第二章流体运动基本方程和基本规律

合集下载

工程流体力学 第二章

工程流体力学 第二章
( x , y , z , t ) t
只反映 在空间点(x,y,z) 处的时间变化特性 (即不同时刻经过该空间点的流体质点具有不 同的 ),不代表同一质点物理量的变化,所 以不是质点导数。
30
2.2.4 质点导数
( x , y , z , t ) t
反映了物理量在空间点(x,y,z)处的时间变化 特性,故可用来判定流场是否是稳态流场, 若是稳态的,则
或以速度分量表示为: dx vx v x ( a, b, c, t ) dt dy vy v y ( a, b, c, t ) dt dz vz v z ( a, b, c, t ) dt
16
2.2.1 拉格朗日法
一般地,流体任意运动参数或物理量(无 论矢量或标量)都同样可表示成拉格朗日 变量函数:
(a, b, c, t )
( x, y , z , t )
23
2.2.3欧拉表达式变换为拉格朗日
已知欧拉法描述的速度场:u=x,v=-y和 初始条件: x=a,y=b. 求速度和加速度的拉格朗日描述。
24
2.2.3欧拉表达式变换为拉格朗日表达式
已知流场速度和压力分布为:
xy v vxi v y j vz k i yj ztk t 1 e At 2 p 2 x y2 z2
的有限空间或微元空间作为研究对象,通过
研究该空间的流体运动及其受力,建立相应动
力学关系。
3
2-1 流场及流动分类
流场的概念 流场所占据的空间。为描述流体在流场内各 点的运动状态,将流体的运动参数表示为流 场空间坐标(x,y,z)和时间t的函数。
v v( x, y, z, t ) vx i v y j vz k

流体力学第2章流体运动学基本概念

流体力学第2章流体运动学基本概念
式中:a,b,c被称为拉格朗日变数。不同的一组(a,b,c) 表示不同的流体质点。
10




对于任一流体质点,其速度可表示为:
r x y z v i j k vx i v y j vz k t t t t 其加速度可表示为:
用拉格朗日法描述流体运动看起来比较简 单,实际上函数B(a,b,c,t)一般是不容易找到的, 往往不能用统一的函数形式描述所有质点的物
理参数的变化。所以这种方法只在少数情况下
使用,在本书中主要使用欧拉法。
13
2.2.2 欧拉法(也叫场法)
基本思想:在确定的空间点上来考察流体的流动, 将流体的运动和物理参量直接表示为空间坐标和时间的 函数,而不是沿运动的轨迹去追踪流体质点。 例:在直角坐标系的任意点(x,y,z)来考察流体流 动,该点处流体的速度、密度和压力表示为: v=v(x,y,z,t)=vx(x,y,z,t)i+ vy(x,y,z,t)j+ vz(x,y,z,t)k
15
2.2.3 质点导数
定义:流体质点的物理量对于时间的变化率。
拉格朗日法中,由于直接给出了质点的物理量的表达 式,所以很容易求得物理量的质点导数表达式。
B B(a, b, c, t ) t t
如速度的质点导数(即加速度)为:
v ( a , b, c , t ) a ( a , b, c , t ) t

v v v vy vz 又由矢量运算公式:v v vx x y z
其中矢量算子 i j k 叫哈密顿算子 x y z
18
于是质点的速度增量可以表示为:
v v ( v v )t t

第二节 流体流动的基本方程式

第二节  流体流动的基本方程式

第二节 流体流动的基本方程式化工厂中流体大多是沿密闭的管道流动,液体从低位流到高位或从低压流到高压,需要输送设备对液体提供能量;从高位槽向设备输送一定量的料液时,高位槽所需的安装高度等问题,都是在流体输送过程中经常遇到的。

要解决这些问题,必须找出流体在管内的流动规律。

反映流体流动规律的有连续性方程式与柏努利方程式。

1-2-1 流量与流速一、流量单位时间内流过管道任一截面的流体量称为流量。

若流体量用体积来计量,称为体积流量,以V s 表示,其单位为m 3/s ;若流体量用质量来计量,则称为质量流量,以w s 表示,其单位为kg/s 。

体积流量与质量流量的关系为:w s =V s ·ρ (1-16) 式中 ρ——流体的密度,kg/m 3。

二、流速单位时间内流体在流动方向上所流经的距离称为流速。

以u 表示,其单位为m/s 。

实验表明,流体流经管道任一截面上各点的流速沿管径而变化,即在管截面中心处为最大,越靠近管壁流速将越小,在管壁处的流速为零。

流体在管截面上的速度分布规律较为复杂,在工程计算中为简便起见,流体的流速通常指整个管截面上的平均流速,其表达式为: A V u s = (1-17)式中 A ——与流动方向相垂直的管道截面积,m 2。

流量与流速的关系为:w s =V s ρ=uA ρ (1-18) 由于气体的体积流量随温度和压强而变化,因而气体的流速亦随之而变。

因此采用质量流速就较为方便。

质量流速,单位时间内流体流过管路截面积的质量,以G 表示,其表达式为:ρρu A V A w G s s === (1-19)式中 G ——质量流速,亦称质量通量;kg/(m 2·s )。

必须指出,任何一个平均值都不能全面代表一个物理量的分布。

式1-17所表示的平均流速在流量方面与实际的速度分布是等效的,但在其它方面则并不等效。

一般管道的截面均为圆形,若以d 表示管道内径,则 24d V u s π= 于是 uV d sπ4=(1-20) 流体输送管路的直径可根据流量及流速进行计算。

第二章--计算流体力学的基本知识

第二章--计算流体力学的基本知识

第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。

这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。

2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。

20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。

数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。

从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。

数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。

数值计算方法最近发展很快,其重要性与日俱增。

自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。

最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。

航空技术的发展强烈推动了流体力学的迅速发展。

流体运动的规律由一组控制方程描述。

计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。

但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。

计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。

计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。

流体运动知识点总结

流体运动知识点总结

流体运动知识点总结流体运动是流体力学中的一个重要分支,研究流体在不同条件下的运动规律。

在日常生活和工程实践中,我们经常会遇到各种流体运动现象,比如水流、空气流动等。

深入了解流体运动的知识,对于理解自然界的规律,提高工程设计和应用水平都具有重要意义。

下面我们将对流体运动的相关知识点进行总结。

一、流体的基本性质1. 流体的定义:流体是指具有形状可变性的物质,包括液体和气体。

2. 流体的基本性质:流体具有密度、压力、黏性和流体的动力学粘性等基本性质。

3. 流体的状态方程:描述流体状态的方程,比如理想气体状态方程pV=nRT等。

二、流体的运动描述1. 流体的描述方法:欧拉描述和拉格朗日描述。

2. 流体的速度场:描述流体中各点的速度情况,通常用速度矢量场来表示。

三、流体的运动方程1. 流体的连续性方程:描述流体质点的数量守恒原理。

2. 流体的动量方程:描述流体中各点的运动规律。

3. 流体的能量方程:描述流体在运动过程中能量转换的规律。

四、粘性流体运动理论1. 纳维-斯托克斯方程:描述不可压缩粘性流体运动的基本方程。

2. 边界层理论:描述在流体运动中流体与固体边界的交互作用。

五、流体运动的数学描述1. 流体的势流:满足无旋无源条件的流体流动。

2. 流体流动的控制方程:包括连续性方程、动量方程和能量方程等。

六、常见的流体运动现象和应用1. 层流和湍流:描述流体运动中不同的流动特性。

2. 球体在流体中的运动:包括绕流、绕流和绕流现象的运动规律。

综上所述,流体运动是一个复杂的物理现象,涉及到流体的基本性质、运动描述、运动方程、数学描述等多个方面。

理解流体运动的知识,对于提高工程水平,改善生活环境都具有重要意义。

希望通过本文的介绍,读者能对流体运动有一个更深入的了解。

工程流体力学第二章

工程流体力学第二章

pxdydz pnds • sin dz 0
p y dxdz
pnds

cos
dz
1 2
dxdydz
g
0
所以:
px pn 0

py
pn
1 2
dyg
0
y b
pxdy
o
px pn py pn
pnds
G x a
p y dx
得证
微元体分析法的步骤: 1 取合适的微元体 2 受力分析 3 建立方程
F pcg A ghc A
y D
y C
J cx yA
c
常见几何形状的惯性矩(表2-2)
矩形 圆型
c
l
J cx
1 12
bl 3
b
cR
J cx
1 R4
4
¼圆
xc c yc
xc
yc
4R
3
J cx
(1 4
16
9 2
R4
) 4
例2-5 设矩形闸门的宽为6米,长10米,铰链到低水面的 距离为4米。按图示方式打开该闸门,求所需要的力 R。
z
p0
o
B
z
p0
o
B
R
(a)
pg
2
2r2
R
(b)
pg
2
2(r2
R2)
例2-4 设内装水银的U型管绕过D点的铅垂线等角速度旋 转,求旋转角速度和D点的压强。设水银密度为
13600kg/m3 且不计液面变化带来的影响。
ω
关键:
10cm 5cm
1 写出所有的体积力
20c m
z
12cm 2 根据压力差公式写出压强

流体力学第二章 流体运动学基础

流体力学第二章 流体运动学基础

整理课件
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
流体力学第二章
第二章
流体运动学基础
2021/6/29
整理课件
1
第二章 流体运动学基础
流体力学第二章
✓ 流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。
✓ 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。
✓ 本章的学习目标:
➢ 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
Vr
Vr r
V r
Vr
Vz
Vr z
V
2
r
ddVt
V t
Vr
V r
V r
V
Vz
V z
VrV r
dVz
dt
Vz t
Vr
Vz r
V r
Vz
Vz
Vz z
可得平面极坐标中加速度的表达式
Vz 0
ddVtr
Vr t
Vr
Vr r
V r
Vr
V
2
r
dV dt
V t
Vr
V r
V r
V
VrV r
2021/6/29
整理课件
2
流体力学第二章

流体力学最基本的三个方程

流体力学最基本的三个方程

流体力学最基本的三个方程流体力学是研究流体运动及其相关物理现象的学科。

它的基础有三个最基本的方程,即连续性方程、动量守恒方程和能量守恒方程。

本文将详细介绍这三个方程的含义和应用。

一、连续性方程:连续性方程,也称为质量守恒方程,描述了流体运动中质量守恒的原理。

它的数学表达式为:∂ρ/∂t+∇·(ρv)=0其中,ρ是流体的密度,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示向量的散度。

连续性方程的物理意义是说,质量在流体中是守恒的,即单位体积内的质量永远不会改变。

这是由于流体是连续的,无法出现质量的增减。

这个方程告诉我们,流体在流动过程中的速度变化与流体密度变化是相关的。

当流体流动速度较大时,密度通常会变小,反之亦然。

连续性方程的应用十分广泛。

在管道流动中,我们可以利用连续性方程来推导流速和截面积之间的关系。

在天气预报中,连续性方程被用来描述气象现象,如大气的上升和下沉运动,以及风的生成和消散等。

二、动量守恒方程:动量守恒方程描述了流体运动中动量守恒的原理。

它的数学表达式为:∂(ρv)/∂t + ∇·(ρvv) = -∇p + ∇·(μ∇v) + ρg其中,p是流体的压强,μ是流体的黏度,g是重力加速度。

动量守恒方程可以理解为牛顿第二定律在流体力学中的推广。

它表示流体在外力作用下的加速度与压力梯度、黏性力、重力的平衡关系。

动量守恒方程的物理意义是说,流体的运动与施加在流体上的各种力密切相关。

当外力作用于流体时,会引起流体的加速度,也即速度的变化。

这个方程告诉我们,流体的加速度是与外力、黏性力和重力共同作用而产生的。

动量守恒方程的应用十分广泛。

在飞行器设计中,我们可以利用动量守恒方程来研究气动力的产生和改变。

在水力学中,动量守恒方程可以用来分析水流的运动、喷流和冲击等。

三、能量守恒方程:能量守恒方程描述了流体运动中能量守恒的原理。

它的数学表达式为:∂(ρE)/∂t + ∇·(ρEv) = -∇·(pv) + ∇·(κ∇T) + ρg·v +q其中,E是单位质量流体的比总能量(包括内能、动能和位能),T是流体的温度,κ是流体的热传导系数,q是单位质量流体的热源项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2-2
▪ 对该控制体运用质量守恒律
净流出控制面的 控质制量体内质量的减
记为
B=C
▪ 穿过面元ds的质量流量是:Vnd SVdS
▪ 习惯上ds从控制体内指向外 ,因此当V也从
内指 向 外时,如图2-2, VdS 乘积为正。
▪ ▪
VdS VdS
为正:流出控制体的质量流量 。 为负:流入控制体的质量流量。
第二章 流体运动的基本方程和
基本规律
▪ 自然科学中有三大守恒律:质量守恒、动量 守恒和能量守恒。
▪ 本章先利用这三大原理,推导出流体力学中 的三个基本方程:连续方程、动量方程和能 量方程。然后粗略介绍这三个方程的解法。 最后分析流体微团运动和旋涡运动。
目录
§ 2.1 连续方程 § 2.3 能量方程 § 2.5 微团运动分析
§ 2.2 动量方程 § 2.4 方程的基本解法 § 2.6 旋涡运动
§2.1 连续方程
▪ § 2.1.1 连续方程的物理意义 ▪ § 2.1.2 连续方程的积分形式 ▪ § 2.1.3 连续方程的微分形式 ▪ § 2.1.4 连续方程的物质导数形式
§ 2.1.1 连续方程的物理意义
连续方程描述的是流体力学中的质量守恒规律: 流出控制体的质量流量等于控制体内质量随时间的 减少率。
▪ 很多情况下会运用到这种形式的连续方程,它可以 用来解释某个有限区域空间的气动现象,而不必关 心流场中某个点的具体细节。
▪ 然而,有时候我们需要关心流场的细节,就必须对 所取定点运用连续方程进行分析。在这种情况下, 积分形式的连续方程并不适用。
▪ 然而从积分形式的连续方程可以推导出微分形式的 连续方程,这种形式的连续方程是与空间具体点的 流动特性相连的。
▪ 首先引入一个矢量记号: •V • V V •
它表示标量和矢量乘积的散度等于标量乘以 矢量的散度加上矢量点乘个标量的梯度。
▪ 考虑微分形式给出的连续方程

V
0
t
▪ 应用上述的矢量记号,上式变为
“物质即不能创造也不能消灭”
▪ 在上一章第六节中,我们讨论了几种用来研究流体 运动的模型,现在对这些流体模型运用基本的物理 原理。和前面推导的物理意义不同,那里采用的是 运动的有限控制体,这里我们采用位置在空间固定 的有限控制体,即控制体固定在空间某个位置,流 体从中穿过。
▪ 显然,和前面的推导不同,控制体的体积和控制面 都不随时间变化,但是由于流场的非定常特性,控 制体内所包含的质量是随时间变化的。
§ 2.1.3 连续方程的微分形式
▪ 由于推导时所用的控制体的空间位置固定, 所以积分的极限形式也是固定的。于是对时
间求偏导数可以放到体积分符号里面
t d
VdS0
S
▪ 根据散度定量,上式右边项可以表示为:
t d Vd0
或者:
t Vd0
▪ 分析积分形式中的被积函数,如果被积函数的值是 有限的,那么此方程要求它在控制体的一部分区域 的积分和剩余的区域的积分大小相等,符号相反, 这样在整个控制体内的积分才为零。然而有限控制 体是任意的,因此对任意控制体,都要求要此方程 的积分为零,唯一方法是被积函数在控制体内所有 点值都为零。因此
•V0
t
•V0
t
▪ 上式就是连续方程的微分形式。该方程建立 了流场中某点的流动变量之间的关系,与积 分形式的连续方程相反,后者反应的是流场 中一个有限空间的流动变量之间的关系。

▪ 值得注意的是:连续方程的微分形式与积分 形式都是质量守恒原理的等效的表示。它们 只是数学表述方式不同而已,反映的的实质 都是“物质即不能创造也不能消灭”。
扫过体 Vnd积 tA
▪ 因此阴影部分的质量是:流过质量= VndtA
这就是在时间dt内流过面A的质量。
▪ 定义每秒钟流过面的质量为面的质量流量,
其单位是kg/s,记为

m
,从方程(2.1)有
m• VndtA
dt

或者 mVn A
▪ 再引入一个相关概念:质量通量。 其定义为单位面积上的质量流量,即
▪ 在连续方程的推导过程中,关于流体性质的 唯一假设就是连续性假设。因此,上式对任 意流体的三维非定常流动、有粘或是无粘、 可压或是不可压,都成立。
▪ 对定常流动,/t0,因此积分与微分形式
的连续方程分别简化为:
VdS0
V0
S
§ 2.1.4 连续方程的物质导数形式
▪ 第一章我们学习了物质导数,下面我们把连 续方程表示成物质导数的形式。
上式的相反数: dC t
▪ 则由: 净流出控制面的 控质制量体内质量的来自到: VdS d tS
或者:
d VdS0
t
S
此方程是对在空间位置固定的有限控制体运用质量
守恒率得到的结果,称为连续方程。它是流体力学 中最基本的方程之一。
§ 2.1t.2连d续方S程V的•d 积S分0形式
▪ 上式就是连续方程的积分形式。
▪ 在推导这个基本气动方程之前,我们引入质 量流量的概念。对位于流场中任意的面A,如 图2-1所示。图2-1是面A的侧视图。
A
图2-1 流过面 A的质量流量
▪ 假设区域足够小,因此面上各点的速度可以 认为相同。考虑以速度V穿过面A的流体微团, 在穿过面以后的时间dt内,它运动了的距离 Vdt,扫过的体积如图2-1阴影部分所示。显 然,扫过的体积等于底面积乘以柱体的高度 Vndt,这里Vn是速度在面A法向上的分量,即
▪ 质量流量沿整个控制面S求和就是净流出整个 控制面S的质量流量。再取极限,和就演变成 面积分,也就是上述方 程的左边B:
B VdS
S
▪ 现在考虑方程的右边C。
▪ 体元dv中包含的质量是:d
因此,整个控制体内的质量是: d
那么控制体内的流体质量随
时间的增加率是: d t
▪ 反过来,控制体内质量随时间的减少率就是

质量通量mA= Vn 质量通量的单位是: kg/sm2
▪ 质量流量和质量通量的概念很重要。
▪ 为了得到连续方程,对空间位置固定的有限 控制体运用质量守恒律: 质量既不能创造,也不能消灭
▪ 设流场特性随空间和时间的变化而变化,比
如 x,y,z,t。在该流场中,考虑如图2-2中
所示的有限控制体,在控制面上任取一点, 其速度是V,ds是包含该点的面元的外法矢, dv是控制体内流体微团的体积。
相关文档
最新文档