整车线束搭铁设计

整车线束搭铁设计
整车线束搭铁设计

整车线束搭铁设计

随着汽车技术的高速发展,电器设备的集成化也越来越高,很多自动化和智能化的电器设备被应用在汽车上,以满足人们对汽车的动力性、经济型、可靠性、安全性、舒适性以及排放性的要求,因此车辆上的线束也越来越复杂,在设计和生产过程中控制难度也越来越大。而搭铁线路和搭铁点设计的好坏将影响电气部件的功能,进而影响汽车性能。在常见的电气线束设计问题中,由于搭铁线束或搭铁点的不佳设计而导致发动机ECU不能正常工作、发动机冒黑烟、电气部件的信号受干扰等的情况。所以搭铁线路的设计以及搭铁点选择的成为汽车线束设计的重要环节之一。

1、汽车线束搭铁原理

汽车电气系统采用的是负极搭铁和单线制的设计原则。负极搭铁是指蓄电池负极接金属车架。单线制也称单线连接,是指汽车上所有电气部件的正极均采用导线相互连接,而负极则直接或间接通过导线与金属车架或车身金属部分相连,即搭铁,也称接地。任何—个电路都是从电源正极出发,经导线经用电设备再由负极导线搭铁,通过车架或车身流回电源负极形成回路。

1.1 搭铁等效电路

在电气线束设计中,因受整车结构等限制,除了多点搭铁,很多电器部件负极搭铁点采用共压的单点搭铁方式。负极单点共压搭铁的方式可以分为3种,串联单点共压搭铁,并联单点共压搭铁,混联单点共压搭铁。

a.多点搭铁。多点搭铁是指电器部件的各个搭铁点直接就近接到金属车体上,各个部件都是单独搭铁,不与其他电器部件搭铁发生联系的搭铁方式,其等效电路图如图1所示。

图1 多点搭铁等效电路

从图1中可以看出,电器部件1、电器部件2、电器部件3的电流为,Il、I2、I3,通过搭铁线与金属车架相连,线阻与搭铁点接触电阻等效为R1、R2、R3,各个电器部件未与其它电器部件发生联系。从等效电路中可以看出,此种搭铁方式可使各个部件不受其它电器部件的干扰,但搭铁点比较多,在实际的设计中由于受底盘车身结构限制,现场施工、检修不便等因素影响,采用此方法存在一定困难。故在客车线束搭铁设计中,不采用多点搭铁的方式。

b.串联单点共压搭铁。串联单点共压搭铁是指部分电器部件没有直接搭到车身金属大梁,而是间接通过其它电器部件的搭铁线与车身金属大梁相连,其等效电路图如图2所示。从图2中可以看出,电器部1、电器部件2、电器部件3的回路电流为I1、I2、I3,各搭铁线路上的等效电阻为R1、R2、R3。电器部件1搭铁回路产生的电压降为U1=I1xR1+(I1+I2)xR2+(I1+I2+I3)xR3,电器部件2搭铁回路产生的电压降为U2=(I1+I2)×R2+(I1+I2+I3)xR,,电器部件3搭铁回路产生的电压降为U3=(I1+12+I3)×R3。由此可以看出,在负极串联共压搭铁回路中,不同位置搭铁点的电位差不为零,且不同。图中电器部件3最接近低电势部位,搭铁效果最好,电器部件受到干扰的可能性越小。在此种方法中,把低电平电路的电器部件须布置到电器部件3的位置,如果布置到电器部件1位置时,则该电器部件相对于基准电位有较大的电位差,且接地线也最长,最容易受到干扰。所以在电气线路搭铁线束设计中,应尽量减短搭铁线的长度,降低搭铁回路中的电阻值,减少电势差,选择低电势部位搭铁,从而减少回路干扰,即就近搭铁原则。

此方式的搭铁点较少,但是部分敏感的电器设备采用此方式将受到其它电器部件的干扰。在客车的搭铁线束设计中,可根据实际情况确定是否选用此方式搭铁,但低电平电路的电器部件须布置在电器部件3的位置。

图2 串联单点共压搭铁等效电路

c.并联单点共压搭铁。并联单点共压搭铁是指各电器部件直接与金属车架相连搭铁,但部分电器部件可能采用共压端子,采用同一个搭铁点与金属车架相连,其等效电路如图3所示。从图3中可以看出,电器部件1、电器部件2、电器部件3的回路电流为I1、I2、I3,各搭铁线路上的等效电阻为R1、R2、R3。电器部件1搭铁回路产生的电压降为U1=I1×R1,电器部件2搭铁回路产生的电压降为U2=I2xR2,电器部件3搭铁回路产生的电压降为U3=I3xR3。由此可以看出,在负极并联共压搭铁回路中,各电器部件搭铁电位只与自身的电流I与搭铁点的接触电阻R有关,不受其它电器部件电路的影响,从而避免了其它电器部件的干扰。

此方式对于各电器部件的搭铁效果最好,在实际的客车搭铁线束设计中多采用此种方式搭铁。但此方式会导致一个搭铁点的接线较多,线束体积大,不利于线束布置。所以在实际设计中,需要考虑到搭铁点的整体布置。

图3 并联单点共压搭铁等效电路

d.混联单点共压搭铁。混联单点共压搭铁是指在线束搭铁线束设计中,既有串联搭铁方式,又有并联搭铁方式,其等效电路如图4所示。从图中可以看出,电器部件1与电器部件2是串联搭铁方式,而其与电器部件3又是并联搭铁。此方式综合了串联搭铁与并联搭铁的优缺点。串联部分电路设计较简单,线束较短,但可能会造成电器部件的相互干扰,尤其有可能干扰安全性的电器部件。并联部分搭铁效果较好,能较好地减少电器部件间的相互干扰,但可能造成接线较长,线束体积增大。所以在实际设计中,须综合考虑是否采用此搭铁方式。

图4 混联单点共压搭铁等效电路

1.2 搭铁点功能分类及设计原则

a.功能分类。线束搭铁点在汽车电路中起到重要的作用,不仅应将整车电路串成电气回路,而且应保证各种电器部件的信号完整传递。搭铁点就其功能可以分为以下几种:①电源地。电源地是指整车电路的地,是将蓄电池负极用导线直接连接到金属车架上(通常是底盘大梁),电源地使整个车身成为电流回路中的负极。②功率地。功率地是指整车电路中大功率用电设备的搭铁,如系统

电路中的发动机风扇、控制器风扇、水泵等。这些电器部件的电流一般会比较大,不能和其他弱电流以及信号线搭在一起。③信号地。信号地是指小电流信号的搭铁,包括模拟信号和数字信号等,在系统中通常是一些控制信号。④屏蔽层搭铁。屏蔽层搭铁是指高压电器部件在工作时导致周围电磁场的变化,此时需要采取屏蔽层搭铁来消除影响。由于新能源汽车高压部件较多,在设计时高压线束以及高压部件壳体都需要采用搭铁设计。用于数据传输的CAN信号线以及发动机起动机回路,在设计时都需要采用屏蔽层搭铁,以防止干扰的产生。⑤防静电搭铁。静电有可能损坏某些精密电子设备,在燃油加油口等也有可能聚集大量静电,这些在设计中也应予以考虑。

b.设计遵循原则。根据以上搭铁点的功能,在设计搭铁点时应遵循以下原则:①电源地单独搭铁;②功率地与信号地分开搭铁;③就近搭铁,但要考虑到便于安装、维修方便;④对事关安全性或易受干扰的电器设备采取双重搭铁。

2、汽车线束搭铁点设计

汽车线束搭铁点设计是汽车线束设计中的较重要环节。在设计过程中不仅应从电气设计角度是行考虑,而且应考虑整车电器部件的布置以及整车结构等因素,综合各方面因素选择合适的搭铁点形式。

针对新能源客车的整车结构以及电器部件多且布置位置多变等情况,并考虑实际线束布置中的可操作性等,在此设计并分析几种搭铁方式,供设计人员在实际施工时参考。

a.自攻螺钉搭铁。此种搭铁是指将搭铁线环用自攻钉固定在底盘大梁或者方钢上的搭铁方式,具体操作时应先磨去底盘或方钢上的油漆,再用自攻钉固定搭铁线坏,然后做防锈处理。此方法较灵活,可以根据线束长度来确定搭铁点,但自攻螺钉长时间使用可能存在松动,且防锈处理并不可靠。在实际设计中尽量少用此搭铁方式。

b.通孔搭铁。通孔搭铁是指对于半承载的底盘,在底盘的纵梁上下翼面开直径为9 mm的孔,用于搭铁与管线固定,如图5所示。此搭铁方式与自攻螺钉搭铁方式相似,也需要先打磨通孔边缘的油漆,再采用螺栓固定搭铁线环,最后做防水防锈处理。其可靠性不佳,在实际设计中尽量少采用此种方式搭铁。

图5 通孔搭铁

c.螺栓搭铁。螺栓搭铁是指用螺栓来连接搭铁线环与金属大梁的一种搭铁方式,在全承载及半承载的车型中都有应用,如图7所示。此方式是在底盘大梁

上焊接一个螺柱,将搭铁点与螺柱用螺帽连接,从而与底盘导通。螺栓搭铁通用性较好,在设计上能较好地实现,但在实际布置中,用螺栓作为搭铁点可能造成固定点与搭铁点混淆。在采用电泳工艺的车型中,采用此搭铁方式则存在搭铁不良的现象。针对采用电泳工艺的车型,螺栓搭铁方式需要给出电泳防护工艺,以保证搭铁点与金属车架间的良好导通性。图8为带帽的螺栓搭铁示意图,用带螺帽的螺柱作为搭铁点,再采用螺栓连接固定搭铁线环。此方式存在两个螺帽未搭接到位的情况,造成对电泳防护不到位。

d.搭铁柱搭铁。搭铁柱搭铁是指将一个有内螺纹的开通孑L的部件作为专用搭铁柱,搭铁线环通过搭铁柱与金属大梁相连接,如图9所示。搭铁柱一端焊接在金属车架上,另外一端用螺栓连接以防电泳漆覆盖搭铁柱表面。采用此方式搭铁有两个优点,一是在现场施工时,能区分搭铁柱与其他固定点,不会出现混淆情况,二是因为不需要带两个螺帽,工人在施工时较带螺帽的螺栓搭铁方式效率高。

图9 搭铁柱搭铁

3、结束语

分析了电气线束的搭铁原理以及搭铁点在电气线束设计中应要遵循的原则,设计并分析了几种常用搭铁方式,为设计人员提供参考。在实际施工中搭铁线束及搭铁点的设计,不仅应考虑电气原理、搭铁点的机械设计形式,还应考虑电气部件的总体布置、底盘车身结构、线束布置等。只有综合考虑这些因素,才能设计好搭铁线束以及搭铁点,才能保证搭铁点可靠以及整车电器部件功正常运行。

整车线束设计开发流程

整车线束设计开发流程 本设计指南制定了公司乘用车一般整车线束设计开发流程 1.1该系统综述 汽车整车线束,就是将汽车的电源和各用电器按照它们各自的工作原理特性及相互间的内在联系,用导线连接起来所构成的一个整体。汽车整车线束由于各车型的结构型式,电器设备的数量,安装位置、接线方法不同而有差异,但有基本的规定 A、单线制 B、各用电器并联 C、有保险装置以保护线路 D、采用单色或双色导线、多色线 1.2适用范围 本指南适用于公司整车线束的开发。 1.3系统基本组成 整车线束是分布在车体内,根据它所处位置的不同可分成各种线束。 线束的基本组成主要由导线、插接器、胶带、波纹管、固定卡、电器盒和固定支架等组成,如下图: 主主主 主主 主主主 主主主主主 主主主主主主

2?设计构想 2.1 设计原则 1、完整正确地体现整车电器系统的功能 2、根据车型的需要设计成整体或分组分段的电线束 3、根据汽车电线束所处的工作环境及在汽车内的空间布置合理选择保护层和固定方 式 4、选择线束内部的电线时要针对用电设备的负载合理选择电线截面积和颜色 5、在设计过程中尽量减少连接点和过渡接头以提高线束质量、改善制造工艺 6、为降低电线电阻和降低电线成本,设计时应避免重复布线,使线的长度最短 7、对汽车上一些电器信号应增加防干扰措施 2.1.1 功能要求 1、满足整车装配要求和布置要求 2、为用电器提供电源和搭铁 3、同汽车上某些开关及继电器结合起来实现对电器设备的功能控制 4、把某些传感器和开关信号输送给汽车上的相应控制单元,并把控制单元的控制信号传 递给相应的执行机构 5、电器内部的通讯(如CAN —BUS) 2.1.2 顾客要求 1、线束走向整洁、合理,安装牢固 2、方便维修 3、价格低,使用寿命长 4、标识清楚 2.1.3 性能要求 使用寿命:用户正常使用不得少于50 万公里或10 年(以先到为限) 连接可靠性:线束与线束之间、线束与用电器之间的连接可靠,满足Q/YYY .04.030 中所规定 工作温度:在-40C ~130C中的不同温度能正常工作,高低温实验后,线束包扎紧密不

汽车线束中国前10大企业

目前国内汽车线束厂家虽然很多,但大多数规模小、生产装备落后、质量档次不高,配套车型单一。相对较好的厂家(独资或合资)有:上海金亭、天津津住、天美、惠州住润、金山、汕头失崎等。 其配套能力约100万台套,且其中天美、住润、矢崎产品均100%出口。高档、优质线束的市场需求十分广阔。同时,因线束生产属劳动密集型企业,国外劳动力昂贵,而我国较为低廉,故在国外市场中具有较强的竞争力,市场前景看好。 一、莱尼线束系统(常州)有限公司 莱尼(LEONI)线束系统(常州)有限公司成立于2000年2月,由莱尼股份有限公司旗下的莱尼线束系统有限公司全额投资并控股。公司主要从事汽车线束的开发、生产和销售并提供相关的服务。目前公司主要为通用汽车/Opel(欧宝)以及中高档客车(如亚星奔驰中高档客车系列)提供线束系统。 该公司于2000年6月通过了由德国著名认证机构DQS对QS-9000质量体系进行的认证审核。在生产管理上,公司采用先进的"莱尼生产力模式(LPS)"管理理念和体系,结合看板(KANBAN)拉动物流管理,采用先进的FORS(ERP)系统与德国总部、顾客、全球供应商以及各兄弟公司实行商务联网操作。从订单的接收到材料采购指令的自动生成下达均通过EDI 电子传输,大大提高了公司运作效率和数据信息传递的安全准确,确保了JUST IN TIME的实现。 公司一贯重视产品质量,更注重树立员工牢固的质量意识,借助各种有效的质量控制方法和手段,运用PDCA循环全方位地严格控制过程质量,实现持续改进(CIP)的目标。从顾客反馈的报告数据显示,公司自投产至今,始终保持着交付产品OPPM的记录。2002年该公司被授予中国外商投资企业双优称号,此外该公司研制开发了汽车线束柔性线路板技术(FPCB),并被评为江苏省高新技术企业。.目前该公司又在常州高新技术开发区购置28000平方米的土地。 该公司采用莱尼全球化标准的装配生产线,应用了快速换模,从意大利Sixtau公司引进世界上先进的线束测试设备,所有的测试程序都由计算机控制,且程序易于维护和编写,灵活地满足各种线束的测试需要。所用线束专用检试台采用红外线、光、气、电等手段,全面测试线束的完整性、导通性、气密性等,只有当全部的参数正确并完全通过检测,它才会打印出产品的测试标签,保证了所有产品的零缺陷。 在压接设备方面,我司从瑞士Komax公司以及德国Schoeffer引进世界先进的全自动及半自动压接设备,压接模具全部从德国引进并由莱尼德国总部检测,同时利用切片分析仪、压接拉力测试仪,采用切片分析和计算CPK值控制压接特性。 莱尼于20世纪60年代末进入汽车工业,旗下的莱尼线束系统有限公司业务涉及汽车整车线束系统的设计、生产、销售,以及新技术新材料在线束领域的开发应用。主要顾客有戴姆勒克-克莱斯勒、通用/欧宝、奥迪/大众、宝时捷、宝马、陆虎等著名汽车公司。除了传统的汽车线束外,公司还研究开发了注塑(preformed cable harness)、柔线线路板技术(complex FPCB cabing systerms)以及专为优化线束系统所开发的trail-blazing电子解决方案,并运用于轿车车门和仪表线束中,为未来的汽车线束系统的发展指明了方向。该公司被通用汽车公司评为1999和2000年度全球最佳供应商,同时也获得大众公司、本田公司、宝石捷公司最佳供应商,2002年公司的销售额为6亿欧元。 二、上海金亭汽车线束有限公司 上海金亭汽车线束有限公司系上海东昌投资发展有限公司与古河金山电装(香港)有限公司合作之合资企业,专业开发及生产高级汽车线束。公司外销产品为日本丰田、铃木汽车等世界著名的汽车厂商的轿车线束,内销产品为上海大众、上海通用等国内著名汽车厂商的轿车线束,其中

乘用车线束布置设计规范

乘用车线束布置设计规范

线束总体设计 1.1.1本篇主要介绍有关汽车线束布置的内容,对新车型线束的布置起指导作用,它概括了新开发车型的线束的固定,走向,分布及其相关附件的选用;同时,也对相关的车型的线束进行了总结,可以用作后续开发车型的参考。 包括以下几个部分: 1、线束的总体布置; 2、前舱线束的布置; 3、发动机线束的布置; 4、仪表线束的布置; 5、室内地板线束布置; 6,四门线束布置; 7、空调线束布置; 8、安全气囊线束布置 9、顶棚线束布置 10、后保线束布置 适用于公司整车线束的开发,需要不断的补充和完善,所涉及的线束布置方法需要不断的更新,以满足不同车型的开发要求。 1.1.2 线束布置的总体设计 一、概述 线束是电器的神经系统,对整车电器电子功能的实现起着至关重要的作用。在线束布置的总体设计中要充分考虑各相关的边界条件,对车身、动力总成、仪表台、底盘、内饰件必须充分、系统的了解,充分考虑各相关件对线束布置可能产生的影响,并对相关件的设计提出相应合理的要求。同时,我们要充分考虑整车的温度分布和震动,避免线束通过高温区,避免线束剧烈震动。 二、整车电器件的布置分布 启动机、、(包括其上的所有传感器和执行器)动力总成前舱的电器件或者相关件有:在整车中,发电机、蓄电池、压缩机、冷却风扇、灯具、ABS 控制器、轮速传感器、雨刮洗涤系统、环境温度传感器、喇叭、防盗喇叭、风扇控制器、电器盒及其他开关和传感器等。同时,前舱中的温度较高,且运动件较多,在设计线束的时候要充分考虑这些情况。在仪表台的部位通常有:HV AC、音响系统、安全气囊、仪表电器盒、BCM、ECU、TCU、制动开关,电子油门踏板、离合器开关、点烟器、备用电源及各种开关件(如组合开关、报警开关等);地板部分主要的电器件有:电动座椅及加热,电子油泵、安全带开关、后轮速传感器、转角传感器等;顶棚的电器件有:顶灯、电动天窗等;门上的主要电器件有:扬声器、电动窗、门锁、及相关的开关件等;后行李箱部分的电器件主要有:后BCM、停车辅助装置、后尾灯、后雨刮、高位制动灯、行李箱灯等。对于不同的车型,由于配置的不同,以上的电器件或有增减,但是对于同类型的车而言,基本的分布位置不会有太大的区别。对电器件大概位置的了解是十分必要的,对线束的布置也是至关重要。 三、整车线束的基本分类 在整车的线束中,我们可以将线束分成这样的几个部分:前舱线束总成、发动机线束总成、变速箱线束总成、仪表线束总成、地板线束总成、门线束总成(四门不同)、顶棚线束总成、后行李箱线束总成、电瓶正负极线束总成、安全气囊线束总成。但是,线束的划分和整车的结构和装配

汽车线束设计

汽车线束设计 及线束用原材料 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。随着人们对汽车的安全性、舒适性、经济性和排放性要求的提高,汽车线束变得越来越复杂,但车身给予线束的空间却越来越小。因此,如何提高汽车线束的综合性能设计便成为关注的焦点,而且汽车线束制造厂家不再单纯地搞线束后期设计和制造,和汽车主机厂家联合进行前期开发成为必然的趋势。根据几年来从事线束设计和制造的经验,谈谈线束的一般设计流程和设计原则。一、整车电路设计电源分配设计 汽车的供电系统设计是否合理,直接关系到汽车电器件的正常工作与否和全车的安全性,因此世界各国的出发点基本都是以安全为主。整车电气系统基本上3个部分组成。 1、蓄电池直接供电系统。 这部分的电源所接负载一般都是汽车的安全件或重要件,主要目的是在为这些件提供电能时尽量少的加以控制,确保这些件即使汽车发动不起来也能短暂正常工作,以方便到站点维修等。如:发动机ECU及发动机传感器的工作电源、燃油泵的工作电源、ABS控制器的电源、诊断接口电源等。 2、点火开关控制的供电系统。这部分电器件基本上

是在发动机工作运转的情况下才使用,取自发电 机的电源,避免了为蓄电池充电时争电源的可能性。如:仪表电源、制动灯电源、安全气囊电源等。 3、发动机起动时卸掉负载的电源。这部分电器件一般所带的负载较大,且在汽车起动时不必工作。一般有点烟器电源、空调电源、收放机电源、刮水器电源等。线路保护设计 线路保护就是要对导线加以保护,兼顾对回路电器件的保护。保护装置主要有熔断器、断路顺和易熔线。 1.熔断器的选取原则 发动机ECU、ABS等对整车性能及安全影响大,另外,易受其他用电设备千扰的电器件必须单设熔断器。发动机传感器、各类报警信号灯和外部照明灯、喇叭等电器件对整车性能及安全影响也较大,但该类电负荷对相互间的干扰并不敏感。因此,这类电负荷可以根据情况相互组合,共同使用一个熔断器。对于为增加舒适性而设置的普通电器件类的电负荷可以根据情况相互组合,共同使用一个熔断器。熔断器分快熔式和慢熔式。快熔式熔断器的主要部件是细锡线,其中片式熔断器结构简单、可靠性和耐振好、易检测,所以被广泛采用;慢熔式熔断器实际上是锡合金片,这种结构的熔断器一般串接到感性负载的电路中,如电机电路。电阻型的负载与电感型的负载尽量避开使用同一个熔断器。一般根据

全车电路图及线束图

第十章全车电路图及线束图 1.电路图符号说明(图10-0-1、图10-0-2) 2.总成电气原理示意图/插接件图(图10-0-3、图10-0-4) 3.起动和充电系统电路图及线束图(图10-0-5、图10-0-6) 4.发动机控制系统电路图及线束图(图10-0-7~图10-0-16) 5.冷却系统电路图及线束图(图10-0-17、图10-0-18) 6.组合仪表、警告灯电路图及线束图(图10-0-19~图10-0-24) 7.雨刷、洗涤总成电路图及线束图(图10-0-25、图10-0-26) 8.前照灯电路图及线束图(图10-0-27、图10-0-28) 9.尾灯、牌照灯、示廓灯电路图及线束图(图10-0-29、图10-0-30) 10.前雾灯、后雾灯电路图及线束图(图10-0-31、图10-0-32) 11.转向警告闪光灯单元电路图及线束图(图10-0-33、图10-0-34) 12.喇叭、制动灯、倒车灯电路图及线束图(图10-0-35、图10-0-36) 13.暖风、空调系统电路图及线束图(图10-0-37~图10-0-40) 14.自动变速器控制系统电路图及线束图(图10-0-41~图10-0-44) 15.室内灯、行李箱灯、数字电子钟、点烟器电路图及线束图(图10-0-45、图10-0-46) 16.照明灯电路及线束图(图10-0-47、图10-0-48) 17.后除霜器电路图及线束图(图10-0-49、图10-0-50) 18.音响电路图及线束图(图10-0-51、图10-0-52) 19.电动门窗系统电路图及线束图(图10-0-53、图10-0-54) 20.中央门锁系统电路图及线束图(图10-0-55、图10-0-56) 21.电控镜系统电路图及线束图(图10-0-57、图10-0-58) 22.ABS系统电路图及线束图(图10-0-59、图10-0-60) 23.安全气囊控制单元电路图及线束图(图10-0-61、图10-0-62) 24.诊断插接件示意图(图10-0-63) 25.通用插接件示意图(图10-0-64~图10-0-67)

汽车低压线束设计规范

汽车低压线束设计规范 1 范围 本标准规定了汽车低压线束设计的一般步骤、方法和所参考的国家和行业标准;规定了图样所包含的内容及标准化要求;规范所选用的材料规格和型号的一般要求;规范线束分支、长度的表示方法;规定图样所需标定的尺寸、技术要求;规定图样幅面、视图;规定比例、线型和块的处理;选型的计算方法、低压插接件选型原则及要求等。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T14690 技术制图比例 GB/T 14691 技术制图字体 JB/T 8139 公路车辆用低压电缆 QC/T 413 汽车电气设备基本技术条件 QC/T 414 汽车用低压电线的颜色 QC/T 417.1车用电线束插接器第一部分定义、试验方法和一般性能要求(汽车部分) QCn 29010 汽车用低压电线接头型式、尺寸和技术要

求 QCn 29013 汽车用蓄电池电线接头型式、尺寸和技术要求 QC/T 29106-2004 汽车低压电线束技术条件 3 术语 本标准采用下列及QC/T 417.1中的定义。 3.1 干线:电线束中两根或两根以上电线包扎在一起的部分(如图1所示)。 3.2 支线:电线束中电线的末端没有包扎的部分或单根电线(如图1所示)。 3.3 分支点:电线束中干线与干线或干线与支线中心线的交点(如图l所示)。 3.4 接点:电线与电线的连接点(如图1所示)。 3.5 端子:插接件的统称。 3.6 干区:安装在车箱内部或密闭舱体等无涉水部位的电线束不需做特殊防水防护处理的区域。 3.7 湿区:除干区以外,电线束易受水浸需做特殊防水防护处理的区域。 3.8 插头(插片):插入插座(插簧)可以完成电气连接的插接件(如图2所示)。 3.9 插座(插簧):接受插头(插片)形成电气连接的插接件(如图2所示)。

汽车线束要点

汽车线束要点

————————————————————————————————作者: ————————————————————————————————日期: ?

汽车线束 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。在目前,不管是高级豪华汽车还是经济型普通汽车,线束编成的形式基本上是一样的,都是由电线、联插件和包裹胶带组成。汽车电线又称低压电线,它与普通家用电线是不一样的。普通家用电线是铜质单蕊电线,有一定硬度。而汽车电线都是铜质多蕊软线,有些软线细如毛发,几条乃至几十条软铜线包裹在塑料绝缘管(聚氯乙烯)内,柔软而不容易折断。汽车线束内的电线常用规格有标称截面积0.5、0.75、1.0、1.5、2.0、2.5、4.0、6.0 等平方毫米的电线,它们各自都有允许负载电流值,配用于不同功率用电设备的导线。以整车线束为例: 1、0.5 规格线适用于仪表灯、指示灯、门灯、顶灯等; 2、0.75规格线适用于牌照灯,前后小灯、制动灯等; 3、1.0 规格线适用于转向灯、雾灯等; 4、1.5规格线适用于前大灯、喇叭等; 5、主电源线如发电机电枢线、搭铁线等要求 2.5 至4平方毫米电线。 这只是指一般汽车而言,关键要看负载的最大电流值,例如蓄电池的搭铁线、正极电源线则是专门的汽车电线单独使用,它们的线径都比较大,起码有十几平方毫米以上,这些“巨无霸”电线就不会编入主线束内。在排列线束前要事先绘制线束图,线束图与电路原理图是不一样的。电路原理图是表述各个电气部分之间关系的图像,它不反映电气件彼此之间怎样连接,不受各个电气元件的尺寸形状和它们之间距离的影响。而线束图则必须要顾及各个电气元件的尺寸形状和它们之间的距离,也要反映出电气件彼此之间是如何连接的。线束厂的技术员根据线束图做成线束排线板后,工人就按照排线板的规定来截线排线了。整车主线束一般分成发动机(点火、电喷、发电、起动)、仪表、照明、空调、辅助电器等部分,有主线束及分支线束。一条整车主线束有多条分支线束,就好象树杆与树支一样。整车主线束往往以仪表板为核心部分,前后延伸。由于长度关系或装配方便等原因,一些汽车的线束分成车头线束(包括仪表、发动机、前灯光总成、空调、蓄电池)、车尾线束(尾灯总成、牌照灯、行李箱灯)、篷顶线束(车门、顶灯、音响喇叭)等。线束上各端头都会打上标志数字和字母,以标明导线的连接对象,操作者看到标志能正确连接到对应的电线和电气装置上,这在修理或更换线束时特别有用。同时,电线的颜色分为单色线和双色线,颜色的用途也有规定,一般是车厂自订的标准。我国行业标准只是规定主色,例如规定单黑色专用于搭铁线,红单色用于电源线,不可混淆。线束用机织线或塑料粘带包裹,出于安全、加工和维修方便,机织线包裹已经淘汰,现在是用粘性塑料胶带包裹。线束与线束之间、线束与电气件之间的连接,采用联插件或线耳。联插件用塑料制成,分有插头和插座。线束与线束之间用联插件相接,线束与电气件之间的连接用联插件或线耳。随着汽车功能的增加,电子控制技术的普遍应用,电气件越来越多,电线也会越来越多,线束也就变得越粗越重。因此先进的汽车就引入了CAN 总线配置,采用多路传输系统。与传统线束比较,多路传输装置大大减少了导线及联插件数目,使布线更为简易。 一、汽车线束研发中的线束图纸画法研究 汽车线束图是汽车线束设计的具体体现,无论对汽车生产厂家还是对汽车的使用维修单位,它都是一种实用性很强的技术资料。一辆汽车也许只有一张电路图,一张接线图,而线束图则可能有数张。近几年来汽车新产品开发速度很快,尤其是客车,为了改变轻少重的状况,新型客车开发速度更快。以常州客车厂为例,1988年以来,每年推出一个系列新型客车,因此,汽车电线束设计的工作量很大,线束图的绘制占了相当大的比例。此外,为中小型汽车厂配套线柬的电线束专业生产厂家不断出现,这些厂家迫切要求规范化的线束图,以便于加工制造,对汽车使用、维修单位来说,规范化的线束图无疑也会为他们提供方便。目前,许多汽车电气设计人员在绘制线束图时,采用:

--汽车线束电路原理

--汽车线束电路原理

————————————————————————————————作者:————————————————————————————————日期:

汽车线束电路 原理 汽车线束设计综述 汽车上的电源和各种电气零件通过线束来实现电路物理连接,线束分布遍布全车。如果把发动机比作汽车心脏的话,那么线束就是汽车的神经网络系统它负责整车各个电器零件之间的信息传递工作。随着人们对舒适性、经济性、安全性要求的不断提高,汽车上的电子产品种类也在不断增加,汽车线束越来越复杂线束的故障率也相应增加。这就要求提高线束的可靠性和耐久性等性能,在这里笔者就汽车线束设计、工艺、生产及检验方面的知识同各位同仁探讨一 下。 1、电气原理图的设计、计算 汽车线束是全车汽车电气原理的物理表现形式,因此应先有电气原理图再有线束图进而根据线束图生产线束,在设计电气原理图前应具备以下条件: 1.1掌握《电气设计任务书》的技术要求和全车电气配置情况; 1.2根据电气负载功率消耗确定熔断器容量大小、计算导线线径并根据负载工作原理和功能要求进行载荷分配,确定电路的保护方式及确定总保险的容量。 《电气设计任务书》的技术要求和全车电气配置情况是由各个汽车制造厂自己制定的,不再多说。下面重点介绍一下1.2的相关内容: 1.2.1如何确定熔断器容量大小 熔断器按保护形式分,可分为:过电流保护与过热保护。用于过电流保护的熔断器就是平常所说的保险丝。采用熔断器保护电路时,用电设备的最大持续电流应小于熔断器额定电流的80%。根据每一路的最大工作电流来选定熔断器的额定电流,其关系式为:熔断器的额定电流=每一路的最大工作电流÷0.8。例如:众泰2008右前照灯远光灯功率60w,稳态最大工作电流5A,按此关系式得出熔断器的额定容量为6.25A,考虑到安全系数熔断器容量确定为10A。对于一些感性原件比如点火线圈、怠速步进电机其瞬时自感电动势产生的峰值电流远远超过正常工作时的最大电流,熔断器可以在短时间内通过很大的峰值电流,因此对于带有感性原件的电路一般不考虑自感电动势产生的电流。 1.2.2导线线径的确定 在确定导线截面积时要考虑电压降和导线的发热 (1)用电设备的电流强度为: I=P/UN(P—负载功率; UN—额定电压) (2)导线截面积计算公式为: A=IρL/UVL(I--电流,安培;P---功率,瓦;A—导线截面积,平方

汽车线束设计原则

汽车线束设计原则 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。随着人们对汽车的安全性、舒适性、经济性和排放性要求的提高,汽车上的电器配置、功能也越来越多,所以连接各个电器件的线束也越来越复杂,成为当代汽车故障的多发环节,也因此在汽车设计和生产制造中受到越来越多的关注。如何提高汽车线束的综合性能成为关注的焦点,汽车线束制造厂家不再单纯地搞线束后期设计和制造,增加与汽车主机厂联合进行前期开发已成为必然的趋势。汽车电线束的设计电线束在整车中的作用是将电气系统的电源信号或数据信号进行传递或交换,实现电气系统的功能及要求。电线束的设计流程和制造流程 (1)由电气布置工程师提供整车电气系统的功能,电气负荷及相关的特殊要求。电器件的状态、安装位置、线束与电器件对接的形式。 (2)根据电气功能及要求,绘制整车电气原理图及线路图。(3)根据电气原理圈对每个电气子系统及回路进行能源分配,其中包括电源的搭铁线,以及接地点的分配。 (4)根据各子系统电气件的分布情况,确定线束的布线形式,每根线束连接的电器件及在汽车上的走向;确定线束的外保护形式及过孔的保护;根据电气负荷确定熔断器或断路器;再根据熔断器或断路器的量确定导线的线径;根据电器件的功能,依据相关标准确定导线的线色;根据电器件本身的接插件确定线束上与其对接的端子和护套的型号。 (5)绘制二维线束图和三维线束布置图。(6)根据经核准的三维线束布置图,校核二维线束图,二维线束图准确无误方可发图,经认可后试制、生产。二维线束图设计要点配电盒配电盒(保险和继电器)是整车电气的核心,起到分配负荷、集中供电、节省空间、简化线束、降低成本和方便检修的作用。一般根据需要可设计成2~3个。一些新开发车型的配电盒已兼有电子控制的功能;并且无触点、无保险丝的中央控制盒也将越来越有市场。导线的选取 (1)导线颜色的选用依据《汽车用低压电线的颜色》执行。 (2)发动机周围环

汽车线束设计

电气组设计说明 1、设计思路 汽车线束设计基本思路是,根据用电设备,特别是大功率设备包括每个传感器的信号电压电流,首先确定线路最大电流,根据电流确定线束截面积,在确定截面积之后确定线束长度,然后计算总电流确定主保险丝的熔断电流,选择保险丝。在选择好后利用三维软件设计线束,根据三维线束制作线路图。 2、传感器 传感器的工作电压和电流均较小,一般为毫安级,多选择小线径,如横截面积为0. 35 mm2 ,但考虑到线束的抗拉、抗折断性能以及耐久性, 通常会选择如横截面积为0. 5mm2 的导线。需要注意的是,为了提高电磁兼容( EMC)和电磁干扰( EM I)性能,对于磁电传感器要采用双绞线、屏蔽线等。采用双绞线时,一般为33个螺旋/m,如发动机转速传感器和凸轮位置传感器等。在cbr发动机上有ECT、TP、MAP、CAP、CKP几个主要的信号线,在这些信号线中电流都是在毫安级,电压最高为5V。在线束选择时一般都选择0.5mm2的电缆。 A VX线缆容许电压和压降 AEX线缆容许电压和压降 A VX、AEX是日本线缆的两种主要产品,由于这两种线缆的允许工作温度包含发动机线缆的工作温度,以下数据是基于此两表进行的计算。

导线截面积计算公式: A=IpL/U A----导线截面积 I------负载电流 P-----铜电阻率 L-----导线长度 U-----允许最大电压降 名称最高电压(V)工作电阻(欧)最大电流(A) ECT 5 650 7.69x10ˉ3 TP 5 3200 1.56x10ˉ3 MAP 5 6000 0.83x10ˉ3 CAM 5 490 10.2x10ˉ3 CKP 5 430 11.6x10ˉ3 点火线圈12 1.6 7.5 喷油器12 13 0.92 根据已知的电流和铜电阻率,在信号电压压降为500mv最大值,电缆横截面面积为0.5mm2,计算出每个传感器最小可用长度。如表 导线截面积(mm2)允许最大电压降(V)导线长度L(m) ECT 0.5 0.5 1230 TP 0.5 0.5 6064 MAP 0.5 0.5 11398 CAM 0.5 0.5 927 CKP 0.5 0.5 816 根据以上计算数据可知,对于传感器而言,对于信号影响较大的不是线束的长度,而是其他的原因。 信号线电缆将选择0.5平方,耐高温120摄氏度,双色线。 3、执行器 名称最高电压(V)工作电阻(欧)最大电流(A) 点火线圈12 1.6 7.5 喷油器12 13 0.92 由上表可知执行器点火线圈的工作电流要大,虽然是间歇性的,但是线缆的允许电流必须要大一些,因此选择1.25mm2的电缆。喷油器的工作电流相对要小,用0.5mm2的线缆。在不影响执行器工作的情况下,电压降定位最大1V,计算如下表: 导线截面积(mm2)允许最大电压降(V)导线长度L(m) 点火线圈 1.25 1 9 喷油器0.5 1 29.4 根据数据可得,执行器线缆的影响长度远远大于设计值。如传感器电缆类似。 最终确定,点火线圈电缆1.25平方,耐高温120摄氏度,双色线。 喷油器电缆0.5平方规格,耐高温120摄氏度,双色线。

汽车高低压电线束设计方案规范汇总

Q/XX XXXXXXXXX公司 Q/XX-J028-2015 汽车高低压电线束设计规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 2015-06-15发布 2015-06-15实施 XXXXXXXXX公司发布

1.设计技术 1.1 概述 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。动力系统线束设计分为动力系统低压线束和动力系统高压线束。设计线束时需要考虑其安全性、可靠性和稳定性要求。线束变得越来越复杂,但车身给予线束的空间却越来越小。因此,如何提高电动汽车的动力系统线束的综合性能设计便成为关注的焦点。为使本公司汽车线束部件设计规范化,参考国内外汽车线束设计的技术要求,结合本公司已经开发车型的经验,编制本文。使本公司设计人员对汽车线束设计起到指导操作、提高电器线束设计的效率和合理性的作用。本文对中央控制盒、继电器盒、保险丝盒及线束包扎等作了规范化要求,本文将在本公司所有车型线束开发设计中贯彻,并在实践中进一步提高完善。

电 线 束 设 计 流 程 1.2低压线束设计 1.2.1 整车低压线束设计 电动汽车的供电系统设计是否合理,直接关系到汽车电器件的正常工作与否和全车的安全性,因此线束设计出发点基本都是以安全为主。整车电气系统基本上由3个部分组成。 蓄电池直接供电系统(一般称常电)。这部分的电源所接负载一般都是汽车的安全件或重要件,主要目的是在为这些电器件提供电能时尽量少的

加以控制,确保在无法启动电动模式情况下,汽车也能短暂正常工作,以方便故障车辆能够及时维修等。如:整车控制器电源、真空制动助力泵电源和转向泵电源等。 点火开关控制的供电系统(一般称为IG档)。这部分电器件基本上是在车辆未行驶运转的情况下才使用,取自预充电模块的分支电源,避免了为蓄电池充电时争电源的可能性。如:雨刮器、车灯控制电源、门窗控制电源等。 电动模式的供电系统(一般称为start档)。这部分电源是在车辆启动电动模式下,电器件能够正常启动。电源的负载比较大,电源取之于预充电模块,负载的电流消耗量不同,预充电输出地电流量也就随之成正比变化,有效地保证整车的用电量。 1.2.2 线路保护设计 A.熔断器 线路保护就是要对导线加以保护,兼顾对回路电器件的保护。目前电动汽车所用保护装置主要有熔断器。它是一种安装在中央控制盒中,保证电路安全运行的电器元件。当电路发生故障或异常时,伴随着电流不断升高,并且升高的电流有可能损坏线路。若线路中正确地安置了保险丝,那么,保险丝就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护线路安全运行的作用。 熔断器按照结构上分为片式熔断器、插入式熔断器和旋紧式熔断器3种类型,这3种熔断器有不同承载电流量的规格。在线路保护采用的熔断器时,需要严格选取相应的规格。

汽车高低压电线束设计规范

Q/X X XXXXXXXXX公司 Q/XX-J028-2015 汽车高低压电线束设计规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 2015-06-15发布 2015-06-15实施 XXXXXXXXX公司发布

1.设计技术 1.1 概述 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。动力系统线束设计分为动力系统低压线束和动力系统高压线束。设计线束时需要考虑其安全性、可靠性和稳定性要求。线束变得越来越复杂,但车身给予线束的空间却越来越小。因此,如何提高电动汽车的动力系统线束的综合性能设计便成为关注的焦点。为使本公司汽车线束部件设计规范化,参考国内外汽车线束设计的技术要求,结合本公司已经开发车型的经验,编制本文。使本公司设计人员对汽车线束设计起到指导操作、提高电器线束设计的效率和合理性的作用。本文对中央控制盒、继电器盒、保险丝盒及线束包扎等作了规范化要求,本文将在本公司所有车型线束开发设计中贯彻,并在实践中进一步提高完善。

电 线 束 设 计 流 程 1.2低压线束设计 1.2.1 整车低压线束设计 电动汽车的供电系统设计是否合理,直接关系到汽车电器件的正常工作与否和全车的安全性,因此线束设计出发点基本都是以安全为主。整车电气系统基本上由3个部分组成。 蓄电池直接供电系统(一般称常电)。这部分的电源所接负载一般都是汽车的安全件或重要件,主要目的是在为这些电器件提供电能时尽量少的

加以控制,确保在无法启动电动模式情况下,汽车也能短暂正常工作,以方便故障车辆能够及时维修等。如:整车控制器电源、真空制动助力泵电源和转向泵电源等。 点火开关控制的供电系统(一般称为IG档)。这部分电器件基本上是在车辆未行驶运转的情况下才使用,取自预充电模块的分支电源,避免了为蓄电池充电时争电源的可能性。如:雨刮器、车灯控制电源、门窗控制电源等。 电动模式的供电系统(一般称为start档)。这部分电源是在车辆启动电动模式下,电器件能够正常启动。电源的负载比较大,电源取之于预充电模块,负载的电流消耗量不同,预充电输出地电流量也就随之成正比变化,有效地保证整车的用电量。 1.2.2 线路保护设计 A.熔断器 线路保护就是要对导线加以保护,兼顾对回路电器件的保护。目前电动汽车所用保护装置主要有熔断器。它是一种安装在中央控制盒中,保证电路安全运行的电器元件。当电路发生故障或异常时,伴随着电流不断升高,并且升高的电流有可能损坏线路。若线路中正确地安置了保险丝,那么,保险丝就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护线路安全运行的作用。 熔断器按照结构上分为片式熔断器、插入式熔断器和旋紧式熔断器3种类型,这3种熔断器有不同承载电流量的规格。在线路保护采用的熔断器时,需要严格选取相应的规格。

汽车高低压电线束设计要求规范

实用标准文案 Q/XX XXXXXXXXX公司 Q/XX-J028-2015 汽车高低压电线束设计规范 编制:日期: 校对:日期: 审核:日期: 批准:日期: 2015-06-15发布 2015-06-15实施 XXXXXXXXX公司发布

1.设计技术 1.1 概述 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。动力系统线束设计分为动力系统低压线束和动力系统高压线束。设计线束时需要考虑其安全性、可靠性和稳定性要求。线束变得越来越复杂,但车身给予线束的空间却越来越小。因此,如何提高电动汽车的动力系统线束的综合性能设计便成为关注的焦点。为使本公司汽车线束部件设计规范化,参考国内外汽车线束设计的技术要求,结合本公司已经开发车型的经验,编制本文。使本公司设计人员对汽车线束设计起到指导操作、提高电器线束设计的效率和合理性的作用。本文对中央控制盒、继电器盒、保险丝盒及线束包扎等作了规范化要求,本文将在本公司所有车型线束开发设计中贯彻,并在实践中进一步提高完善。

电 线 束 设 计 流 程 1.2低压线束设计 1.2.1 整车低压线束设计 电动汽车的供电系统设计是否合理,直接关系到汽车电器件的正常工作与否和全车的安全性,因此线束设计出发点基本都是以安全为主。整车电气系统基本上由3个部分组成。 蓄电池直接供电系统(一般称常电)。这部分的电源所接负载一般都是汽车的安全件或重要件,主要目的是在为这些电器件提供电能时尽量少的

加以控制,确保在无法启动电动模式情况下,汽车也能短暂正常工作,以方便故障车辆能够及时维修等。如:整车控制器电源、真空制动助力泵电源和转向泵电源等。 点火开关控制的供电系统(一般称为IG档)。这部分电器件基本上是在车辆未行驶运转的情况下才使用,取自预充电模块的分支电源,避免了为蓄电池充电时争电源的可能性。如:雨刮器、车灯控制电源、门窗控制电源等。 电动模式的供电系统(一般称为start档)。这部分电源是在车辆启动电动模式下,电器件能够正常启动。电源的负载比较大,电源取之于预充电模块,负载的电流消耗量不同,预充电输出地电流量也就随之成正比变化,有效地保证整车的用电量。 1.2.2 线路保护设计 A.熔断器 线路保护就是要对导线加以保护,兼顾对回路电器件的保护。目前电动汽车所用保护装置主要有熔断器。它是一种安装在中央控制盒中,保证电路安全运行的电器元件。当电路发生故障或异常时,伴随着电流不断升高,并且升高的电流有可能损坏线路。若线路中正确地安置了保险丝,那么,保险丝就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护线路安全运行的作用。 熔断器按照结构上分为片式熔断器、插入式熔断器和旋紧式熔断器3种类型,这3种熔断器有不同承载电流量的规格。在线路保护采用的熔断器时,需要严格选取相应的规格。

汽车线束合集

汽车线束 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。在目前,不管是高级豪华汽车还是经济型普通汽车,线束编成的形式基本上是一样的,都是由电线、联插件和包裹胶带组成。 汽车电线又称低压电线,它与普通家用电线是不一样的。普通家用电线是铜质单蕊电线,有一定硬度。而汽车电线都是铜质多蕊软线,有些软线细如毛发,几条乃至几十条软铜线包裹在塑料绝缘管(聚氯乙烯)内,柔软而不容易折断。 汽车线束内的电线常用规格有标称截面积0.5、0.75、1.0、1.5、2.0、2.5、4.0、6.0等平方毫米的电线,它们各自都有允许负载电流值,配用于不同功率用电设备的导线。以整车线束为例,0.5规格线适用于仪表灯、指示灯、门灯、顶灯等;0.75规格线适用于牌照灯,前后小灯、制动灯等;1.0规格线适用于转向灯、雾灯等;1.5规格线适用于前大灯、喇叭等;主电源线例如发电机电枢线、搭铁线等要求2.5至4平方毫米电线。这只是指一般汽车而言,关键要看负载的最大电流值,例如蓄电池的搭铁线、正极电源线则是专门的汽车电线单独使用,它们的线径都比较大,起码有十几平方毫米以上,这些“巨无霸”电线就不会编入主线束内。 在排列线束前要事先绘制线束图,线束图与电路原理图是不一样的。电路原理图是表述各个电气部分之间关系的图像,它不反映电气件彼此之间怎样连接,不受各个电气元件的尺寸形状和它们之间距离的影响。而线束图则必须要顾及各个电气元件的尺寸形状和它们之间的距离,也要反映出电气件彼此之间是如何连接的。 线束厂的技术员根据线束图做成线束排线板后,工人就按照排线板的规定来截线排线了。整车主线束一般分成发动机(点火、电喷、发电、起动)、仪表、照明、空调、辅助电器等部分,有主线束及分支线束。一条整车主线束有多条分支线束,就好象树杆与树支一样。整车主线束往往以仪表板为核心部分,前后延伸。由于长度关系或装配方便等原因,一些汽车的线束分成车头线束(包括仪表、发动机、前灯光总成、空调、蓄电池)、车尾线束(尾灯总成、牌照灯、行李箱灯)、篷顶线束(车门、顶灯、音响喇叭)等。线束上各端头都会打上标志数字和字母,以标明导线的连接对象,操作者看到标志能正确连接到对应的电线和电气装置上,这在修理或更换线束时特别有用。同时,电线的颜色分为单色线和双色线,颜色的用途也有规定,一般是车厂自订的标准。我国行业标准只是规定主色,例如规定单黑色专用于搭铁线,红单色用于电源线,不可混淆。

整车线束搭铁设计

整车线束搭铁设计 随着汽车技术的高速发展,电器设备的集成化也越来越高,很多自动化和智能化的电器设备被应用在汽车上,以满足人们对汽车的动力性、经济型、可靠性、安全性、舒适性以及排放性的要求,因此车辆上的线束也越来越复杂,在设计和生产过程中控制难度也越来越大。而搭铁线路和搭铁点设计的好坏将影响电气部件的功能,进而影响汽车性能。在常见的电气线束设计问题中,由于搭铁线束或搭铁点的不佳设计而导致发动机ECU不能正常工作、发动机冒黑烟、电气部件的信号受干扰等的情况。所以搭铁线路的设计以及搭铁点选择的成为汽车线束设计的重要环节之一。 1、汽车线束搭铁原理 汽车电气系统采用的是负极搭铁和单线制的设计原则。负极搭铁是指蓄电池负极接金属车架。单线制也称单线连接,是指汽车上所有电气部件的正极均采用导线相互连接,而负极则直接或间接通过导线与金属车架或车身金属部分相连,即搭铁,也称接地。任何—个电路都是从电源正极出发,经导线经用电设备再由负极导线搭铁,通过车架或车身流回电源负极形成回路。 1.1 搭铁等效电路

在电气线束设计中,因受整车结构等限制,除了多点搭铁,很多电器部件负极搭铁点采用共压的单点搭铁方式。负极单点共压搭铁的方式可以分为3种,串联单点共压搭铁,并联单点共压搭铁,混联单点共压搭铁。 a.多点搭铁。多点搭铁是指电器部件的各个搭铁点直接就近接到金属车体上,各个部件都是单独搭铁,不与其他电器部件搭铁发生联系的搭铁方式,其等效电路图如图1所示。 图1 多点搭铁等效电路 从图1中可以看出,电器部件1、电器部件2、电器部件3的电流为,Il、I2、I3,通过搭铁线与金属车架相连,线阻与搭铁点接触电阻等效为R1、R2、R3,各个电器部件未与其它电器部件发生联系。从等效电路中可以看出,此种搭铁方式可使各个部件不受其它电器部件的干扰,但搭铁点比较多,在实际的设计中由于受底盘车身结构限制,现场施工、检修不便等因素影响,采用此方法存在一定困难。故在客车线束搭铁设计中,不采用多点搭铁的方式。

汽车线束的基本知识

汽车线束的基本知识 2017-11-26 xmsun2007来源阅 43 转 1 转藏到我的图书馆 微信分享: QQ空间QQ好友新浪微博推荐给朋友 一、汽车线束 汽车线束(汽车电线束),实现对汽车上的电源和各种电气零件的电路物理连接。线束分布遍布全车。如果把发动机比作汽车心脏网络系统它负责整车各个电器零件之间的信息传递工作。 制造汽车线束的体系大致分两类 (1)以欧美国家划分,包括中国,使TS16949体系来对制造过程进行控制。 (2)以日本为主:如丰田、本田他们有自己的体系来控制制造过程。 汽车线束厂家有其特殊性,重视具备线缆生产经验和线缆成本控制力。全球大型线束厂多是以电线电缆起家,如:矢崎、住友、莱

等 二、汽车线束常用材料简介 1.线材(低压电线, 60-600V) 电线的种类: 国标线:QVR、QFR 、QVVR 、 QBV、QBVV等 日标线:AV、AVS、AVSS、AEX、AVX、 CAVUS、EB、TW、SHE-G等 德标线:FLRY-A、FLRY-B 等 美标线:SXL等 常用规格有标称截面积0.5、0.75、1.0、1.5、2.0、2.5、4.0、6.0等平方毫米的电线 2、护套 护套(胶壳),通常由塑料制成,把已压端子的导线插入其内,保证连接的可靠性,材质主要有PA6、PA66、ABS、PBT、PP等

3、端子 一种成形的五金部件,压接在导线上将不同的导线连接起来传输信号,分公端子,母端子,环形端子和圆端子等。

材质主要是黄铜和青铜(黄铜的硬度比青铜的硬度稍低),其中黄铜占的比重较大。 2、护套配件:防水栓、盲堵、密封圈、锁片、卡扣等 一般用于和护套端子组成连接器 3,、线束过孔橡胶件 起耐磨、防水、密封等作用。主要分布在发动机与驾驶室接口处、前舱与驾驶室接口处(左右共2处)、四门(或有后背门)与车 4,扎带(卡钉) 一种原件通常由塑胶制成,用来将线束固定在汽车中。有扎带,波纹管锁扎带。 5、管材 分波纹管、PVC热缩管、玻璃丝纤维管。编织管、缠绕管等。用来保护线束。(由直径不同而分类) ①波纹管 波纹管在线束包扎中一般占到60%左右,甚至更多。主要的特点就是耐磨性较好,在高温区耐高温性、阻燃性、耐热性都很好。波

汽车线束电路原理

汽车线束设计综述 汽车上的电源和各种电气零件通过线束来实现电路物理连接,线束分布遍布全车。如果把发动机比作汽车心脏的话,那么线束就是汽车的神经网络系统它负责整车各个电器零件之间的信息传递工作。随着人们对舒适性、经济性、安全性要求的不断提高,汽车上的电子产品种类也在不断增加,汽车线束越来越复杂线束的故障率也相应增加。这就要求提高线束的可靠性和耐久性等性能,在这里笔者就汽车线束设计、工艺、生产及检验方面的知识同各位同仁探讨一下。 1、电气原理图的设计、计算 汽车线束是全车汽车电气原理的物理表现形式,因此应先有电气原理图再有线束图进而根据线束图生产线束,在设计电气原理图前应具备以下条件: 1.1掌握《电气设计任务书》的技术要求和全车电气配置情况; 1.2根据电气负载功率消耗确定熔断器容量大小、计算导线线径并根据负载工作原理和功能要求进行载荷分配,确定电路的保护方式及确定总保险的容量。《电气设计任务书》的技术要求和全车电气配置情况是由各个汽车制造厂自己制定的,不再多说。下面重点介绍一下1.2的相关内容: 1.2.1如何确定熔断器容量大小 熔断器按保护形式分,可分为:过电流保护与过热保护。用于过电流保护的熔断器就是平常所说的保险丝。采用熔断器保护电路时,用电设备的最大持续电流应小于熔断器额定电流的80%。根据每一路的最大工作电流来选定熔断器的额定电流,其关系式为:熔断器的额定电流=每一路的最大工作电流÷0.8。例如:众泰2008右前照灯远光灯功率60w,稳态最大工作电流5A,按此关系式得出熔断器的额定容量为6.25A,考虑到安全系数熔断器容量确定为10A。对于一些感性原件比如点火线圈、怠速步进电机其瞬时自感电动势产生的峰值电流远远超过正常工作时的最大电流,熔断器可以在短时间内通过很大的峰值电流,因此对于带有感性原件的电路一般不考虑自感电动势产生的电流。 1.2.2导线线径的确定 在确定导线截面积时要考虑电压降和导线的发热 (1)用电设备的电流强度为: I=P/UN(P—负载功率; UN—额定电压) (2)导线截面积计算公式为: A=IρL/UVL(I--电流,安培;P---功率,瓦;A—导线截面积,平方毫米;ρ—铜导线电阻率,一般取值0.0185Ω.mm2/m;L--导线长度,米;UVL--导线允许的电压降,伏特) (3)为避免导线过渡发热,应该检查电流密度其公式为: S=I/A

相关文档
最新文档