整车线束搭铁设计
浅谈汽车线束搭铁线设计

浅谈汽车线束搭铁线设计摘要:在汽车电器的工作过程中,发电机和电池的正极作为电源输入提供电流源,电池的负极、车身和电器的负极连接在一起,以确保电路的完整性。
在负回路中,连接点称为搭铁点,连接线称为搭铁线。
单线制搭铁方式是目前大多数汽车使用的一种地面处理方法。
本本文主要论述汽车线束搭铁线设计。
关键词:汽车线束;搭铁线;设计;分析;研究1与车辆线束可靠连接的重要性随着汽车技术的不断创新,越来越多的电器装备在汽车上。
某些电器的特殊接地要求也有所增加,导致汽车上的连接点和连接线数量不断增加。
因此,确保线束的可靠性是线束设计和生产过程中的一项重要任务。
搭铁作为整个电流回路的一部分,其可靠性直接影响着用电器功能的实现。
若搭铁设计不好,不仅会导致回路电压降增大、不同搭铁之间的串扰、引发用电器故障,更严重的还会导致线束烧蚀等问题。
因此,汽车搭铁的可靠性及合理性就显得尤为重要。
2搭铁设计策略2.1搭接分配设计原则1.独立接地装置对于安全气囊系统来说,由于车辆的过电压或隐藏路径,很容易错误地启动和引爆安全气囊,从而使驾驶员受到不必要的伤害或冲击。
因此,应单独设置气囊系统接地点。
对于发动机控制单元和ABS控制单元,一旦发生接地故障,将影响整个发动机的性能和车辆的行驶状态。
如果严重,将导致发动机停机、发动机无法控制、车辆失控等。
对于这些控制单元,为了避免其他电器的干扰,接地点需要独立接地。
对于某些传感器,其工作时产生的信号极为微弱,即使经过放大处理,也容易受到其他电器的影响,因此需要将搭铁点设置在传感器位置附近,并独立接地,以确保信号传输不衰减,不受干扰。
2.接地至同一系统在同一系统中,在符合就近接地原则的前提下,使用同一连接点可以减少非连接点之间的悬挂电位差对系统可靠性的影响。
对于没有总线系统的车辆,由于缺少燃油泵控制单元,燃油传感器产生的信号需要通过电线直接传递到仪表控制单元,仪表控制单元处理燃油表以指示燃油油位。
尽管燃油传感器远离仪表,但燃油传感器和仪表控制单元必须接地在同一点,以确保燃油表的准确性。
汽车线束搭铁设计详解

汽车线束搭铁设计详解摘要:本文主要介绍线束搭铁设计策略,搭铁点选择以及搭铁形式。
随着汽车的日渐普及,汽车电器的发展日新月异,人们对汽车的安全性、舒适性、经济性和排放性的要求越来越高。
伴随着科技进步,很多先进的电子技术应用在汽车行业,以提高汽车的安全性、舒适性及经济性,汽车的电器集成化程度越来越高,汽车线束就变得越来越复杂,设计和生产制作过程控制难度越来越大。
而汽车电路中最重要的因素之一—搭铁点的设计就显得尤为重要。
首先是搭铁的回路增加,其次是需要搭铁的功能越来越多,搭铁数量选择等都需要考虑更多的因素,因此本文主要研究当前环境下整车电路线束搭铁的设计策略。
线束搭铁设计要体现:安全、可靠、稳定、合理、经济。
从以下3个方面来分析整车电路的搭铁设计。
1 搭铁分配设计原则1.1搭铁种类介绍整车地:顾名思义就是整车电路的地,它是由蓄电池负极直接接到车身,使车身成为一个大的负极,所有的搭铁点都是通过车身搭铁,因此汽车电路中的接地又被称之为搭铁。
功率地:主要是指大功率用电设备的搭铁,例如发动机冷却风扇、刮水电动机、玻璃升降电动机、空调鼓风机、座椅调节电动机、天窗电动机、门锁电动机等。
这些用电器的电流一般较大,会对其他弱电流或信号线产生干扰。
信号地:一般指小电流信号的搭铁,有模拟信号、数字信号等,信号一般比较敏感,容易被干扰。
屏蔽层搭铁:对于娱乐系统天线及高电压工作用电器,由于其工作过程中对周围电磁场影响较大,必须采用单芯屏蔽线,以达到保证接收信号准确,且对周围线束电磁场影响最小作用。
而单芯屏蔽线屏蔽层,直接通过搭铁点接到整车地。
如发动机点火线圈供电回路,工作过程会产生上万伏高电压,对周围信号线干扰极大,甚至会导致整车EMC不通过,需采用单芯屏蔽线,屏蔽层接车身搭铁。
1.2搭铁原则总体来说,搭铁点分配有3个原则。
1)强弱电分开搭铁原则如电动机类产品属于大电流用电器,要与信号线及控制回路等小电流搭铁分开。
2)安全件单独搭铁原则如安全气囊模块、ABS、ECM等对整车性能及安全影响大的模块,要采用单独搭铁;针对前照灯搭铁,考虑一个搭铁失效后,另一个可以继续使用,必须将左右前照灯分开搭铁。
浅谈汽车线束搭铁线设计

浅谈汽车线束搭铁线设计汽车线束与汽车电子部件息息相关,线束是很多汽车部件的集合,其中就包括搭铁线。
搭铁线的设计和布置很重要,它的质量和良好性能对整个汽车电器的稳定性和可靠性起着至关重要的作用。
首先,搭铁线的设计原则是必须与汽车的其他部件相匹配。
在选择搭铁线时,必须考虑汽车电子部件的特性、功能和性能要求。
同时,需要考虑线束的布置与车身的“地面”等一些因素,以保证电信号的良好传输。
其次,为了确保电器系统的稳定性,我们需要在线束设计时遵循一些基本规则。
首先是在布线过程中要遵循可靠性原则,尽可能降低因堆积、摩擦和挤压等原因导致的线束短路或其它损害的风险。
线束内的电线应该有足够的强度来保护不受机械磨损或粘接的因素干扰。
同时,搭铁线必须足够厚,以确保电器回路从电源流出、经过线束传输数据,在其他设备上找到地面的路径必须非常明确。
其次,布线的方式也应该注意。
线束的引出端最好以对称的方式分布,这可以减少线束内部的交叉干扰,使电信号的传输更加稳定。
在布线完毕后,我们可以在搭铁线上安装专门的屏蔽设备,以保证线束内的电子元件不受来自外界的电磁噪音和电波的干扰。
最后,在设计和制造线束时,应该注重制造过程中的协调和协作。
汽车部件制造的各个阶段都离不开严格的标准和规范,因此,不同部件之间的联合配合也至关重要。
例如,在制造搭铁线时,需要与其它部件的制造工序协调,如挡泥板、地窝罐等等。
必须确保每个部分都精细、准确地计算,并分别进行检测,提高效率的同时提高可靠性。
总之,汽车线束搭铁线的设计是非常重要的,需要考虑如何提高其稳定性、满足汽车电子部件的工作要求,并经过精细的制造和协调加以实现。
仅有这些基本原则的匹配,我们才能保证某一部件在各种路况下稳定、要求如一,达到好的使用效果和稳定可靠的性能。
在汽车电子部件中,线束搭铁线的重要性不容忽视。
它的作用主要是将车辆的各种电子元件连接起来,如引擎控制系统、灯光控制系统、车门控制系统、音响等等。
M5车型整车线束图说明

保险盒1,各路 保险丝对应功能 参见电器盒标识。
保险盒2,各路 保险丝对应功能 参见电器盒标识。
整车电源4路保 险,位于前围电 器盒 接线板上
3
一、整车保险及搭铁点设置说明
2、底盘保险
搭铁线:集成在车 架线内连接到前围 电器盒搭铁孔。
起动机 搭铁线
驾驶室 搭铁线
发电机(D+)充电指 示灯保险10A。 功能:充电指示;起 动保护(防止行车过 程误打起动损伤马达
G5
诊断接口、玻璃升降控制器、遥控中控锁控制器等
5
一、整车保险及搭铁点设置说明
4、驾驶室搭铁点(前围3个)
搭铁点名称
搭铁点负载
G6
前围、前灯线束搭铁点
G7
ABS线束搭铁点
G8
车架线束搭铁点
6
二、驾驶室与底盘线对接定义 ECU接线
A2
A3
7
二、驾驶室与底盘线对接定义 ECU接线
B2
B3
8
二、驾驶室与底盘线对接定义 车架接线
乘龙汽车
M5系列车型电路简易说明
CV销售公司 2016年1月
目录
一.整车保险及搭铁点设置说明 二.驾驶室与底盘线对接定义 三.驾驶室与前围线对接定义 四.驾驶室与前灯线对接定义
2
一、整车保险及搭铁点设置说明
1、驾驶室保险
驾驶室保险盒位 于副驾驶座前, 手套箱下。
保险盒3,各路保 险丝对应功能参见 电器盒标识。
电瓶框 搭铁点
整车电10A:组合仪表、遥控中控锁
2.驾驶室举升/(康机)熄火继电器 30A
3.挂车ABS 15A
4
一、整车保险及搭铁点设置说明
3、驾驶室搭铁点(内5个)
整车线束搭铁设计

整车线束搭铁设计随着汽车技术的高速发展,电器设备的集成化也越来越高,很多自动化和智能化的电器设备被应用在汽车上,以满足人们对汽车的动力性、经济型、可靠性、安全性、舒适性以及排放性的要求,因此车辆上的线束也越来越复杂,在设计和生产过程中控制难度也越来越大。
而搭铁线路和搭铁点设计的好坏将影响电气部件的功能,进而影响汽车性能。
在常见的电气线束设计问题中,由于搭铁线束或搭铁点的不佳设计而导致发动机ECU不能正常工作、发动机冒黑烟、电气部件的信号受干扰等的情况。
所以搭铁线路的设计以及搭铁点选择的成为汽车线束设计的重要环节之一。
1、汽车线束搭铁原理汽车电气系统采用的是负极搭铁和单线制的设计原则。
负极搭铁是指蓄电池负极接金属车架。
单线制也称单线连接,是指汽车上所有电气部件的正极均采用导线相互连接,而负极则直接或间接通过导线与金属车架或车身金属部分相连,即搭铁,也称接地。
任何—个电路都是从电源正极出发,经导线经用电设备再由负极导线搭铁,通过车架或车身流回电源负极形成回路。
1.1 搭铁等效电路在电气线束设计中,因受整车结构等限制,除了多点搭铁,很多电器部件负极搭铁点采用共压的单点搭铁方式。
负极单点共压搭铁的方式可以分为3种,串联单点共压搭铁,并联单点共压搭铁,混联单点共压搭铁。
a.多点搭铁。
多点搭铁是指电器部件的各个搭铁点直接就近接到金属车体上,各个部件都是单独搭铁,不与其他电器部件搭铁发生联系的搭铁方式,其等效电路图如图1所示。
图1 多点搭铁等效电路从图1中可以看出,电器部件1、电器部件2、电器部件3的电流为,Il、I2、I3,通过搭铁线与金属车架相连,线阻与搭铁点接触电阻等效为R1、R2、R3,各个电器部件未与其它电器部件发生联系。
从等效电路中可以看出,此种搭铁方式可使各个部件不受其它电器部件的干扰,但搭铁点比较多,在实际的设计中由于受底盘车身结构限制,现场施工、检修不便等因素影响,采用此方法存在一定困难。
故在客车线束搭铁设计中,不采用多点搭铁的方式。
整车低压线束搭铁设计

整车低压线束搭铁设计摘要:车辆的电源分配和搭接设计是汽车线束设计的核心部分。
良好的搭铁设计是电力传输和信号传输的重要保证。
如果搭铁设计不当,容易造成信号干扰,影响电器功能实现。
本文将详细阐述汽车线束搭铁设计。
关键词:整车线束;低压线束;搭铁线束1搭铁的概念和功能汽车中的所有电器都是并联的,所有电路都有正负极。
汽车电气系统采用单线制,即蓄电池负极与车身钣金相连,各电器件通过就近搭铁形成电源回路。
汽车上的负极线通常被称为搭接线。
这样可以有效的节省线束长度,减低线束成本和重量。
搭铁的质量是汽车电气设备性能的关键。
搭铁点分布在汽车的整个车身上,主要集中在仪表板管梁、车身地板、前机舱等部位,一些车身钣金件容易沾泥、沾油或生锈,这些情况会产生钣金锈蚀,最终导致搭铁功能失效。
例如,搭铁点处车身上有油漆,发动机铁丝紧固螺栓松动,或者搭铁端子的耐腐蚀性差,都会导致搭铁点锈蚀,严重影响电器件的正常工作。
因此,线束搭铁设计必须确保其合理性和防腐蚀性。
2搭铁点的分类与介绍1)电源搭铁蓄电池负极桩头上的零电位。
2)整车搭铁整车上互相导通的,可导电的车身钣金、底盘或者发动机零部件等。
3)电源信号搭铁整车上各类电气元器件的电源馈线。
按照回路中的电流的大小/波形,可划分为“脏搭铁”或者“干净搭铁”。
干净搭铁:峰值电流小于1 A的搭铁,如传感器信号反馈或者不同零部件之间的控制信号(例如网络通信)。
脏搭铁:峰值电流大于1 A的脉冲宽度调制负载和大于1 A的开关负载,如电机类和开关类负载。
4)射频搭铁经常被用作控制射频干扰的搭铁。
这类搭铁一般都是通过装配直接装在车身钣金上,不能用作任何搭铁电流的旁路。
5)天线搭铁,如:收音机天线搭铁。
3搭铁设计3.1搭铁类型1)根据连接点处的回路数量进行分类。
公共搭接:金属部件上的搭接点连接多个车载电气设备;单独接合:电气设备在金属部件(如主体或框架)上有单独的接合点。
2)按电气设备类型分类。
汽车线束设计及搭铁分析

李秋宁 郭雄 上 汽通用五菱汽 车股份有限公司 广西柳州 5 4 5 0 0 7
【 摘 要l合理设计汽车线束能够在很 大程度 上提 高汽车的整体性 2 . 搭铁 方式 比较及 注意事项 能。 本文首先介 绍了 线束设计中保护器件和导 线的选取 原则, 然后对搭铁 ( 1 ) 串联 单 点搭 铁 方 式 。 其等 效 电路 如 图l 所示 , 流 经各 电 器件 到 策略进行 了 分析, 最后对线柬的一 些布置原则进行了 探讨。 搭 铁点 的电流 依次 为I 、 I , 、 I , 相对应 的搭 铁 电阻依次 为R 、 R, 、 R , 【 关键 字】线束设计; 线束布置; 搭铁 分析 搭 铁 点的 电位依次 为U 、 U 、 U 。 Nu = ( I + I , + I ) R. , U = ( I , + I , + I ) R + ( I , + I ) R , , U = ( I , + I , + I ) R + ( I , + I ) R , + I R 。 由此可知 , 采用 串联单 引言 点搭 铁方 式 , 各搭 铁点 电位相 差较 多, 相互 可能造 成严重 的影响 。 进行 随着经济社 会的进步 , 人们 对汽 车技术 的要求不 断提高 , 开始 注重 搭铁 设计 时, 为降低 电器相 对于基 准电位的 电位差 、 缩短 搭铁 线长 度以 汽 车智能化 的发展及应 用 。 为使汽 车具 备更 高的可操作性 、 安 全性与舒 及 降低干扰 程度 。 应 将电路 中的 电器按 电平高低 顺序距离G 点由远至近 适性 , 要在汽 车 内部应用 更多种类 的 电气设备 , 这就 增加 了电气设备在 依次布置 ; ( 2 ) 并联单点搭 铁 。 其等效 电路 如图2 所示 , 此种搭 铁方式 中, 搭 铁工 序时 的复 杂性 。 为了降低导 线的安装难 度、 抑 制无线 电的干扰并 U = I . R , U = I , R , , U = I R 。 由此可知 , 各搭铁 点电位之 间互不影 响 , 避 免浪 费导 线材 料。目 前, 汽 车线 束多使用单 线制 布线方 式 , 其具 体指 能够 有效 提高坑干扰性 能 , 但是 搭铁 线长度 较长 , 数 量较多 , ( 3 ) 搭铁 设 电源 和电气设 备所 构成的 回路用一根导 线相连 , 将汽 车车身金 属部 件作 计注 意事项 。 在进 行搭 铁设 计时, 应注意 以下几个 方面 : 蓄电池 和发动 为公共负极并 与蓄 电池的 负极相 连 , 即所 谓的 “ 负极搭 铁” 。 各个 电气设 机的 搭铁 线截面 积一 般较大 , 布线 时应注 意布局 , 以控制 电压降 ; 各种 备用 电回路 互相 并联 , 均从 电源 引出 , 止于 “ 负极 搭铁 ” 端。 然而 , 搭 铁 电控单元 、 无线装 置都 易受其他设备 信号 干扰 , 应单设 搭铁 点 ; 采集较 端导 线非 常密集 , 若搭 铁设 计不 当, 必然导 致流 经电气设备 的电流 发生 弱信号 的传 感器, 其搭 铁线应 遵循单 独就近 原则 ; 安全 系统应 采用复式 变化 , 产生电位差 , 从而影响 设备的性 能。 因此, 了解汽 车线 束设计 中的 搭铁 , 以增强安全 性。 些 设计原 则是很 有必要 的。 魁释 搏 l =. 线 路 保 护设 计 ≈ # t l , … … 一 二 一 二 … 设 计 线路 保护 的 目的是保 护汽 车 电器及其导 线 。 通 常在 线路 保护 … n 设计 时, 需考虑以下几个方面 。 b 1 1 熔 断器 图1串联 单点搭铁等 效电路 图2并联单点搭铁等效 电路 ( 1 ) 一 些容 易受 到电负荷 干扰 的 电气设 备需 要单 独增 设 熔断 器, 例 如 发动 机E C U, 汽 车 防抱 死系统 A B S 等; ( 2 ) 一 些 受电负荷干扰 影 响较 五、 线柬 的 布置 原 则 小 的 电气设备 可以共用 一个 熔 断器, 例 如照 明系统 、 仪表 指示 灯、 发动 在布置整车 线束时, 为使布 线更加可靠 , 可以参照以下原则 。 机传感 器等 ・ ( 3 ) 不 同类 型的负载 不可共用一个 熔断 器, 比如 电阻型和 电 ( 1 ) 线束 的布置应 固定可靠 。 设 置固定点时 , 应考虑 线束 的走 向和车 感 型两类 电气设备 ; ( 4 ) 计算 熔断 器容量 的经验公式 为 , 熔 断器额 定容量 身形 状, 若两 固定 点所在直 线无支点 , 则两点 间距应 小于3 0 0 mm, 在钝 电路最 大工作 电流 ÷ 8 0 % 。 角拐点位 置可布置一个 固定点 , 在直 角拐点需 布置两个 固定点 , 锐 角拐 2 . 断路 器 点在线 束中避免 出现 。 选 择固定卡扣 时, 应按 照线束 的尺寸进 行选择 , 作 为一种热敏 机械 装置 , 断路器具 有可恢复性 , 其利用不 同金属受 并在线 束上标 明卡扣固定 点, 以满足承 受线束 重量的需 要。 在 和其它线 热 变形 程度 不一致 , 断路 器触点 自行开 关。 若 因电路过 载 , 流经断 路器 束、电器件连 接的插 接件位 置, 在 插接件 前不大 于1 2 0 mm的合适位 置, 的 电流 过大 , 则温 度 便会升 高 , 断路 器便会 动 作 , 断开熔 断 器, 切 断 电 考虑设 置固定点 , 考虑在 支点位 置的干线 上设 置固定点 , 固定点距离 支 流, 当温 度恢 复到 正常时 , 熔 断 器便会 自行接 通 。 一 些易受 电流波 动影 点不大于1 0 0 mm。 在固定卡扣 的安装方 向上 , 必 须有足够的空 间以 方便 响 的电路, 应选 择安装 断路器, 如门锁和 电动车窗。 卡扣 的安装 、 拆卸 , ( 2 ) 外观 整齐、 成 束配 置。 线束 布置应沿 边、 沿槽 ( 车 3 . 易熔线 身上设 计 的走线 槽) , 避 免线 束直接承 受压 力。 驾 驶室 内不得 有线 束外 易熔线 的作用是 当所在 电路 电流 极大 时, 能够在 短时 间内熔 断 , 已 露 ; 排 列 方式 在 投影 方 向上 , 按 横平竖 直 的棋 盘 式 排列 , 避 免 斜 线布 达 到切断 电路的 目的, 其多安装在 直接连 接蓄 电池 的电路中。 置。 与管 路的 间隙均匀 , 与周围零部 件的 间隙合理 ; ( 3 ) 线束避 免和 周围 兰. 导 线 选 取原 则 零部 件干涉。 为了防止 因导 线绝 缘受损而 发生 短路事 故, 应使 线束 与车 计算通 过导线 中的 电流时 , 可 以参 照汽车 电器的功率 进行确 定, 运 身尖锐 部分之 间存 有 间隙 ; 导线 安装在 振动或 运动 部件上时, 应视 实际 行 时 间较长 的 电器应按 其载 流量 的6 0 %选择 连接 导 线 , 运行 时 间较短 情况预 留长 度, 此预 留长 度根据 部件振 动幅度 、 运动件 的最大 运动行程 的电器应按其 载流 量的6 0 % - 1 0 0 % 选 择连接 导 线。 此 外, 导线 在截面积 确定 , 保证预 留长 度能够 不使振 动在线 束上转 递、 不使 线束 承受 拉 力, 的选择 上应参 照如下公式 : S = I p L/ U, 其 中S 指导 线截 面积 ,P 为 铜导 从而避 免线束 内部 接点虚 接, 如: 发动机 线束和 发动 机舱 线束的连 接。 线 的电 阻率 , L 2 k j 导 线长度 , U 为导 线允许最 大电压 降。 参照以上公式 , 此 外, 还应 注意 线束 与排气歧 管之 间的距离应大 于5 0 am, r 与发动机 处 导 线截面积 与允许流 通电流对应值如 表1 所 示。 温度 大干1 5 0 " C 的零部件 距离大干5 0 mm, 且不与燃 油管路 、 制 动管路 使
汽车线束设计及搭铁分析

汽车线束设计及搭铁分析[摘要]合理设计汽车线束能够在很大程度上提高汽车的整体性能。
本文首先介绍了线束设计中保护器件和导线的选取原则,然后对搭铁策略进行了分析,最后对线束的一些布置原则进行了探讨。
【关键字】线束设计;线束布置;搭铁分析一、引言随着经济社会的进步,人们对汽车技术的要求不断提高,开始注重汽车智能化的发展及应用。
为使汽车具备更高的可操作性、安全性与舒适性,要在汽车内部应用更多种类的电气设备,这就增加了电气设备在搭铁工序时的复杂性。
为了降低导线的安装难度、抑制无线电的干扰并避免浪费导线材料。
目前,汽车线束多使用单线制布线方式,其具体指电源和电气设备所构成的回路用一根导线相连,将汽车车身金属部件作为公共负极并与蓄电池的负极相连,即所谓的“负极搭铁”。
各个电气设备用电回路互相并联,均从电源引出,止于“负极搭铁”端。
然而,搭铁端导线非常密集,若搭铁设计不当,必然导致流经电气设备的电流发生变化,产生电位差,从而影响设备的性能。
因此,了解汽车线束设计中的一些设计原则是很有必要的。
二、线路保护设计设计线路保护的目的是保护汽车电器及其导线。
通常在线路保护设计时,需考虑以下几个方面。
1、熔断器(1)一些容易受到电负荷干扰的电气设备需要单独增设熔断器,例如发动机ECU,汽车防抱死系统ABS等;(2)一些受电负荷干扰影响较小的电气设备可以共用一个熔断器,例如照明系统、仪表指示灯、发动机传感器等;(3)不同类型的负载不可共用一个熔断器,比如电阻型和电感型两类电气设备;(4)计算熔断器容量的经验公式为,熔断器额定容量=电路最大工作电流÷80%。
2、断路器作为一种热敏机械装置,断路器具有可恢复性,其利用不同金属受热变形程度不一致,断路器触点自行开关。
若因电路过载,流经断路器的电流过大,则温度便会升高,断路器便会动作,断开熔断器,切断电流,当温度恢复到正常时,熔断器便会自行接通。
一些易受电流波动影响的电路,应选择安装断路器,如门锁和电动车窗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整车线束搭铁设计随着汽车技术的高速发展,电器设备的集成化也越来越高,很多自动化和智能化的电器设备被应用在汽车上,以满足人们对汽车的动力性、经济型、可靠性、安全性、舒适性以及排放性的要求,因此车辆上的线束也越来越复杂,在设计和生产过程中控制难度也越来越大。
而搭铁线路和搭铁点设计的好坏将影响电气部件的功能,进而影响汽车性能。
在常见的电气线束设计问题中,由于搭铁线束或搭铁点的不佳设计而导致发动机ECU不能正常工作、发动机冒黑烟、电气部件的信号受干扰等的情况。
所以搭铁线路的设计以及搭铁点选择的成为汽车线束设计的重要环节之一。
1、汽车线束搭铁原理汽车电气系统采用的是负极搭铁和单线制的设计原则。
负极搭铁是指蓄电池负极接金属车架。
单线制也称单线连接,是指汽车上所有电气部件的正极均采用导线相互连接,而负极则直接或间接通过导线与金属车架或车身金属部分相连,即搭铁,也称接地。
任何—个电路都是从电源正极出发,经导线经用电设备再由负极导线搭铁,通过车架或车身流回电源负极形成回路。
1.1 搭铁等效电路在电气线束设计中,因受整车结构等限制,除了多点搭铁,很多电器部件负极搭铁点采用共压的单点搭铁方式。
负极单点共压搭铁的方式可以分为3种,串联单点共压搭铁,并联单点共压搭铁,混联单点共压搭铁。
a.多点搭铁。
多点搭铁是指电器部件的各个搭铁点直接就近接到金属车体上,各个部件都是单独搭铁,不与其他电器部件搭铁发生联系的搭铁方式,其等效电路图如图1所示。
图1 多点搭铁等效电路从图1中可以看出,电器部件1、电器部件2、电器部件3的电流为,Il、I2、I3,通过搭铁线与金属车架相连,线阻与搭铁点接触电阻等效为R1、R2、R3,各个电器部件未与其它电器部件发生联系。
从等效电路中可以看出,此种搭铁方式可使各个部件不受其它电器部件的干扰,但搭铁点比较多,在实际的设计中由于受底盘车身结构限制,现场施工、检修不便等因素影响,采用此方法存在一定困难。
故在客车线束搭铁设计中,不采用多点搭铁的方式。
b.串联单点共压搭铁。
串联单点共压搭铁是指部分电器部件没有直接搭到车身金属大梁,而是间接通过其它电器部件的搭铁线与车身金属大梁相连,其等效电路图如图2所示。
从图2中可以看出,电器部1、电器部件2、电器部件3的回路电流为I1、I2、I3,各搭铁线路上的等效电阻为R1、R2、R3。
电器部件1搭铁回路产生的电压降为U1=I1xR1+(I1+I2)xR2+(I1+I2+I3)xR3,电器部件2搭铁回路产生的电压降为U2=(I1+I2)×R2+(I1+I2+I3)xR,,电器部件3搭铁回路产生的电压降为U3=(I1+12+I3)×R3。
由此可以看出,在负极串联共压搭铁回路中,不同位置搭铁点的电位差不为零,且不同。
图中电器部件3最接近低电势部位,搭铁效果最好,电器部件受到干扰的可能性越小。
在此种方法中,把低电平电路的电器部件须布置到电器部件3的位置,如果布置到电器部件1位置时,则该电器部件相对于基准电位有较大的电位差,且接地线也最长,最容易受到干扰。
所以在电气线路搭铁线束设计中,应尽量减短搭铁线的长度,降低搭铁回路中的电阻值,减少电势差,选择低电势部位搭铁,从而减少回路干扰,即就近搭铁原则。
此方式的搭铁点较少,但是部分敏感的电器设备采用此方式将受到其它电器部件的干扰。
在客车的搭铁线束设计中,可根据实际情况确定是否选用此方式搭铁,但低电平电路的电器部件须布置在电器部件3的位置。
图2 串联单点共压搭铁等效电路c.并联单点共压搭铁。
并联单点共压搭铁是指各电器部件直接与金属车架相连搭铁,但部分电器部件可能采用共压端子,采用同一个搭铁点与金属车架相连,其等效电路如图3所示。
从图3中可以看出,电器部件1、电器部件2、电器部件3的回路电流为I1、I2、I3,各搭铁线路上的等效电阻为R1、R2、R3。
电器部件1搭铁回路产生的电压降为U1=I1×R1,电器部件2搭铁回路产生的电压降为U2=I2xR2,电器部件3搭铁回路产生的电压降为U3=I3xR3。
由此可以看出,在负极并联共压搭铁回路中,各电器部件搭铁电位只与自身的电流I与搭铁点的接触电阻R有关,不受其它电器部件电路的影响,从而避免了其它电器部件的干扰。
此方式对于各电器部件的搭铁效果最好,在实际的客车搭铁线束设计中多采用此种方式搭铁。
但此方式会导致一个搭铁点的接线较多,线束体积大,不利于线束布置。
所以在实际设计中,需要考虑到搭铁点的整体布置。
图3 并联单点共压搭铁等效电路d.混联单点共压搭铁。
混联单点共压搭铁是指在线束搭铁线束设计中,既有串联搭铁方式,又有并联搭铁方式,其等效电路如图4所示。
从图中可以看出,电器部件1与电器部件2是串联搭铁方式,而其与电器部件3又是并联搭铁。
此方式综合了串联搭铁与并联搭铁的优缺点。
串联部分电路设计较简单,线束较短,但可能会造成电器部件的相互干扰,尤其有可能干扰安全性的电器部件。
并联部分搭铁效果较好,能较好地减少电器部件间的相互干扰,但可能造成接线较长,线束体积增大。
所以在实际设计中,须综合考虑是否采用此搭铁方式。
图4 混联单点共压搭铁等效电路1.2 搭铁点功能分类及设计原则a.功能分类。
线束搭铁点在汽车电路中起到重要的作用,不仅应将整车电路串成电气回路,而且应保证各种电器部件的信号完整传递。
搭铁点就其功能可以分为以下几种:①电源地。
电源地是指整车电路的地,是将蓄电池负极用导线直接连接到金属车架上(通常是底盘大梁),电源地使整个车身成为电流回路中的负极。
②功率地。
功率地是指整车电路中大功率用电设备的搭铁,如系统电路中的发动机风扇、控制器风扇、水泵等。
这些电器部件的电流一般会比较大,不能和其他弱电流以及信号线搭在一起。
③信号地。
信号地是指小电流信号的搭铁,包括模拟信号和数字信号等,在系统中通常是一些控制信号。
④屏蔽层搭铁。
屏蔽层搭铁是指高压电器部件在工作时导致周围电磁场的变化,此时需要采取屏蔽层搭铁来消除影响。
由于新能源汽车高压部件较多,在设计时高压线束以及高压部件壳体都需要采用搭铁设计。
用于数据传输的CAN信号线以及发动机起动机回路,在设计时都需要采用屏蔽层搭铁,以防止干扰的产生。
⑤防静电搭铁。
静电有可能损坏某些精密电子设备,在燃油加油口等也有可能聚集大量静电,这些在设计中也应予以考虑。
b.设计遵循原则。
根据以上搭铁点的功能,在设计搭铁点时应遵循以下原则:①电源地单独搭铁;②功率地与信号地分开搭铁;③就近搭铁,但要考虑到便于安装、维修方便;④对事关安全性或易受干扰的电器设备采取双重搭铁。
2、汽车线束搭铁点设计汽车线束搭铁点设计是汽车线束设计中的较重要环节。
在设计过程中不仅应从电气设计角度是行考虑,而且应考虑整车电器部件的布置以及整车结构等因素,综合各方面因素选择合适的搭铁点形式。
针对新能源客车的整车结构以及电器部件多且布置位置多变等情况,并考虑实际线束布置中的可操作性等,在此设计并分析几种搭铁方式,供设计人员在实际施工时参考。
a.自攻螺钉搭铁。
此种搭铁是指将搭铁线环用自攻钉固定在底盘大梁或者方钢上的搭铁方式,具体操作时应先磨去底盘或方钢上的油漆,再用自攻钉固定搭铁线坏,然后做防锈处理。
此方法较灵活,可以根据线束长度来确定搭铁点,但自攻螺钉长时间使用可能存在松动,且防锈处理并不可靠。
在实际设计中尽量少用此搭铁方式。
b.通孔搭铁。
通孔搭铁是指对于半承载的底盘,在底盘的纵梁上下翼面开直径为9 mm的孔,用于搭铁与管线固定,如图5所示。
此搭铁方式与自攻螺钉搭铁方式相似,也需要先打磨通孔边缘的油漆,再采用螺栓固定搭铁线环,最后做防水防锈处理。
其可靠性不佳,在实际设计中尽量少采用此种方式搭铁。
图5 通孔搭铁c.螺栓搭铁。
螺栓搭铁是指用螺栓来连接搭铁线环与金属大梁的一种搭铁方式,在全承载及半承载的车型中都有应用,如图7所示。
此方式是在底盘大梁上焊接一个螺柱,将搭铁点与螺柱用螺帽连接,从而与底盘导通。
螺栓搭铁通用性较好,在设计上能较好地实现,但在实际布置中,用螺栓作为搭铁点可能造成固定点与搭铁点混淆。
在采用电泳工艺的车型中,采用此搭铁方式则存在搭铁不良的现象。
针对采用电泳工艺的车型,螺栓搭铁方式需要给出电泳防护工艺,以保证搭铁点与金属车架间的良好导通性。
图8为带帽的螺栓搭铁示意图,用带螺帽的螺柱作为搭铁点,再采用螺栓连接固定搭铁线环。
此方式存在两个螺帽未搭接到位的情况,造成对电泳防护不到位。
d.搭铁柱搭铁。
搭铁柱搭铁是指将一个有内螺纹的开通孑L的部件作为专用搭铁柱,搭铁线环通过搭铁柱与金属大梁相连接,如图9所示。
搭铁柱一端焊接在金属车架上,另外一端用螺栓连接以防电泳漆覆盖搭铁柱表面。
采用此方式搭铁有两个优点,一是在现场施工时,能区分搭铁柱与其他固定点,不会出现混淆情况,二是因为不需要带两个螺帽,工人在施工时较带螺帽的螺栓搭铁方式效率高。
图9 搭铁柱搭铁3、结束语分析了电气线束的搭铁原理以及搭铁点在电气线束设计中应要遵循的原则,设计并分析了几种常用搭铁方式,为设计人员提供参考。
在实际施工中搭铁线束及搭铁点的设计,不仅应考虑电气原理、搭铁点的机械设计形式,还应考虑电气部件的总体布置、底盘车身结构、线束布置等。
只有综合考虑这些因素,才能设计好搭铁线束以及搭铁点,才能保证搭铁点可靠以及整车电器部件功正常运行。