2224ab a b =() B .2242a a a += C .236•a a a =D .632a a a ÷=4.若a b <,则下列各式一定成立的是 A .+3+3a b > B .22ab>C .11a b --<D .33a b > 5.下列各式从左边到右边的变形中,是因式分解的是 A .a x y ax ay +=+()B .24444x x x x +=-+-() C .()()224x x x +-=-2D .2105521x x x x -=-()6.已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为A .⎩⎨⎧==21b aB .⎩⎨⎧=-=26b aC .⎩⎨⎧==214b a D .⎩⎨⎧-==614b a二、填空题(每空3分,共30分) 7.23-= ▲ .8.将0.00000034用科学记数法表示为 ▲ .9.一个多边形的内角和等于1080°,则这个多边形是 ▲ 边形. 10.若2,3m n a a ==,则m na -= ▲ .11.如果32x y =⎧⎨=⎩是方程632x by +=的解,则b = ▲ .12.若()()2153x mx x x n +-=++,则mn = ▲ . 13.计算:()20182017133⎛⎫-⨯= ⎪⎝⎭▲ .14.若3=+b a ,2=ab ,则=+22b a ▲ .15.已知关于x 的不等式()224m x m -->的解集为x <2,则m 的取值范围是 ▲ . 16.已知方程组1122a x y b a x y b +=⎧⎨+=⎩的解是24x y =⎧⎨=⎩,则关于x 、y 的方程组1112222222a x y a b a x y a b -=+⎧⎨-=+⎩的解是▲ .三、解答题(本大题共102分)17.(10分)(1)计算:()-201+232π⎛⎫---- ⎪⎝⎭;(2)先化简,再求值:()()()2333x y x y x y ++-﹣,其中3,2x y ==-.18.(10分)把下列各式因式分解:(1)29x - (2)32232a b a b ab +-19.(10分)解方程组:(1) 215x y x y +=⎧⎨-=-⎩ (2)22123x y x y +=⎧⎪⎨+=⎪⎩20.(10分)解下列不等式,并把它们的解集在数轴上表示出来................. (1)()2134x x +-> (2)63421---x x >3121. (10分)(1)求x 的值:x 2·x -34·3281=+x;(2)已知2310x x --=,求代数式()()()2131+2+5x x x -+-的值.22.(8分)如图,D 、E 、F 分别在△ABC 的三条边上,DE ∥AB ,∠1+∠2=180°. (1)试说明:DF ∥AC;(2)若∠1=110°,DF 平分∠BDE,求∠C 的度数.23.(8分)观察下列各式:21543⨯+=…………① 23745⨯+=…………② 25947⨯+=…………③……探索以上式子的规律: (1)试写出第6个等式;(2)试写出第n 个等式(用含n 的式子表示),并用你所学的知识说明第n 个等式成立.24. (10分)用二元一次方程组解决问题:某商场按定价销售某种商品时,每件可获利35元;按定价的八折销售该商品5件与将定价降低20元销售该商品8件所获得的利润相等.求该商品每件的进价、定价各是多少元?25. (12分)仔细阅读下列解题过程: 若2222690a ab b b ++-+=,求a 、b 的值. 解:∵2222690a ab b b ++-+=∴2222690a ab b b b +++-+= ∴()()2230a b b ++-= ∴+0,30a b b =-= ∴3,3a b =-=根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值; (2)已知2254210a b ab b +--+=,求a 、b 的值; (3)若=+4m n ,28200mn t t +-+=,求2m tn -的值.26.(14分)已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若()24+21yx =,直接写出k 的值;(4)若k ≤1,设23m x y =-,且m 为正整数,求m 的值.2017-2018学年度七年级下学期数学期中试卷答案一、选择题(每小题3分,共18分) 1.D 2.C 3.A 4.C 5.D 6.C 二、填空题(每小题3分,共30分)7. 19 8.73.410-⨯ 9.八 10. 2311.7 12.10 13.13- 14. 5 15.2m < 16.42x y =⎧⎨=-⎩三、解答题(本大题共102分)17.(本题满分10分,每小题5分)(1)2(2)2618xy y +,3618.(本题满分10分,每小题5分)(1)()()33x x +- (2)()2ab a b -19.(本题满分10分,每小题5分)(1) 32x y =-⎧⎨=⎩ (2)26x y =-⎧⎨=⎩ 20.(本题满分10分,每小题5分)(1)6x <,略 (2)x <-2,略 21.(本题满分10分,每小题5分)(1)2x =- (2)226x x -,2 22.(本题满分8分)(1) 略 (2)70°23.(本题满分8分,每小题4分)(1)21115413⨯+= (2)()()()22123421n n n -++=+理由:()()21234n n -++=246234n n n +--+=2441n n ++=()221n +24.(本题满分10分)设该商品每件的定价为x 元,进价为y 元,由题意得:()()3550.8820x y x y x y -=⎧⎪⎨-=--⎪⎩,解得5520x y =⎧⎨=⎩. 答:该商品每件的定价为55元,进价为20元.25.(本题满分12分,每小题4分)(1)2=3x y + (2)2,1a b == (3)126.(本题满分14分)(1)214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩ ……(3分)(2)52k<-……(3分)(3)34k=或……(4分)(4)12m=或……(4分)。
2017-2018学年度七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab22.下列长度的3条线段,能首尾依次相接组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.1cm,3cm,4cm3.已知如图直线a,b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠2=∠3C.∠1=∠4D.∠2+∠5=180°4.多项式x2﹣4分解因式的结果是()A.x(x﹣4)B.(x﹣2)2C.(x+4)(x﹣4)D.(x+2)(x﹣2)5.给定下列条件,不能判定△ABC三角形是直角三角形的是()A.∠A=35°,∠B=55°B.∠A+∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C6.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±207.如图,在边长为a的正方形中裁掉一个边长为b的小正方形(如图Ⅰ),将剩余部分沿虚线剪开后拼接(如图Ⅱ),通过计算,用接前后两个图形中阴影部分的面积可以验证等式()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a+2b)(a﹣b)=a2+ab﹣2b2D.(a﹣b)2=a2﹣2ab+b28.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6B.7C.8D.9二、填空题(每小题3分,共30分)9.计算:y6÷y2=.10.已知某种植物花粉的直径为0.00035cm,将数据0.00035用科学记数法表示为.11.分解因式:a2﹣2a=.12.一个多边形的内角和等于1260°,则这个多边形是边形.13.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为.14.若a m=3,a n=4,则a m﹣n=.15.如图所示,小华从A点出发,沿直线前进12米后向左转24°,再沿直线前进12米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是米.16.已知:a﹣b=3,ab=5,则代数式a2+b2的值是.17.如图,△ABC两内角的平分线AO、BO相交于点O,若∠AOB=112°,则∠C=.18.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想(a+b)11的展开式第三项的系数是.三、解答题(本题共9题,满分96分)19.(20分)计算(1)()﹣2﹣(﹣)﹣1+()0(2)m3•m3•m2+(m4)2+(﹣2m2)4(3)(1+2x﹣y)(1﹣2x+y)(4)(3a+1)(﹣1+3a)﹣(3a+1)220.(15分)因式分解(1)4x2﹣64(2)2ax2﹣4axy+2ay2(3)16m4﹣8m2n2+n421.(7分)先化简,再求值:(2x+2)(2﹣2x)+5x(x+1)﹣(x﹣1)2,其中x=﹣2.22.(7分)画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC平移后得到△A′B′C′,图中点B′为点B的对应点.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出△ABC中AB边上的中线CD;(3)画出△ABC中BC边上的高线AE;(4)△A′B′C′的面积为.23.(7分)如图,某校有一块长为(5a+b)米,宽为(3a+b)米的长方形空地,中间是边长(a﹣b)米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.(1)用含a,b的代数式表示需要硬化的面积并化简;(2)当a=5,b=2时,求需要硬化的面积.24.(8分)如图,直线AC∥BD,BC平分∠ABD,DE⊥BC,∠MAB=80°,求∠EDB的度数.25.(8分)已知:如图∠1=∠2,∠C=∠D,请证明:∠A=∠F.26.(10分)当我们利用两种不同的方法计算同一图形的面积时,可以得到一个等式,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2可得等式:.(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)利用图3中的纸片(足够多),画出一种拼图,使该拼图可将多项式2a2+5ab+2b2因式分解,并写出分解结果.27.(14分)如图1,直线AB∥CD,直线l与直线AB,CD相交于点E,F,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.(1)若∠PEF=48°,点Q恰好落在其中的一条平行线上,请直接写出∠EFP的度数.(2)若∠PEF=75°,∠CFQ=∠PFC,求∠EFP的度数.2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.【解答】解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方法则,熟练掌握运算性质和法则是解题的关键.2.【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,分别判断出即可.【解答】解:∵三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,∴A.1cm,2cm,4cm,∵1+2<4,∴无法围成三角形,故此选项A错误;B.8cm,6cm,4cm,∵4+6>8,∴能围成三角形,故此选项B正确;C.12cm,5cm,6cm,∵5+6<12,∴无法围成三角形,故此选项C错误;D.1cm,3cm,4cm,∵1+3=4,∴无法围成三角形,故此选项D错误.故选:B.【点评】此题主要考查了三角形三边关系,此定理应用比较广泛,同学们应熟练应用此定理.3.【分析】由同位角相等两直线平行,根据∠1=∠2,判定出a与b平行.【解答】解:∵∠1=∠2(已知),∴a∥b(同位角相等,两直线平行).而∠2=∠3,∠1=∠4,∠2+∠5=180°都不能判断a∥b,故选:A.【点评】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行.4.【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故选:D.【点评】此题主要考查了公式法因式分解,正确应用公式是解题关键.5.【分析】根据三角形的内角和定理即可求得三角形中最大的角,即可作出判断.【解答】解:A、∠C=180°﹣∠A﹣∠B=180°﹣35°﹣55°=90°,则是直角三角形;B、∠A+∠B=∠C,则∠C=90°,是直角三角形;C、最大角∠C=×180°=90°,是直角三角形;D、∠A=∠B=2∠C,又∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,不是直角三角形.故选:D.【点评】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.【分析】易求出图(1)阴影部分的面积=a2﹣b2,图(2)中阴影部分进行拼接后,长为a+b,宽为a﹣b,面积等于(a+b)(a﹣b),由于两图中阴影部分面积相等,即可得到结论.【解答】解:图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2﹣b2;图(2)中阴影部分为矩形,其长为a+b,宽为a﹣b,则其面积为(a+b)(a﹣b),∵前后两个图形中阴影部分的面积,∴a2﹣b2=(a+b)(a﹣b).故选:A.【点评】本题考查了利用几何方法验证平方差公式:根据拼接前后不同的几何图形的面积不变得到等量关系.8.【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .【解答】解:连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故选:B .【点评】此题主要考查了三角形面积,解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.二、填空题(每小题3分,共30分)9.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:y 6÷y 2=y 4.故答案为:y 4.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.00035用科学记数法表示为3.5×10﹣4,故答案为:3.5×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.【分析】观察原式,找到公因式a,提出即可得出答案.【解答】解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).【点评】提公因式法的直接应用,此题属于基础性质的题.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.12.【分析】这个多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1260,解得n=9.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故答案为:56°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.14.【分析】根据a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n)进行计算即可.【解答】解:a m﹣n=a m÷a n=3÷4=,故答案为:.【点评】此题主要考查了同底数幂的除法,关键是掌握同底数幂的除法法则:底数不变,指数相减.15.【分析】多边形的外角和为360°,每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走的路程:15×12=180米.故答案是:180.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.16.【分析】直接利用完全平方公式将原式变形进而得出答案.【解答】解:∵a﹣b=3,ab=5,∴(a﹣b)2=a2﹣2ab+b2=9,∴a2+b2=9+2×5=19.故答案为:19.【点评】此题主要考查了完全平方公式,正确将已知变形是解题关键.17.【分析】根据三角形内角和定理求出∠OAB+∠OBA,根据角的平分线定义得出∠CAB=2∠OAB,∠CBA=2∠OBA,求出∠CAB+∠CBA,根据三角形内角和定理求出即可.【解答】解:∵∠AOB=112°,∴∠OAB+∠OBA=180°﹣∠AOB=68°,∵△ABC两内角的平分线AO、BO相交于点O,∴∠CAB=2∠OAB,∠CBA=2∠OBA,∴∠CAB+∠CBA=2(∠OAB+∠OBA)=136°,∴∠C=180°﹣(∠CAB+∠CBA)=180°﹣136°=44°,故答案为:44°.【点评】本题考查了三角形内角和定理和角平分线定义,能求出∠CAB+∠CBA的度数是解此题的关键.18.【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出(a+b)11的展开式第三项的系数.【解答】解:∵(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5……∴依据规律可得到:(a+b)2第三个数为1,(a+b)3第三个数为3=1+2,(a+b)4第三个数为6=1+2+3,…(a+b)11第三个数为:1+2+3+…+9+10==55.故答案为:55.【点评】本题考查了完全平方公式,各项是按a的降幂排列的,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.三、解答题(本题共9题,满分96分)19.【分析】(1)原式利用零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用同底数幂的乘法法则,幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用平方差公式,以及完全平方公式化简即可得到结果;(4)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果.【解答】解:(1)原式=9+4+1=14;(2)原式=m8+m8+16m8=18m8;(3)原式=[1+(2x﹣y)][1﹣(2x﹣y)]=1﹣4x2+4xy﹣y2;(4)原式=9a2﹣1﹣9a2﹣6a﹣1=﹣6a﹣2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】(1)直接提取公因式4,再利用平方差公式分解因式即可;(2)直接提取公因式2a,再利用完全平方公式分解因式即可;(3)直接利用完全平方公式分解因式,进而利用平方差公式分解因式即可.【解答】解:(1)4x2﹣64=4(x2﹣16)=4(x+4)(x﹣4);(2)2ax2﹣4axy+2ay2=2a(x2﹣2xy+y2)=2a(x﹣y)2;(3)16m4﹣8m2n2+n4=(4m2﹣n2)2=(2m+n)2(2m﹣n)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】根据整式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=4﹣4x2+5x2+5x﹣x2+2x﹣1=7x+3=﹣14+3=﹣11【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.22.【分析】(1)直接利用得出平移后对应点位置进而得出答案;(2)直接利用中线的定义得出答案;(3)直接利用高线的作法得出答案;(4)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A′B′C′,即为所求;(2)如图所示:CD即为所求;(3)如图所示:AE即为所求;(4))△A′B′C′的面积为:×4×4=8.故答案为:8.【点评】此题主要考查了平移变换以及三角形面积求法和三角形中线、高线的作法,正确把握相关定义是解题关键.23.【分析】(1)根据题意和长方形面积公式即可求出答案.(2)将a与b的值代入即可求出答案.【解答】解:(1)硬化总面积为(5a+b)(3a+b)﹣(a﹣b)2=15a2+8ab+b2﹣a2+2ab﹣b2=14a2+10ab;(2)当a=5、b=2时,14a2+10ab=14×52+10×5×2=450,答:需要硬化的面积为450米2.【点评】本题考查代数式求值,解题的关键是根据题意列出代数式,本题属于基础题型.24.【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD=∠ABD=40°,进而得出答案.【解答】解:∵AC∥BD,∠MAB=80°,∴∠ABD=∠MAB=80°,∵BC平分∠ABD,∴∠CBD=∠ABD=40°,∵DE⊥BC,∴∠BED=90°,∴∠EDB=90°﹣∠CBD=50°.【点评】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD的度数是解题关键.25.【分析】由∠1=∠2,∠1=∠DGH,根据同位角相等,两直线平行,易证得DB∥EC,又由∠C=∠D,易证得AC∥DF,继而证得结论.【解答】证明:∵∠1=∠2(已知),又∵∠1=∠DGH(对顶角相等),∴∠2=∠DGH(等量代换).∴DB∥EC(同位角相等,两直线平行).∴∠ABD=∠C(两直线平行,同位角相等)∵∠C=∠D(已知)∴∠ABD=∠D(等量代换)∴AC∥DF(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.26.【分析】(1)根据图2,利用直接求与间接法分别表示出正方形面积,即可确定出所求等式;(2)根据(1)中结果,求出所求式子的值即可;(3)根据已知等式,做出相应图形,如图所示.【解答】解:(1)∵由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2∴由图2可得等式:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)如图所示:∴2a2+5ab+2b2=(2a+b)(a+2b)【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.27.【分析】(1)①如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;①如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC 得,∠PFC=2x根据平行线的性质即可得到结论.【解答】解:(1)①如图1,当点Q落在AB上,∴FP⊥AB,∴∠EFP=90°﹣∠PEF=42°,①如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°﹣∠PEF=132°,∴∠PFE=QFE=66°;(2)①如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;②如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=PFC得,∠PFC=2x,∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°,综上所述,∠EFP的度数是35°或63°.【点评】本题考查了平行线的性质,折叠的性质,正确的作出图形是解题的关键.。
2017-2018学年七年级数学下期中考试卷及答案

2017-2018学年七年级数学下期中考试卷及答案2017 — 2018 学年度第二学期初一年级数学学科期中检测试卷(全卷满分150 分,答题时间120 分钟)一、选择题(共8 小题,每题 3 分,共 24 分)1.以下图形中,能将此中一个图形平移获得另一个图形的是(▲)A. B.c. D.2 .以下计算正确的选项是(▲)A. B.c. D.3 .以下长度的 3 条线段,能首尾挨次相接构成三角形的是(▲)A .1c,2c, 4cB. 8c,6c, 4cc .15c, 5c, 6cD. 1c, 3c,4c4 .以下各式能用平方差公式计算的是(▲)A. B.c. D.5 .若 , ,则的值为(▲)A . 6B. 8c. 11D. 186 .如图, 4 块完整同样的长方形围成一个正方形. 图中阴影部分的面积能够用不一样的代数式进行表示,由此能考证的等式是(▲)A. B.c. D.7 .当 x=﹣6, y=时,的值为(▲)A.﹣ 6B. 6c.D.8.如图,四边形 ABcD中, E、 F、 G、 H 挨次是各边中点,o 是形内一点,若四边形AEoH、四边形BFoE、四边形cGoF 的面积分别为 7、 9、 10,则四边形DHoG面积为(▲)A . 7B. 8c. 9D.10二、填空题(共10 小题,每题 3 分,共 30 分)9.随意五边形的内角和与外角和的差为度.10.已知一粒米的质量是 0.000021 千克,这个数字用科学记数法表示为.11 .假如一个完整平方式,则=.12.已知,,则的值是 ______.13.假如( x+1)( x+)的乘积中不含 x 的一次项,则的值为.14 .若,则= .15. 若 { █ (x=3@y=-2) 是方程组 { █ (ax+by=1@ax-by=5) 的解,则 a+b=________.16.已知,且,那么的值为.17.如图,将△ ABc 沿 DE、 EF 翻折,极点 A,B 均落在点o 处,且 EA与 EB重合于线段 Eo,若∠ cDo+∠ cFo= 78°,则∠ c 的度数为 =.18.如图,长方形 ABcD中, AB=4c,Bc=3c,点 E 是 cD 的中点,动点 P 从 A 点出发,以每秒 1c 的速度沿 A→B→ c→ E运动,最后抵达点 E.若点 P 运动的时间为 x 秒,那么当x=_________ 时,△ APE的面积等于.三、解答题(本大题共有 10 小题,共 96 分.请在答题卡指定地区内作答)19 .计算(每题 4 分,共 16 分)(1)(2)(3)(4)( a-b+ 1)( a+ b- 1)20.解方程组(每题 4 分,共 8 分)(1)(2)21.(此题满分 8 分)绘图并填空:如图,每个小正方形的边长为 1 个单位,每个小正方形的极点叫格点.(1)将△ ABc 向左平移 8 格,再向下平移 1 格.请在图中画出平移后的△ A′ B′ c′(2)利用网格线在图中画出△ ABc 的中线 cD,高线 AE;(3)△ A′ B′ c′的面积为 _____.22.(此题满分 6 分)已知:如图, AB∥ cD,EF 交 AB于 G,交 cD 于 F,FH均分∠ EFD,交 AB于 H,∠ AGE=40°,求∠ BHF 的度数.23.(此题满分 10 分)已知:如图 , 在△ ABc 中,BD⊥ Ac 于点 D,E 为 Bc 上一点 , 过 E 点作 EF⊥ Ac, 垂足为 F, 过点 D作 DH ∥Bc 交 AB于点 H.(1) 请你补全图形。
【3套打包】南京市南京市第一中学 最新七年级下册数学期中考试题

七年级(下)期中考试数学试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,每一小题选对得3分,不选、选错或选出的代号超过一个的律得0分)1.(3分)如图,∠1和∠2是对顶角的是()A.B.C.D.2.(3分)0.0001的算术平方根是()A.0.1B.+0.1C.0.01D.±0.013.(3分)如图,直线a∥b,∠1=54°,则∠2的度数是()A.54°B.126°C.36°D.136°4.(3分)在平面直角坐标系中,点P(﹣1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°6.(3分)下列命题:①两点确定一条直线;②相等的角是直角;③不相等的角不是内错角;④邻补角是两个互补的角,其中是假命题的是()A.②③B.①④C.②④D.③④7.(3分)如图,AB⊥BC,垂足为B,D为BC上任意一点,则点A到直线BC的距离是()A.线段AB的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度8.(3分)下列实数:﹣8,,,3.14159265,其中,无理数的个数是()A.1个B.2个C.3个D.4个9.(3分)如图,在平面直角坐标系中,圆A经过平移得到圆O,圆A上一点P的坐标为(a,b),经平移后在圆O上的对应点为P′,则P′的坐标是()A.(a﹣4,b+3)B.(a﹣4,b﹣3)C.(a+4,b+3)D.(a+4,b﹣3)10.(3分)如图,A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,按此规律,点A2018的坐标为()A.(504,504)B.(505,﹣504)C.(505,505)D.(﹣505,505)二、填空题(共6小题,每小题3分,共18分,请将结果直接写在答题卷相应位置上)11.(3分)﹣的相反数是.12.(3分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为.13.(3分)若x、y满足+(y﹣1)2=0,则x+y=.14.(3分)小明出家门向南走400m到孝武超市,再从孝武超市向西走300m到中百仓储,若以正东、正北方向为x轴、y轴的正方向,将孝武超市标记为(0,﹣400),则中百仓储的坐标是.15.(3分)如果的小数部分为a,的整数部分为b,求a+b﹣的值.16.(3分)定义:平面内的两条直线l1与l2相交于点O,对于该平面内任意一点M,M点到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,“距离坐标”为(3,4)的点的个数是个.三、解答题(本大题共8小题,满分72分,解等写在答题卷上)17.(8分)计算(1);(2).18.(8分)如图,AB,CD,EF相交于O.(1)写出∠DOF,∠DOA的对顶角;(2)若∠BOD=60°,求∠AOC,∠AOD的度数;19.(8分)如图1,将两块边长均为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形.(1)求出大正方形的面积.(2)求出大正方形的边长,并估计这个边长的值在哪两个相邻的整数之间?20.(8分)如图,AB∥DE,∠B=80°,∠D=125°,求∠C的度数.21.(8分)已知2x+1的平方根是±4,4x﹣8y+2的立方根是﹣2,求﹣10(x+y)的立方根.22.(10分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.23.(10分)如图,长方形OABC中,O为平面直角坐标系的原点,点A,C的坐标分別为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标.(2)若过点C的直线交长方形的OA边干点D,且把长方形OABC的面积分成1:2的两部分,求点D 的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,再向右平移1个单位长度,得到对应线段C′D′,连接DC′,DD′,求△DC'D'的面积.24.(12分)直线MN与直线AB、CD分別相交于点E、F,∠MEB与∠CFM互补(1)如图1,试判断直线AB与直线CD的位置关系,并说明理由.(2)如图2,∠BEF与∠EFD的平分线交于点P,EP的延长线与CD交于点G,H是MN上一点,且GH⊥EG,求证:PF∥GH.(3)如图3,在(2)的条件下,连接PH,K是GH上一点,使∠PHK=∠HPK,作PQ平分∠EPK,求证:∠HPQ的大小是定值.2017-2018学年湖北省孝感市云梦县七年级(下)期中数学试参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,每一小题选对得3分,不选、选错或选出的代号超过一个的律得0分)1.(3分)如图,∠1和∠2是对顶角的是()A.B.C.D.【分析】根据对顶角的定义,判断解答即可.【解答】解:根据对顶角的定义,选项B的图形符合对顶角的定义.故选:B.【点评】本题考查了对顶角的定义,有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.2.(3分)0.0001的算术平方根是()A.0.1B.+0.1C.0.01D.±0.01【分析】根据算术平方根的求法可以求出所求数据的算术平方根.【解答】解:=0.01,故选:C.【点评】本题考查算术平方根,解答本题的关键是明确算术平方根的求法.3.(3分)如图,直线a∥b,∠1=54°,则∠2的度数是()A.54°B.126°C.36°D.136°【分析】先根据平行线的性质,求得∠3的度数,再根据邻补角,求得∠2的度数即可.【解答】解:∵a∥b,∴∠1=∠3=54°,∴∠2=180°﹣∠3=180°﹣54°=126°.故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.4.(3分)在平面直角坐标系中,点P(﹣1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣1,﹣5)所在的象限是第三象限.故选:C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【分析】根据“两直线平行,同位角相等”可得出∠BCD=∠1=40°,再根据DB⊥BC,得出∠BCD+∠2=90°,通过角的计算即可得出结论.【解答】解:∵AB∥CD,∠1=40°,∴∠BCD=∠1=40°.又∵DB⊥BC,∴∠BCD+∠2=90°,∴∠2=90°﹣40°=50°.故选:C.【点评】本题考查了平行线的性质以及垂直的性质,解题的关键是找出∠BCD=∠1=40°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.6.(3分)下列命题:①两点确定一条直线;②相等的角是直角;③不相等的角不是内错角;④邻补角是两个互补的角,其中是假命题的是()A.②③B.①④C.②④D.③④【分析】根据直角的定义、确定直线的条件、邻补角的定义、内错角的定义进行解答.【解答】解:①两点确定一条直线,是真命题;②相等的角不一定是直角,是假命题;③不相等的角也可能是内错角,是假命题;④邻补角是两个互补的角,是真命题,故选:A.【点评】本题考查了命题与定理的知识,解题的关键是了解直角的定义、确定直线的条件、邻补角的定义、内错角的定义等知识,难度不大.7.(3分)如图,AB⊥BC,垂足为B,D为BC上任意一点,则点A到直线BC的距离是()A.线段AB的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度【分析】根据点到直线的距离的概念判断即可.【解答】解;由图可得:点A到直线BC的距离是线段AB的长度,故选:A.【点评】此题考查点到直线的距离,关键是根据点到直线的距离的概念解答.8.(3分)下列实数:﹣8,,,3.14159265,其中,无理数的个数是()A.1个B.2个C.3个D.4个【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【解答】解:无理数有一个,故选:A.【点评】本题考查了无理数的定义,属于基础题,解答本题的关键是掌握无理数的三种形式.9.(3分)如图,在平面直角坐标系中,圆A经过平移得到圆O,圆A上一点P的坐标为(a,b),经平移后在圆O上的对应点为P′,则P′的坐标是()A.(a﹣4,b+3)B.(a﹣4,b﹣3)C.(a+4,b+3)D.(a+4,b﹣3)【分析】直接利用平移中点的变化规律求解即可.【解答】解:由点A的平移规律可知,此题点的移动规律是(x+4,y﹣3),照此规律计算可知P’的坐标为(a+4,b﹣3).故选:D.【点评】本题考查了坐标与图形的变化﹣平移,解决本题的关键是分别根据已知对应点找到各对应点的横纵坐标之间的变化规律.10.(3分)如图,A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,按此规律,点A2018的坐标为()A.(504,504)B.(505,﹣504)C.(505,505)D.(﹣505,505)【分析】点A2018在平面直角坐标系中的位置,经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2018在第一象限;第一象限的点A2(1,1),A6(2,2),A10(3,3)…观察易得到点的坐标═循环次数+1.【解答】解:由题可知第一象限的点:A2,A6,A10…角标除以4余数为2;第二象限的点:A3,A7,A7…角标除以4余数为3;第三象限的点:A4,A8,A12…角标除以4余数为0;第四象限的点:A5,A9,A13…角标除以4余数为1;由上规律可知:2018÷4=504 (2)∴点A2018在第一象限.又∵点A2(1,1),A6(2,2),A10(3,3)…在第一象限A2(0+1,+1)═A2(1,1);A6(1+1,1+1)═A6(2,2);A10(2+1,2+1)═A10(3,3)…∴A2018(504+1,504+1)═A2018(505,505)即点A2018的坐标为(505,505)故选:C.【点评】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标═循环次数+1或点的坐标═(n为角标)求解.二、填空题(共6小题,每小题3分,共18分,请将结果直接写在答题卷相应位置上)11.(3分)﹣的相反数是﹣.【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣的相反数是﹣(﹣),即﹣.故答案为:﹣.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.12.(3分)如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为30°.【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,进而求出∠CBE的度数.【解答】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°,∵∠ABC=100°,∴∠CBE的度数为:180°﹣50°﹣100°=30°.故答案为:30°.【点评】此题主要考查了平移的性质以及三角形内角和定理,得出∠CAB=∠EBD=50°是解决问题的关键.13.(3分)若x、y满足+(y﹣1)2=0,则x+y=.【分析】根据非负数的性质列方程求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,2x﹣1=0,y﹣1=0,解得x=,y=1,所以x+y=.故答案为:.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.(3分)小明出家门向南走400m到孝武超市,再从孝武超市向西走300m到中百仓储,若以正东、正北方向为x轴、y轴的正方向,将孝武超市标记为(0,﹣400),则中百仓储的坐标是(﹣300,﹣400).【分析】以小明家为坐标原点建立平面直角坐标系,然后写出中百仓储的坐标即可.【解答】解:如图,∵孝武超市标记为(0,﹣400),∴中百仓储的坐标为(﹣300,﹣400).故答案为:(﹣300,﹣400).【点评】本题考查了坐标确定位置,以小明家为坐标原点建立平面直角坐标系是解题的关键,作出图形更形象直观.15.(3分)如果的小数部分为a,的整数部分为b,求a+b﹣的值4.【分析】依据被开放数越大,对应的算术平方根越大估算出与的大小,从而求得a、b的值,然后再进行计算即可.【解答】解:∵4<5<9,∴2<<3.∴a=﹣2.∵36<37<49,∴6<<7.∴b=6.∴a+b﹣=﹣2+6﹣=4.故答案为:4.【点评】本题主要考查的是估算无理数的大小,求得a、b的值是解题的关键.16.(3分)定义:平面内的两条直线l1与l2相交于点O,对于该平面内任意一点M,M点到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,“距离坐标”为(3,4)的点的个数是4个.【分析】根据两条相交直线把平面分成四个部分,在每一个部分内都存在一个满足要求的距离坐标解答.【解答】解:∵直线l1,l2把平面分成四个部分,∴在每一部分内都有一个“距离坐坐标”为(3,4)的点,∴共有4个.故答案为:4【点评】本题是新定义题型,考查了点到直线的距离,点的坐标,读懂题目新定义,是解题的关键.三、解答题(本大题共8小题,满分72分,解等写在答题卷上)17.(8分)计算(1);(2).【分析】(1)直接利用二次根式的加减运算法则化简得出答案;(2)直接利用立方根的性质化简得出答案.【解答】解:(1)原式=+﹣=;(2)原式=﹣=0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8分)如图,AB,CD,EF相交于O.(1)写出∠DOF,∠DOA的对顶角;(2)若∠BOD=60°,求∠AOC,∠AOD的度数;【分析】(1)由对顶角的定义可得结论;(2)根据对顶角的性质和邻补角的性质解答即可.【解答】解:(1)∠DOF的对顶角是∠COE∠DOA的对顶角是∠BOC(2)∵∠AOC和∠BOD互为对顶角∴∠AOC=∠BOD=60°又∵∠AOD与∠BOD互补∴∠AOD=180°﹣60°=120°【点评】本题主要考查了邻补角和对顶角的定义及性质,熟练掌握邻补角和对顶角的定义及性质是解答此题的关键.19.(8分)如图1,将两块边长均为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形.(1)求出大正方形的面积.(2)求出大正方形的边长,并估计这个边长的值在哪两个相邻的整数之间?【分析】(1)由于大正方形是由两个小正方形所拼成的,易求得大正方形的面积为18;(2)根据大正方形的面积可得边长为;因此大正方形的边长不是整数,然后估算出的大小,从而求出与相邻的两个整数.【解答】解:(1)∵大正方形的面积等于两个小正方形的面积之和,∴大正方形的面积是32+32=18;(2)设大正方形的边长为x,则x2=18,∵x>0,∴x==3,∵4=<<=5,∴大正方形的边长在整数4和5之间.【点评】本题主要考查了正方形的面积公式以及估算无理数的大小.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.20.(8分)如图,AB∥DE,∠B=80°,∠D=125°,求∠C的度数.【分析】根据两直线平行,内错角相等,同旁内角互补,平行公理进行解答即可.【解答】解:如图,过点C作CF∥DE,则∠DCF+∠CDE=180°,∵∠D=125°,∴∠DCF=180°﹣125°=55°,又∵AB∥DE,∴AB∥CF,∴∠BCF=∠B=80°,∴∠BCD=∠BCF﹣∠DCF=80°﹣55°=25°.【点评】此题考查了平行线的判定与性质,综合应用平行线的判定与性质,求出角的度数是本题的关键.21.(8分)已知2x+1的平方根是±4,4x﹣8y+2的立方根是﹣2,求﹣10(x+y)的立方根.【分析】直接利用平方根的性质得出x的值,再利用立方根的定义得出y的值,进而得出答案.【解答】解:∵2x+1的平方根是±4,∴2x+1=16,∴x=,又∵4x﹣8y+2的立方根是﹣2,∴4x﹣8y+2=﹣8,∴4×﹣8y+2=﹣8,∴y=5,∴﹣10(x+y)=﹣10×(+5)=﹣125,∴﹣10(x+y)的立方根为:=﹣5.【点评】此题主要考查了实数运算,正确把握平方根以及立方根的定义是解题关键.22.(10分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(﹣2,2),行政楼(﹣2,﹣2),大门(0,﹣4),食堂(3,4),图书馆(4,﹣2).【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.23.(10分)如图,长方形OABC中,O为平面直角坐标系的原点,点A,C的坐标分別为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标(3,2).(2)若过点C的直线交长方形的OA边干点D,且把长方形OABC的面积分成1:2的两部分,求点D 的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,再向右平移1个单位长度,得到对应线段C′D′,连接DC′,DD′,求△DC'D'的面积.【分析】(1)根据长方形的性质求出点B的坐标;(2)根据三角形的面积公式、长方形的面积公式计算,得到答案;(3)根据平移的性质分别求出点C′的坐标、点D′的坐标,根据三角形面积计算计算即可.【解答】解:(1)∵四边形OABC是长方形,∴BC=OA=3,BA=OC=2,∴点B的坐标为:(3,2),故答案为:(3,2);(2)设D(x,0),由题意得,×2×x=×2×3,解得,x=2,∴点D的坐标为(2,0);(3)平移后的图形如图所示:由平移的性质可知,点C′的坐标为(1,﹣1),点D′的坐标为(3,﹣3),∴△DC'D'的面积等于梯形的面积减去两个直角三角形的面积=×(1+2)×3﹣×1×1﹣×2×2=2.【点评】本题考查的是平移的性质、三角形的面积计算,掌握平移规律是解题的关键.24.(12分)直线MN与直线AB、CD分別相交于点E、F,∠MEB与∠CFM互补(1)如图1,试判断直线AB与直线CD的位置关系,并说明理由.(2)如图2,∠BEF与∠EFD的平分线交于点P,EP的延长线与CD交于点G,H是MN上一点,且GH⊥EG,求证:PF∥GH.(3)如图3,在(2)的条件下,连接PH,K是GH上一点,使∠PHK=∠HPK,作PQ平分∠EPK,求证:∠HPQ的大小是定值.【分析】(1)证明∠AEF与∠CFM互补即可解决问题.(2)想办法证明∠EPF=∠HGP即可解决问题.(3)由∠HPQ=∠QPK﹣∠HPK=∠EPK﹣∠FPK=(∠EPK﹣∠FPK)=∠EPF=×90°=45°得证.【解答】解:(1)结论:AB∥CD.理由:∵∠MEB与∠CFM互补,而∠MEB=∠AEF,∴∠AEF与∠CFM互补,∴AB∥CD.(2)∵EG平分∠BEF,∴∠PEF=∠BEF,又∵FP平分∠EFD∴∠EFP=∠EFD,由(1)知AB∥CD,∴∠BEF+∠EFD=180°,∴∠PEF+∠EFP=90°,∴∠EPF=90°,又∵GH⊥EG,∴∠HGP=90°,∴∠EPF=∠HGP,∴PF∥GH.(3)证明:∵∠HPQ=∠QPK﹣∠HPK=∠EPK﹣∠FPK=(∠EPK﹣∠FPK)=∠EPF=×90°=45°得证.【点评】本题考查平行线的判定和性质,余角和补角的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.七年级(下)数学期中考试试题及答案一、选择题(每小题4分,共40分,请将答案涂在答题卡相应位置上)1.下面计算正确的是( )A.b3b2 = b6 B.x3 + x3 = x6 C.(a + b)2 = a2 +b2 D.(-m)6 ÷(-m)4 =m22.下列各组长度的线段能构成三角形的是( )A.6 cm,8cm,15c m B.7 cm,5 cm,12 cm C.4 cm,6 cm,5 cm D.8 cm,4 cm,3 cm3.在下列多项式乘法中,可以用平方差公式计算的是()A.(2a - 3b)(-2a +3b) B.(-3a+4b)(-4b-3a)C.(a + 1)(-a -1) D.(a2- b)(a + b2)4.如图所示,点E在A C 的延长线上,下列条件中能.判.断.AB // CD ()A. ∠3 =∠4B. ∠1 =∠2C. ∠D =∠DCED. ∠D +∠ACD =18005.下列说法正确的是()A.相等的两个角是对顶角;B.过一点有且只有一条直线与已知直线平行;C.直线外一点与直线上各点连接的所有线中,垂线最短;D.平面内,过一点有且只有一条直线与已知直线垂直6. 要使式子4x2 + 25 y 2 成为一个完全平方式,则需添上( )A.10 xyB.±10xyC.20 xyD.±20 xy7. 已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于()A.30° B.35° C.40°D.45°8. 如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪开拼成一个长方形(不重叠无缝隙),则长方形的周长为( ).A.2a+5B.4a+10C.4a+16D.6a+159.如图,在边长为2的正方形A B C D中剪去一个边长为1的小正方形C E F G,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△A B P的面积S随着时间t变化的图象大致为( )10.如图所示,在折纸活动中,小明制作了一张△ABC 纸片,点D、E 分别是边A B 、A C 上,将△ABC 沿着DE 折叠压平,A 与A'重合,若∠A=70︒,则∠1+∠2= ().A. 140︒ B. 130︒ C. 110︒ D. 70︒二、填空题(每小题4分,共24 分)(请将答案填在答题卷相应横线上.)11.自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴的学科,这就是“纳米技术”.已知:1 纳米=10-9 米,则32.95纳米用科学记数法表示为米 .12. 若a m=3,a n= 2 ,则a3m-2 n 等于.13. 图书馆现有200本图书供学生借阅,如果每个学生一次借4本,则剩下的书y(本)和借书学生人数x(人)之间的关系式是.14. 如图,将矩形纸片A BCD沿B D折叠,得到△BCD,C′D与A B交于点E.若∠1=35°,则∠2= 度.15.如图:△ABC中,点D、E、F分别在边B C,AC,AB上,E为A C的中点,AD,BE,CF交于一点G, BD=2CD,S∆AGE=3, S∆GDC= 4, 则S∆ABC 的值是.16. 若规定符号a b c d 的意义是a bc d = ad - bc ,则当 m 2﹣2m ﹣3=0 时,23122m m m m ---的值为三、解答题(共 86 分)(请在答题卡指定区域内作答,解答时应写出必要的文. 字.说.明.、.证.明.过.程.或.演.算.步.骤.,.写.错.区.域.或.超.过.区.域.答.题.无.效.) 17.计算题 (每小题 5 分,共 20 分)(1) x 3y ⋅ 2xy 2 + (- x 2y )3 ÷ x 2 (2) 20201520161()(3.14)(0.25)42π----+-⨯(3) 3502 -349× 351 (用 乘 法 公 式 计 算 ) (4) (a + 2b + 3)(a + 2b - 3)18.( 8 分 )先化简,再求值:[(2 x + y)2 - y(-2 x + y) - 8xy] ÷ (-12x) ,其中x = 2, y = -119.( 6 分 ) 尺规作图(在原图上作图,不写作法,保留作图痕迹)在下列图形中,补充作图: (1)在 A B 的左侧作∠APD=∠B AC (2)根据上面所作出的图形,你认为 PD 与 A C 一定平行吗?答:你的理由是20.(8分)将长为40cm、宽为15 cm 的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5 cm.(1)根据上图,将表格补充完整:(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是;(3)你认为白纸黏合起来总长度可能为2018cm 吗?为什么?21.(8分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段A B、BC上,AC∥DE,DF∥AE 交B C于点F,AE平分∠BAC.求证:DF 平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1= ()∵AC∥DE(已知)∴∠1=∠3()∴∠2=∠3()∵DF∥AE(已知)∴∠2= ()∠3=∠4()∴∠4=∠5∴DE平分∠BDE()22.(8分)某景区售票处规定:非节假日的票价打a折售票; 节假日根据团队人数x(人)实行分段售票:若x≤10,则按原票价购买;若x>10,则其中10 人按原票价购买,超过部分的按原票价打b 折购买.某旅行社带团到该景区游览,设购票款为y1元,在节假日的购票款为y2元, y1,y2与x之间的函数图象如图所示(1)观察图象可知:a= , b= .与x的关系式:;(2)当x>10 时,y2(3)该旅行社在今年5 月1 日带甲团与5 月10 日(非节假日)带乙团到该景区游览,甲、乙两个团各25 人,请问乙团比甲团便宜多少元?23.( 8分)如图,点D、F在线段A B上,点E、G分别在线段B C和A C上,CD∥EF,∠1=∠2.(1)判断D G与B C的位置关系,并说明理由;(2)若D G是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明A B与C D有怎样的位置关系?24.(6 分)图①是一个长为2a,宽为2b 的长方形,沿图中虚线剪开,可分成四块小长方形.(1)将图①中所得的四块长为a,宽为b的小长方形拼成一个正方形(如图②).请利用图②中阴影部分面积的不同表示方法,直接写出代数式(a+b)2、(a-b)2、ab 之间的等量关系是;(2)根据(1)题中的等量关系,解决如下问题:已经 m+n=9,mn=8,则m-n= ;(如图③),(3)将如图①所得的四块长为a,宽为b的小长方形不重叠地放在长方形A BCD的内部未被覆盖的部分(两个长方形)用阴影表示.若左下角与右上角的阴影部分的周长之差为8,且小长方形的周长为22,则每一个小长方形的面积为.25.(12分)在△ABC 中,AD 是∠BAC 的平分线,AE⊥BC,垂足为E,作C F∥AD,交直线A E 于点F,设∠B=α,∠ACB=β.(1)若∠B=30°,∠ACB=70°,依题意补全图1,并直接写出∠AFC 的度数;(2)如图2,若∠ACB 是钝角,求∠AFC 的度数(用含α,β的式子表示);(3)如图3,若∠B>∠ACB,直接写出∠AFC 的度数(用含α,β的式子表示).参考答案1.B.2.B.3.C.4.A.5.D.6.B.7.C.8.B.9.C.10.D11.二;12.1;13.52°;14.①②⑤;15.5.16.(0,5),(0,-7) 17.(1)原式=323+; (2)原式=13-;18.(1)⎩⎨⎧-==10y x ;(2)⎩⎨⎧-==46y x ;19.解:(1)∠BOD 、∠AOE ;(2)∠BOE=28°;∠AOE=152°; 20.(1)画图略;(2)(0,0)、(2,4); 21.证明:∵AE 平分∠BAC(已知) ∴∠1=∠2(角平分线的定义) ∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等) 故∠2=∠3(等量代换) ∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等) ∴∠3=∠4(等量代换)∴DE 平分∠BDE(角平分线的定义). 22.解:23.解:(1)∵DG∥BC,理由如下:∵CD∥EF,∴∠2=∠DCB,又∵∠1=∠2,∴∠1=∠DCB,∴DG∥BC;(2)CD⊥AB,理由如下:由(1)知DG∥BC,∵∠3=85°,∴∠BCG=180°-∠3=95°,∵∠DCE:∠DCG=9:10,∴∠DCG=95°×0.9=45°,∵DG∥BC,∴∠CDG=45°,∵DG是∠ADC的平分线,最新七年级下学期期中考试数学试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1. 下列各数中,是有理数的是()A. B. C. D.2. 下列语句中正确的是()A.-9的平方根是-3B.9的平方根是3C.9的立方根是D.9的算术平方根是33. 下列图形中,由AB//CD,能得到的是()A. B. C. D.4. 在平面直角坐标中,已知点P(-2,3),则点P在()A.第一象限B. 第二象限C. 第三象限D. 第四象限5. 如果是关于的二元一次方程,那么的值分别为()A. B. C. D.6. 线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A. (2,9)B. (5,3)C.(1,2)D.(-9,-4)7.如图,把一块三角板的直角顶点放在直尺的一边上,如果,那么为()A. B. C. D.8.某年级学生共有246人,其中男生人数比女生人数的2倍多2人,则下面所列的方程组中符合题意的是()A. B.C. D.9. 已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(-3,4)B. (3,4)C.(-4,3)D.(4,3)10.在平面直角坐标系中,对于平面内任一点,若规定以下三种变换:○1○2○3按照以上变换有:那么等于()A.(-5,-3)B. (5,3)C.(5,-3)D. (-5,3)二、填空题(本大题共6小题,每小题3分,共18分)11. 如图,直线两两相交,,,则=_________.12. 已知一个正数的两个平方根是和,则这个正数的值为______.13. 命题“两直线平行、同旁内角互补”中,题设是_________,结论是_______,此命题是_______命题.14. 把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若,则=__________.15.在方程,当时,=_______.16.已知长方形ABCD中,AB=5,BC=8,并且AB//轴,若点A的坐标为(-2,4),则点C的坐标为_______.三、解答题(本大题共8题,共72分,解答应写出文字说明、证明过程或演算步骤.)17,计算:(1)(2)18.解下列方程组:(1)(2)19.如图,在边长均为1个单位的正方形网格图中,建立了直角坐标系,按要求解答下列问题:(1)写出△ABC三个顶点的坐标.(2)画出△ABC向右平移6个单位后的图形△.(3)求△ABC的面积.20.阅读理解填空,并在括号内填注理由.如图,已知AB//CD,M,N分别交AB,CD于点E,F,,求证:EP//FQ.证明:AB//CD(_________),(__________).又(_____________)(___________)即:EP//______.(________)21.已知:如图,,和互余,BE FD于G点,求证:AB//CD.22.已知方程组的解互为相反数,求的值,并求此方程组的解.23.某服装店用6000元购进A、B两种新式服装,按标价售出后获得毛利润3800元(毛利润=售价-进价),这两种服装的进价,标价如下表:(1)这两种服装各购进的件数.(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?24.如图1,在平面直角坐标系中,A(),C(),且满足,过C 作CB轴于B.(1)求△ABC的面积.(2)若过B作BD//AC交轴于D,且AE、DE分别平分、,如图2,求的度数.(3)在轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案1.D.2.D.3.B.4.B.5.D.6.C.7.B.8.B.9.C.10.B.11.140°;12.49;13.两条直线被第三条直线所截的同旁内角互补,着两条直线平行;14.110°;15.-4;16.(6,9)或(-10,9);17.(1)原式=-3;(2)x=12;18.(1)x=1,y=1;(2)x=2,y=3;19.解:(1)A(-1,8),B(-5,3),C(0,6);(2)画图略;(3)面积为6.5;20.解:已知;两直线平行,同位角相等;已知;同位角相等;∠MFQ,QF;同位角相等,两直线平行.21.证明:∵BE⊥FD∴∠EGD=90°∴∠1+∠D=90°∵∠2+∠D=90°∴∠1=∠2∵∠C=∠1∴∠C=∠2∴AB//CD.22.解:由题意只可知,x+y=0.4m+0.4,因为x+y=0,所以m=-1. 23.解:(1)设A 型购进x 件,B 型购进y 件⎩⎨⎧=+=+38006040600010060y x y x 最新七年级下学期期中考试数学试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1. 下列各数中,是有理数的是( ) A.B.C. D.2. 下列语句中正确的是( )A.-9的平方根是-3B.9的平方根是3C.9的立方根是D.9的算术平方根是3 3. 下列图形中,由AB//CD ,能得到的是( )A. B. C. D. 4. 在平面直角坐标中,已知点P (-2,3),则点P 在( )A.第一象限B. 第二象限C. 第三象限D. 第四象限 5. 如果是关于的二元一次方程,那么的值分别为( ) A. B. C. D. 6. 线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( )A. (2,9)B. (5,3)C.(1,2)D.(-9,-4) 7.如图,把一块三角板的直角顶点放在直尺的一边上,如果,那么为( ) A. B. C. D.8.某年级学生共有246人,其中男生人数比女生人数的2倍多2人, 则下面所列的方程组中符合题意的是( ) A. B. C.D.9. 已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A.(-3,4)B. (3,4)C.(-4,3)D.(4,3) 10.在平面直角坐标系中,对于平面内任一点,若规定以下三种变换: ○1○2。
2017-2018学年度下学期七年级下册期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.点(5,8)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.如图,点P到直线l的距离是()A. 线段PA的长度B. 线段PB的长度C. 线段PC的长度D. 线段PD的长度3.在平面直角坐标系中,点M(1,3)向右平移5个单位长度得到点N,则点N的坐标为()A. B. C. D.4.关于x、y的二元一次方程ax+y=5解是,则a的值是()A. B. 2 C. 3 D. 45.下列说法正确的是()A. 正数的平方根是它本身B. 100的平方根是10C. 是100的一个平方根D. 的平方根是6.下列命题是真命题的是()A. 邻补角相等B. 同位角相等C. 两直线平行,同旁内角相等D. 对顶角相等7.有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.篮球、排球队各有多少支参赛?若设x支篮球队和y支排球队参赛,根据题意可列二元一次方程组得()A. B.C. D.8.无理数a在数轴上的位置如图所示,则a的值可能是()A. B. C. D.二、填空题(本大题共8小题,共24.0分)9.=______.10.点A的坐标为(3,4),则点A到y轴的距离是______个单位长度.11.已知方程x-y=3,用含y的代数式表示x,则x=______.12.如图,已知直线a∥b,b∥c,∠1=58°,则∠2的度数是______.13.如图,三角形ABC沿水平方向平移至三角形DEF,点B、E、C、F在一条直线上,已知EF=5,AD=1.5,则EC=______.14. 1.2-的绝对值是______.15.点P(n+1,2n-4)在x轴上,则n=______.16.已知x、y是二元一次方程组的解,则x-y=______.三、计算题(本大题共3小题,共29.0分)17.(1)计算:(2)求25x2-4=0中x的值.18.如图,直线AB、CD交于点O,EO⊥AB,垂足为O,∠EOC=116°,求∠AOD的度数.19.已知当x=3,y=5与x=-4,y=-9都是方程y=kx+b的解,求当x=时,y的值是多少?四、解答题(本大题共7小题,共73.0分)20.如图,在平面直角坐标系中,将△ABC平移后得到△DEF,它们的各顶点坐标如下(1)观察表中各对应点的坐标的变化,可知将△ABC向______平移______个单位长度,再向______平移______个单位长度可以得到△DEF.(2)在平面直角坐标系中画出△ABC及平移后的△DEF;(3)请直接写出△DEF的面积为______.21.解下列方程组:(1)(2)22.请完成下面的证明如图,∠1+∠2=180°,∠3=108°,求∠4的度数.解:∵∠1+∠2=180(已知)∠1+∠5=______°(邻补角定义)∴∠2=∠______(同角的补角相等)∴______∥______(______)∴∠4+∠6=180°(______)又∵∠3=∠6 (______)∴∠3+∠4=______°(等量代换)∵∠3=108(已知)∴∠4=______°23.天气晴朗时,一个人能看到大海的最远距离s(单位:km)可用公式s2=16.88h来估计,其中h(单位:m)是眼晴离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是16.88m时,能看到多远?如果一个人的眼睛离海平面的高度是am时,请用含a的式子表示他能看到大海的最远距离s是多少km?(s2=16.88h 这是一个经验公式,注意其中h的单位是m,而s的单位是km,不需要进行单位的换算)24.如图,在三角形ABC中,点D、G分别为边BC、AB上的点,DE⊥AC于点E,BF⊥AC于点F,连接FG,且∠BFG+∠BDE=180°.(1)求证:DE∥BF;(2)猜想∠AGF与∠ABC的数量关系,并证明你的猜想.25.如图,三角形ABC三个顶点坐标分别是A(3,1)、B(-1,2)、C(2,3).(1)求三角形ABC的面积;(2)在直线y=-1上且在第四象限内是否存在一点M,使三角形MAB的面积等于三角形ABC面积的?若存在,请求出点M的坐标;若不存在,请说明理由.(3)连接BM交y轴于点N,求点N的坐标.26.如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.答案和解析1.【答案】A【解析】解:∵5>0,8>0,∴点(5,8)所在的象限是第一象限,故选:A.根据各象限点的坐标特征,可得答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.【答案】C【解析】解:点P到直线l的距离是线段PC的长度,故选:C.根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.本题考查了点到直线的距离问题,关键是根据点到直线的距离的定义和垂线段的性质解答.3.【答案】B【解析】解:∵点M(1,3)沿x轴向右平移5个单位得到点N,∴点N的横坐标为1+5=6,∴点PN的坐标是(6,3).故选:B.根据向右平移横坐标加解答即可.本题考查了坐标与图形变化-平移,主要利用了平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.4.【答案】C【解析】解:∵关于x、y的二元一次方程ax+y=5解是,∴2a-1=5,解得:a=3.故选:C.直接把x,y的值代入求出a的值.此题主要考查了二元一次方程的解,正确把已知数据代入是解题关键.5.【答案】C【解析】解:A、正数的平方根是它本身,错误;B、100的平方根是10,错误,应为±10;C、-10是100的一个平方根,正确;D、-1没有平方根,故此选项错误;故选:C.直接利用平方根的性质分别分析得出答案.此题主要考查了平方根,正确把握平方根的性质是解题关键.6.【答案】D【解析】解:邻补角互补,A是假命题;两直线平行,同位角相等,B是假命题;两直线平行,同旁内角互补,C是假命题;对顶角相等,D是真命题;故选:D.根据邻补角的定义、平行线的性质、对顶角的性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【答案】A【解析】解:设篮球队有x支,排球队有y支,由题意,得,故选:A.设篮球队有x支,排球队有y支,根据共有48支队,520名运动员建立方程组求出其解即可.本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据条件建立二元一次方程组是关键.8.【答案】D【解析】解:由数轴可得,-1<a<0,∵-1.7<-1,-<-1,<-1,-1<0,故选项A、B、C错误,选项D正确,故选:D.根据数轴可以得到a的取值范围,从而可以解答本题.本题考查实数与数轴、无理数,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】-2【解析】解:=-2.故答案为:-2.因为-2的立方是-8,所以的值为-2.此题考查了立方根的意义.注意负数的立方根是负数.10.【答案】3【解析】解:点A的坐标为(3,4)到y轴的距离是|3|=3,故答案为:3.根据点到y轴的距离是横坐标的绝对值,可得答案.本题考查了点的坐标,利用点到y轴的距离是横坐标的绝对值是解题关键.11.【答案】3+y【解析】解:∵x-y=3,∴x=3+y,故答案为:3+y.把y看做已知数求出x即可.此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.12.【答案】58°【解析】解:∵直线a∥b,b∥c,∴a∥b∥c,∴∠1=∠2=58°.故答案为:58°.结合平行公理得出a∥b∥c,再利用平行线的性质得出答案.此题主要考查了平行公理和平行线的性质,正确得出a∥b∥c是解题关键.13.【答案】3.5【解析】解:∵三角形DEF是由三角形ABC通过平移得到,∴AD=CF,∵EC+CF=EF,∴EC+AD=EF,∴EC=EF-AD=5-1.5=3.5.故答案为3.5.根据平移的性质得AD=CF,再利用EC+CF=EF得到EC+AD=EF,然后解答即可.本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.14.【答案】-1.2【解析】解:∵1.2<,∴1.2-<0,则1.2-的绝对值是-1.2,故答案为:-1.2利用绝对值的代数意义化简即可.此题考查了实数的性质,熟练掌握绝对值的代数意义是解本题的关键.15.【答案】2【解析】解:∵点P(n+1,2n-4)在x轴上,∴2n-4=0,解得:n=2,故答案为:2.根据x轴上的点的纵坐标为0可得关于n的方程,解之可得.本题主要考查点的坐标,解题的关键是掌握x轴上的点的纵坐标为0.16.【答案】5【解析】解:,①-②,得2x-2y=10,两边除以2,得x-y=5,故答案为:5.根据加减法,等式的性质,可得答案.本题考查了二元一次方程组的解,利用等式的性质是解题关键.17.【答案】解:(1)原式=+-+3=+3;(2)方程整理得:x2=,开方得:x=±.【解析】(1)原式去括号合并即可得到结果;(2)方程整理后,利用平方根定义计算即可求出x的值.此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.18.【答案】解:∵EO⊥AB,∴∠AOE=90°,∵∠EOC=116°,∴∠AOC=∠EOC-∠AOE=26°,则∠AOD=180°-∠AOC=154°.【解析】由EO⊥AB知∠AOE=90°,结合∠EOC=116°得出∠AOC度数,继而由∠AOD=180°-∠AOC可得答案.本题主要考查角的计算,解题的关键是掌握垂线定义和对顶角与邻补角性质.19.【答案】解:根据题意,得:,解得:,则y=2x-1,当x=时,y=2×-1=7-1=6.【解析】把x=3,y=5与x=-4,y=-9代入方程y=kx+b组成二元一次方程组,解之求得k、b的值,据此得出y关于x的等式,将x=代入计算可得.本题主要考查对解二元一次方程组,解一元一次方程,二元一次方程的解等知识点的理解和掌握,能根据题意得到方程组是解此题的关键.20.【答案】右 4 上 2 6【解析】解:(1)∵A(-1,0)平移得到D(3,2),∴可知将△ABC向右平移4个单位长度,再向上平移2个单位长度可以得到△DEF.故答案为:右,4,上,2;(2)如图所示:△DEF即为所求;(3)△DEF的面积为:×3×4=6.故答案为:6.(1)直接利用A点到D点坐标变化得出平移规律;(2)利用平移规律得出对应点位置;(3)利用三角形面积求法得出答案.此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.21.【答案】解:(1),把①代入②,得5x+2(x+3)=13,解得x=1,把x=1代入①,得y=4,方程组的解是;(2)①×2+②得-9y=-9,解得y=1,把y=1代入②,得x=1方程组的解是.【解析】(1)根据代入消元法,可得答案;(2)根据加减消元法,可得答案.本题考查了解二元一次方程组,利用代入消元或加减消元法是解题关键.22.【答案】180 5 a b同位角相等,两直线平行两直线平行,同旁内角互补对顶角相等180 72【解析】解:∵∠1+∠2=180°(已知),又∠1+∠5=180°(邻补角定义),∴∠2=∠5(同角的补角相等),∴a∥b(同位角相等,两直线平行),∴∠4+∠6=180°(两直线平行,同旁内角互补)∵∠6=∠3=108°(对顶角相等),∴∠3+∠4=180°(等量代换),∵∠3=108(已知),∴∠4=72°.故答案为:180;5;a;b;同位角相等,两直线平行;两直线平行,同旁内角互补;对顶角相等;180;72.先根据等角的补角相等得∠2=∠5,则根据同位角相等,两直线平行得到a∥b,然后根据平行线的性质得∠4+∠6=180°,再根据对顶角相等得到∠6=∠3=108°,最后求得∠4=72°.本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.23.【答案】解:将h=16.88代入得;s2=16.88×16.88.即s=16.88.所以这个人能看到16.88km;当h=a时,s2=ah,所以s=所以能看到大海的最远距离s是k m.【解析】将h=16.88和h=a代入进行计算或化简即可.本题主要考查的是算术平方根、估算无理数的大小,掌握算术平方根的定义是解题的关键.24.【答案】证明:(1)∵DE⊥AC于点E,BF⊥AC于点F,∴∠CED=∠EFB=90°,∴DE∥BF;(2)∠AGF=∠ABC,理由如下:∵DE∥BF,∴∠BDE+∠DBF=180°,∵∠BFG+∠BDE=180°.∴∠BFG=∠DBF,∴FG∥BC,∴∠AGF=∠ABC【解析】(1)根据垂直的定义和平行线的判定证明即可;(2)根据平行线的判定和性质解答即可.本题考查了平行线的性质与判定,是基础题,熟记平行线的性质与判定方法并准确识图是解题的关键.25.【答案】解:(1)如图1,∵A(3,1)、B(-1,2)、C(2,3).∴DE=EF=CF=CD=5、AE=BD=3、AF=BE=2,S△ABC=S矩形CDEF-S△ABE-S△BCD-S△ACF=5×5-×2×3-×3×5-×2×5=25-3--5=;(2)如图1,设M(m,-1),作MG⊥BD于点G,则BG=m+1、MG=1,∴S△ABM=S梯形AEGM-S△ABE-S△BMG=×(1+3)×(m+3)-×2×3-×1×(m+1)=m+,∵S△ABM=S△ABC,∴m+=×,解得:m=3,∴M(3,-1);(3)如图2,由(2)知B(-1,2)、M(3,-1),设直线BM解析式为y=kx+b,则,解得:,∴直线BM的解析式为y=-x+,当x=0时,y=,则点N(0,).【解析】(1)由点A、B、C坐标得出DE=EF=CF=CD=5、AE=BD=3、AF=BE=2,根据-S△ABE-S△BCD-S△ACF列式计算可得;S△ABC=S矩形CDEF(2)设M(m,-1),作MG⊥BD,则BG=m+1、MG=1,根据S△ABM=S梯形-S△ABE-S△BMG可得S△ABM=m+,由S△ABM=S△ABC可得关于m AEGM的方程,解之可得;(3)由B、M两点坐标得出直线BM解析式,求出x=0时y的值即可得.本题主要考查三角形的面积,解题的关键是掌握割补法求三角形的面积及待定系数法求函数解析式.26.【答案】解:(1)如图1,∵MN∥PQ,∴∠MAG=∠BDG,∵∠AGB是△BDG的外角,BG⊥AD,∴∠AGB=∠BDG+∠PBG=90°,∴∠MAG+∠PBG=90°;(2)2∠AHB-∠CBG=90°或2∠AHB+∠CBG=90°,证明:①如图,当点C在AG上时,∵MN∥PQ,∴∠MAC=∠BDC,∵∠ACB是△BCD的外角,∴∠ACB=∠BDC+∠DBC=∠MAC+∠DBC,∵AH平分∠MAC,BH平分∠DBC,∴∠MAC=2∠MAH,∠DBC=2∠DBH,∴∠ACB=2(∠MAH+∠DBH),同理可得,∠AHB=∠MAH+∠DBH,∴∠ACB=2(∠MAH+∠DBH)=2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=∠CBG+90°,∴2∠AHB=∠CBG+90°,即2∠AHB-∠CBG=90°;②如图,当点C在DG上时,同理可得,∠ACB=2∠AHB,又∵Rt△BCG中,∠ACB=90°-∠CBG,∴2∠AHB=90°-∠CBG,即2∠AHB+∠CBG=90°;(3)(2)中的结论不成立.存在:2∠AHB+∠CBG=270°;2∠AHB-∠CBG=270°.①如图,当点C在AG上时,由MN∥PQ,可得:∠ACB=360°-∠MAC-∠PBC=360°-2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°-2∠AHB,又∵∠ACB是△BCG的外角,∴∠ACB=90°+∠CBG,∴360°-2∠AHB=90°+∠CBG,即2∠AHB+∠CBG=270°;②如图,当C在DG上时,同理可得,∠ACB=360°-2(∠MAH+∠PBH),∠AHB=∠MAH+∠PBH,∴∠ACB=360°-2∠AHB,又∵Rt△BCG中,∠ACB=90°-∠CBG,∴360°-2∠AHB=90°-∠CBG,∴2∠AHB-∠CBG=270°.【解析】(1)依据平行线的性质以及三角形外角性质,即可得到∠MAG+∠PBG=90°;(2)分两种情况讨论:当点C在AG上时,依据平行线的性质以及三角形外角性质,2∠AHB-∠CBG=90°;当点C在DG上时,依据平行线的性质以及三角形外角性质,2∠AHB+∠CBG=90°;(3)分两种情况讨论:当点C在AG上时,依据平行线的性质以及三角形外角性质,2∠AHB+∠CBG=270°;当C在DG上时,依据平行线的性质以及三角形外角性质,2∠AHB-∠CBG=270°.本题考查了平行线的性质,角平分线的定义的运用,准确识图并理清图中各角度之间的关系是解题的关键,难点在于利用三角形外角性质进行计算.。
2017-2018学年度下学期七年级(下)期中数学试卷(有答案和解析)

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A.7×10﹣6B.0.7×10﹣6C.7×10﹣7D.70×10﹣82.下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.D.2a3•3a2=6a53.16m÷4n÷2等于()A.2m﹣n﹣1B.22m﹣n﹣2C.23m﹣2n﹣1D.24m﹣2n﹣14.若9x2+ax+16是完全平方式,则a应是()A.12B.﹣12C.±12D.±245.下列四幅图中,∠1和∠2是同位角的是()A.(1)、(2)B.(3)、(4)C.(1)、(2)、(3)D.(2)、(3)、(4)6.下列三条线段能构成三角形的是()A.1,2,3B.3,4,5C.7,10,18D.4,12,77.若(x2+px+q)(x﹣2)展开后不含x的一次项,则p与q的关系是()A.p=2q B.q=2p C.p+2q=0D.q+2p=08.下列分解因式正确的是()A.a﹣16a3=(1+4a)(a﹣4a2)B.3x﹣6y+3=3(x﹣2y)C.x2﹣x﹣2=(x+2)(x﹣1)D.﹣x2+2x﹣1=﹣(x﹣1)29.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠EDC相邻的外角,则∠1+∠2等于()A.150°B.135°C.120°D.90°10.如图,有下列判定,其中正确的有()①若∠1=∠3,则AD∥BC;②若AD∥BC,则∠1=∠2=∠3;③若∠1=∠3,AD∥BC,则∠1=∠2;④若∠C+∠3+∠4=180°,则AD∥BC.A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分)11.五边形的内角和是°.12.计算﹣a3•(﹣a)2=.13.(x﹣1)0=1成立的条件是.14.若x+3y﹣2=0,则2x•8y=.15.如果,那么a,b,c的大小关系为.16.若(x﹣3)(x+m)=x2+nx﹣15,则n=.17.已知x﹣y=5,(x+y)2=49,则x2+y2的值等于.18.如图a是长方形纸带,∠DEF=22°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c 中的∠CFE的度数是.三、解答题(共9小题,满分64分)19.(12分)计算(1)2a(a﹣2a3)﹣(﹣3a2)2;(2)(﹣1)2017+(π﹣3.14)0﹣()﹣2;(3)(x﹣3)(x+2)﹣(x+1)220.(8分)分解因式(1)4a2x2+16ax2y+16x2y2;(2)a2(a﹣3)﹣a+3.21.(5分)若33×9m+4÷272m﹣1的值为729,求m的值.22.(5分)如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.23.(6分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.24.(6分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.25.(6分)如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=70°,则∠ABC+∠BCD=°;∠E=°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F,所添加的条件为.26.(8分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.27.(8分)已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.设∠OAC=x°.(1)如图1,若AB∥ON,则:①∠ABO的度数是;②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);(2)如图3,若AB⊥OM,则是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)2017-2018学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故选:C.【点评】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】分别利用完全平方公式以及同底数幂的乘法和积的乘方计算分析得出即可.【解答】解:A、(﹣2a3)2=4a6,故此选项错误;B、(a﹣b)2=a2+b2﹣2ab,故此选项错误;C、=2a+,故此选项错误;D、2a3•3a2=6a5,此选项正确.故选:D.【点评】此题主要考查了完全平方公式的应用以及同底数幂的乘法和积的乘方等知识,熟练掌握完全平方公式的形式是解题关键.3.【分析】先转化为底数为2的幂的除法,再利用同底数幂相除,底数不变指数相减计算即可.【解答】解:16m÷4n÷2,=24m÷22n÷2,=24m﹣2n﹣1.故选:D.【点评】本题考查同底数幂的除法,转化为同底数幂的除法是解题的关键.4.【分析】利用完全平方公式的结构特征判断即可得到a的值.【解答】解:∵9x2+ax+16是完全平方式,∴a=±24.故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点评】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.6.【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,不符合题意;B、3+4>5,能够组成三角形,符合题意;C、7+10<18,不能够组成三角形,不符合题意;D、4+7<12,不能够组成三角形,不符合题意.故选:B.【点评】此题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.【分析】利用多项式乘多项式法则计算,令一次项系数为0求出p与q的关系式即可.【解答】解:(x2+px+q)(x﹣2)=x2﹣2x2+px2﹣2px+qx﹣2q=(p﹣1)x2+(q﹣2p)x﹣2q,∵结果不含x的一次项,∴q﹣2p=0,即q=2p.故选:B.【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键.8.【分析】分别利用提取公因式法以及公式法和十字相乘法分解因式进而得出答案.【解答】解:A、a﹣16a3=a(1+4a)(1﹣4a),故A错误;B、3x﹣6y+3=3(x﹣2y+1),故B错误;C、x2﹣x﹣2=(x﹣2)(x+1),故C错误;D、﹣x2+2x﹣1=﹣(x﹣1)2,故D正确.故选:D.【点评】此题主要考查了提取公因式法以及十字相乘法和公式法分解因式,熟练应用公式法分解因式是解题关键.9.【分析】连接BD,根据三角形内角和定理求出∠CBD+∠CDB,根据平行线的性质求出∠ABD+∠EDB,即可求出答案.【解答】解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=180°﹣∠ABC+180°﹣∠EDC=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故选:D.【点评】本题考查了平行线的性质和三角形内角和定理的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.10.【分析】根据等角对等边,平行线的性质与判定对各小题分析判断即可得解.【解答】解:①若∠1=∠3,则AB=AD,故本小题错误;②若AD∥BC,则∠2=∠3,故本小题错误;③若∠1=∠3,AD∥BC,则∠1=∠2,正确;④若∠C+∠3+∠4=180°,则AD∥BC正确;综上所述,正确的有③④共2个.故选:B.【点评】本题考查了平行线的判定与性质,是基础题,准确识图并熟记平行线的判定方法与性质是解题的关键.二、填空题(本大题共8小题,每小题2分,共16分)11.【分析】根据多边形的内角和是(n﹣2)•180°,代入计算即可.【解答】解:(5﹣2)•180°=540°,故答案为:540°.【点评】本题考查的是多边形的内角和的计算,掌握多边形的内角和可以表示成(n﹣2)•180°是解题的关键.12.【分析】直接利用同底数幂的乘法运算法则计算得出答案.【解答】解:﹣a3•(﹣a)2=﹣a3•a2=﹣a5.故答案为:﹣a5.【点评】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.13.【分析】根据零指数幂:a0=1(a≠0),求解即可.【解答】解:由题意得,x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】本题考查了零指数幂,解答本题的关键是掌握a0=1(a≠0).14.【分析】原式利用幂的乘方及积的乘方运算法则变形,将已知等式变形后代入计算即可求出值.【解答】解:∵x+3y﹣2=0,即x+3y=2,∴原式=2x+3y=22=4.故答案为:4【点评】此题考查了幂的乘方与积的乘方,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.15.【分析】先依据零指数幂的性质和负整数指数幂的性质求得a,b,c的值,然后在比较大小即可.【解答】解:∵a=(﹣0.1)0=1,b=(﹣0.1)﹣1=﹣=﹣10,c=(﹣)2=,∴a>c>b.故答案为:a>c>b.【点评】本题主要考查的是零指数幂的性质和负整数指数幂的性质,掌握相关性质是解题的关键.16.【分析】首先利用多项式乘以多项式计算出(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x ﹣3m,进而可得x2+(m﹣3)x﹣3m=x2+nx﹣15,从而可得m﹣3=n,﹣3m=﹣15,再解即可.【解答】解:(x﹣3)(x+m)=x2+mx﹣3x﹣3m=x2+(m﹣3)x﹣3m,∵(x﹣3)(x+m)=x2+nx﹣15,∴x2+(m﹣3)x﹣3m=x2+nx﹣15,∴m﹣3=n,﹣3m=﹣15,解得:m=5,n=2,故答案为:2.【点评】此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17.【分析】首先得出x2+y2﹣2xy=25①,进而得出x2+y2+2xy=49②,求出x2+y2的值即可.【解答】解:∵x﹣y=5,∴x2+y2﹣2xy=25①,∵(x+y)2=49,∴x2+y2+2xy=49②,∴①+②得:2(x2+y2)=74,∴x2+y2=37.故答案为:37.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.18.【分析】根据两直线平行,内错角相等可得∠EFB=∠DEF,再根据翻折的性质,图c中∠EFB 处重叠了3层,然后根据根据∠CFE=180°﹣3∠EFB代入数据进行计算即可得解.【解答】解:∵∠DEF=22°,长方形ABCD的对边AD∥BC,∴∠EFB=∠DEF=22°,由折叠,∠EFB处重叠了3层,∴∠CFE=180°﹣3∠EFB=180°﹣3×22°=114°.故答案为:114°.【点评】本题考查了翻折变换,平行线的性质,观察图形判断出图c中∠EFB处重叠了3层是解题的关键.三、解答题(共9小题,满分64分)19.【分析】(1)先计算乘法和乘方,再合并同类项即可得;(2)先计算乘方、零指数幂和负整数指数幂,再计算加减可得;(3)先计算乘法和完全平方式,再去括号、合并同类项即可得.【解答】解:(1)原式=2a2﹣4a4﹣9a4=2a2﹣13a4;(2)原式=﹣1+1﹣9=﹣9;(3)原式=x2+2x﹣3x﹣6﹣(x2+2x+1)=x2+2x﹣3x﹣6﹣x2﹣2x﹣1=﹣3x﹣7.【点评】此题考查了整式的混合运算,熟练掌握整式的混合运算顺序和运算法则是解本题的关键.20.【分析】(1)首先提取公因式4x2,再利用完全平方公式分解因式得出答案;(2)直接提取公因式(a﹣3),再利用平方差公式分解因式即可.【解答】解:(1)4a2x2+16ax2y+16x2y2;=4x2(a2+4ay+4y2)=4x2(a+2y)2;(2)a2(a﹣3)﹣a+3=(a﹣3)(a2﹣1)=(a﹣3)(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.【分析】直接利用幂的乘方运算法则、同底数幂的乘除运算法则将原式变形进而得出答案.【解答】解:∵33×9m+4÷272m﹣1的值为729,∴33×32m+8÷36m﹣3=36,∴3+2m+8﹣(6m﹣3)=6,解得:m=2.【点评】此题主要考查了幂的乘方运算、同底数幂的乘除运算,正确将原式变形是解题关键.22.【分析】先判断出阴影部分面积等于梯形ABEH的面积,再根据平移变化只改变图形的位置不改变图形的形状可得DE=AB,然后求出HE,根据平移的距离求出BE=6,然后利用梯形的面积公式列式计算即可得解.【解答】解:∵两个三角形大小一样,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB,BE=6,∵AB=10,DH=4,∴HE=DE﹣DH=10﹣4=6,∴阴影部分的面积=×(6+10)×6=48.【点评】本题考查了平移的性质,对应点连线的长度等于平移距离,平移变化只改变图形的位置不改变图形的形状,熟记各性质并判断出阴影部分面积等于梯形ABEH的面积是解题的关键.23.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.24.【分析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.【解答】解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63(平方米).【点评】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.25.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=110°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,然后根据三角形内角和定理求出∠E =180°﹣(∠DAE+∠ADE)=110°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=70,∴∠FBC+∠BCF=180°﹣∠F=110°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=220°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=140°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DAE=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=70°,∴∠E=180°﹣(∠DAE+∠ADE)=110°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为220°;110°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.26.【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=﹣2.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.27.【分析】(1)①利用角平分线的性质求出∠ABO的度数;②利用角平分线的性质和平行线的性质求得∠OAC=60°;(2)需要分类讨论:当点D在线段OB上和点D在射线BE上两种情况.【解答】解:(1)①∵∠MON=80°,OE平分∠MON.∴∠AOB=∠BON=40°,∵AB∥ON,∴∠ABO=40°故答案是:40°;②如答图1,∵∠MON=80°,且OE平分∠MON,∴∠1=∠2=40°,又∵AB∥ON,∴∠3=∠1=40°,∵∠BAD=∠ABD,∴∠BAD=40°∴∠4=80°,∴∠OAC=60°,即x=60°.(2)存在这样的x,①如答图2,当点D在线段OB上时,若∠BAD=∠ABD,则x=40°;若∠BAD=∠BDA,则x=25°;若∠ADB=∠ABD,则x=10°.②如答图3,当点D在射线BE上时,因为∠ABE=130°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=115°,C不在ON上,舍去;综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=10°、25°、40°.【点评】本题考查的是平行线的性质,三角形的内角和定理和三角形的外角性质的应用,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角之和.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年江苏省南京一中七年级(下)期中数学试卷一、选择题(每题2分,共16分)1.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣52.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.3.如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=30°,则∠2等于()A.30°B.40°C.50°D.60°4.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a105.把多项式x3﹣4x分解因式所得的结果是()A.x(x2﹣4)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.(x+2)(x﹣2)6.x2﹣4x+m2是一个完全平方式,则m的值是()A.2B.﹣2C.+2和﹣2D.47.下列命题是假命题的为()A.如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形B.锐角三角形的所有外角都是钝角C.内错角相等D.平行于同一直线的两条直线平行8.如图为二环四边形,它的内角和∠A+∠B+∠C+∠D+∠A1+∠B1+∠C1+∠D1度数为()A.360°B.540°C.720°D.900°二、填空题(每题2分,共16分)9.计算:=.10.0.1252016×(﹣8)2017=.11.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.12.一个多边形的每一个外角为30°,那么这个多边形的边数为.13.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=.14.若5x=16与5y=2,则5x﹣2y=.15.命题“同位角相等”的逆命题是.16.如图,在四边形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分线交于点O1称为第1次操作,作∠O1DC、∠O1CD的平分线交于点O2称为第2次操作,作∠O2DC、∠O2CD的平分线交于点O3称为第3次操作,…,则第5次操作后∠CO5D的度数是.三、解答题(共68分)17.(16分)计算(1)x3•x5﹣(2x4)2+x10÷x2(2)(3)﹣(a2b)3+2a2b•(﹣3a2b)(4)(a﹣2b﹣c)(a+2b﹣c)18.(6分)先化简,再求值:(x+3y)2﹣(x+3y)(x﹣3y),其中x=3,y=﹣2.19.(6分)因式分解:(1)3ax2﹣6axy+3ay2(2)(3x﹣2)2﹣(2x+7)220.(6分)如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.(1)画出△A′B′C′;(2)画出AB边上的中线CD和高线CE;(利用网格点和直尺画图)(3)△BCD的面积为.21.(5分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()22.(6分)已知△ABC中,DE∥BC,∠AED=50°,CD平分∠ACB,求∠CDE的度数.23.(5分)求证:三角形的内角和等于180°.已知:如图,△ABC.求证:.证明:24.(8分)如图1,有A、B、C三种不同型号的卡片,其中A型卡片是边长为a的正方形,B型卡片是长为a,宽为b的长方形,C型卡片是边长为b的正方形,且b<a<b.(1)用1张A型卡片,3张B型卡片,2张C型卡片拼成如图2形状,根据图2,多项式a2+3ab+2b2因式分解的结果为.(2)现用A、B、C三种不同型号的卡片拼成一个边长为2a+b的正方形(所拼图形既无缝隙,又不重叠),则需要A型卡片张,B型卡片张,C型卡片张.(3)现有取出3张A型卡片和1张C型卡片,将其中2张A型卡片放入1张C型卡内拼成如图3形状,再重新用3张A型卡片放入1张C型卡片内拼成如图4形状.已知图4中的阴影部分的面积比图3中的阴影部分的面积大2ab﹣6,则小正方形卡片的面积a2=.25.(10分)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.2017-2018学年江苏省南京一中七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题2分,共16分)1.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【分析】根据平行线的性质以及对顶角相等的性质进行判断.【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.3.【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵直角三角板的直角顶点在直线a上,∠1=30°,∴∠3=60°,∵a∥b,∴∠2=∠3=60°,故选:D.【点评】本题考查的是平行线的性质以及垂线的定义的运用,解题时注意:两直线平行,内错角相等.4.【分析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【解答】解:A、a2•a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选:B.【点评】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.5.【分析】首先提公因式x,然后利用平方差公式分解即可.【解答】解:x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故选:C.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6.【分析】先根据乘积二倍项确定出这两个数,再根据完全平方公式列式即可求出m的值.【解答】解:∵x2﹣4x+m2=x2﹣2×2×x+m2,∴m2=22,解得m=2或﹣2.故选:C.【点评】本题主要考查了完全平方式,根据乘积二倍项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.7.【分析】依据三角形内角和定理,三角形外角的性质,平行线的性质进行判断即可.【解答】解:A.如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形,是真命题;B.锐角三角形的所有外角都是钝角,是真命题;C.内错角相等,是假命题;D.平行于同一直线的两条直线平行,是真命题;故选:C.【点评】本题主要考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.【分析】AA1之间添加两条边,可得B1+∠C1+∠D1=∠EAD+∠AEA1+∠EA1B1,再根据边形的内角和公式即可求解.【解答】解:如图,AA1之间添加两条边,可得B1+∠C1+∠D1=∠EAD1+∠AEA1+∠EA1B1则∠A+∠B+∠C+∠D+∠A1+∠B1+∠C1+∠D1=∠EAB+∠B+∠C+∠D+∠DA1E+∠E=720°;故选:C.【点评】考查了多边形内角和定理:(n﹣2)•180°(n≥3)且n为整数).二、填空题(每题2分,共16分)9.【分析】根据负整数指数幂的定义a﹣p=,进行计算.【解答】解:原式==4.故本题答案为:4.【点评】解答此题要熟知:数的负指数幂等于数的正指数幂的倒数.10.【分析】根据积的乘方以及幂的乘方即可求出答案.【解答】解:原式=()2016×(﹣8)2016×(﹣8)=1×(﹣8)=﹣8故答案为:﹣8【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.11.【分析】依据∠α=∠3,以及∠1=∠4=52°,即可得到∠α=(180°﹣52°)=64°.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.12.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠FPM=∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠2=30°,∴∠EPM=∠2=30°,又∵∠EPF=75°,∴∠FPM=45°,∴∠1=∠FPM=45°,故答案为:45°.【点评】本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.14.【分析】运用同底数幂的除法及幂的乘方与积的乘方法则计算即可.【解答】解:∵5x=16与5y=2,∴5x﹣2y=5x÷(5y)2=16÷4=4故答案为:4.【点评】本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把5x﹣2y化为5x ÷(5y)2.15.【分析】根据逆命题的概念解答.【解答】解:命题“同位角相等”的逆命题是相等的角是同位角,故答案为:相等的角是同位角.【点评】本题考查的是逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.【分析】先根据∠ADC、∠BCD的平分线交于点O1,得出∠O1DC+∠O1CD=(∠ADC+∠DCB),再根据∠O1DC、∠O1CD的平分线交于点O2,得出∠O2DC+∠O2CD=(∠ADC+∠DCB),根据规律可得到∠O5DC+∠O5CD=(∠ADC+∠DCB),最后将∠ADC+∠DCB =160°代入计算即可.【解答】解:如图所示,∵∠ADC、∠BCD的平分线交于点O1,∴∠O1DC+∠O1CD=(∠ADC+∠DCB),∵∠O1DC、∠O1CD的平分线交于点O2,∴∠O2DC+∠O2CD=(∠O1DC+∠O1CD)=(∠ADC+∠DCB),同理可得,∠O3DC+∠O3CD=(∠O2DC+∠O2CD)=(∠ADC+∠DCB),由此可得,∠O5DC+∠O5CD=(∠O4DC+∠O4CD)=(∠ADC+∠DCB),∴△CO5D中,∠CO5D=180°﹣(∠O5DC+∠O5CD)=180°﹣(∠ADC+∠DCB),又∵四边形ABCD中,∠DAB+∠ABC=200°,∴∠ADC+∠DCB=160°,∴∠CO5D=180°﹣×160°=180°﹣5°=175°,故答案为:175°.【点评】本题主要考查了多边形的内角与外角以及角平分线的定义的运用,解决问题的关键是找出操作的变化规律,得到∠CO5D与∠ADC+∠DCB之间的关系.三、解答题(共68分)17.【分析】(1)原式利用同底数幂的乘除法则,幂的乘方与积的乘方运算法则计算即可求出值;(2)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(3)原式利用幂的乘方与积的乘方,以及单项式乘以单项式法则计算即可求出值;(4)原式利用平方差公式,以及完全平方公式化简即可求出值.【解答】解:(1)原式=x8﹣4x8+x8=﹣2x8;(2)原式=1﹣1+9=9;(3)原式=﹣a6b3﹣6a4b3;(4)原式=(a﹣c)2﹣4b2=a2﹣2ac+c2﹣4b2.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】根据整式的运算法则即可求出答案.【解答】解:∵x=3,y=﹣2,∴原式=x2+6xy+9y2﹣(x2﹣9y2)=6xy+18y2=6×3×(﹣2)+18×(﹣2)2=﹣36+18×4=36【点评】本题整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.【分析】(1)首先提取公因式3a,再利用完全平方公式分解因式得出答案;(2)直接利用平方差公式分解因式得出答案.【解答】解:(1)原式=3a(x2﹣2xy+y2)=3a(x﹣y)2;(2)原式=[(3x﹣2)+(2x+7)][(3x﹣2)﹣(2x+7)]=(5x+5)(x﹣9)=5(x+1)(x﹣9).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.20.【分析】(1)将三角形的三顶点分别向右平移4个单位得到对应点,再顺次连接可得;(2)根据中线和高的定义作图可得;(3)利用割补法求解可得.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)如图所示,CD、CE即为所求;(3)△BCD的面积为×4×4﹣×1×3﹣×1×3﹣1=4,故答案为:4【点评】本题主要考查作图﹣平移变换,解题的关键是熟练掌握平移变换的定义和性质及割补法求三角形的面积.21.【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥CD.【解答】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).【点评】此题考查了平行线的判定与性质.注意数形结合思想的应用.22.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∠AED=50°,∴∠ACB=∠AED=50°,∵CD平分∠ACB,∴∠BCD=∠ACB=25°,∵DE∥BC,∴∠EDC=∠BCD=25°.【点评】考查了平行线的性质和角平分线的定义,这类题首先利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系转化求解.23.【分析】画出图形,写出已知,求证;过点A作直线MN∥BC,根据平行线性质得出∠MAB=∠B,∠NAC=∠C,代入∠MAB+∠BAC+∠NAC=180°即可求出答案.【解答】证明:如图,过点A作MN∥BC,∵MN∥BC,∴∠MAB=∠B,∠NAC=∠C(两直线平行,同位角相等),∵∠MAB+∠BAC+∠NAC=180°(平角的定义),∴∠B+∠BAC+∠C=180°(等量代换),即:三角形三个内角的和等于180°.故答案为:∠A+∠B+∠C=180°.【点评】本题考查了平行线性质的应用,主要考查学生的推理能力,关键是正确作出辅助线.24.【分析】(1)由图2可得多项式a2+3ab+2b2=(a+2b)(a+b)(2)由(2a+b)2=4a2+4ab+b2可得A型卡片4张,B型卡片4张,C型卡片1张(3)分别求出图3,图4 阴影部分面积,根据题意可得a2=2【解答】解:(1)由图2可得多项式a2+3ab+2b2=(a+2b)(a+b)故(1)答案为(a+2b)(a+b)(2)由(2a+b)2=4a2+4ab+b2可得A型卡片4张,B型卡片4张,C型卡片1张故(2)答案为4,4,1(3)图3 的阴影部分面积为(2a﹣b)2,图4 的阴影部分面积为(b﹣a)2∴(b﹣a)2﹣(2a﹣b)2=2ab﹣6a2=2故(3)答案为2【点评】本题考查了因式分解的应用,完全平方公式,关键是表示出阴影部分面积.25.【分析】(1)根据题意观察图形连接AD并延长至点F,由外角定理可知,一个三角形的外角等于与它不相邻的两个内角的和,则容易得到∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值.②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.③由(2)的方法,进而可得答案.【解答】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;相加可得∠BDC=∠A+∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠A+∠ADB+∠AEB,易得∠ADB+∠AEB=80°;而∠DCE=(∠ADB+∠AEB)+∠A,代入∠DAE=50°,∠DBE=130°,易得∠DCE=90°;③∠BG1C═(∠ABD+∠ACD)+∠A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°∴(140﹣x)+x=77,14﹣x+x=77,x=70∴∠A为70°.【点评】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.。