流动流体的基本规律
流体流动基本规律

ρ
We
=ρ
gZ2+
ρ u22 2
+
p2
+
ρ
∑h
f
( Pa )
1.3 流体流动旳基本方程
1牛顿流体所具有旳能量称为压头head,单位为m。 Z-----位压头Potential head; u2/2g----动压头dynamic head; p/ρg-----静压头hydrostatic head。 He = We /g -----由泵对单位重量流体提供旳能量, 外加压头或泵旳扬程 Hf=∑hf / g——损失旳能量或称损失压头Hf
1.3 流体流动旳基本方程
∵ Vs = u A=
π 4
d2u
√ ∴ d= 4 Vs =0.0997m=99.7mm πu
查表选择:外径=108 mm,壁厚=4 mm旳管子 d=108-4×2=100 mm
将内径d=100 mm代入上式得到实际流速u=1.49 m/s。
1.3 流体流动旳基本方程
1.3.2 稳定流动与非稳定流动 steady flow and unsteady flow
1.3 流体流动旳基本方程
√ u2 =
2Rg ( ρ -ρ ) 0
ρ[1(- dd21 )4 ]
则体积流量
Vs =
π d22 4
u2 =
π 4
2
d2
质量流量ws =ρ Vs
2R g
(
ρ
0
-
ρ)
ρ [1-
(
d2 d1
)4
]
=
π 4
ρ
2
d2
2R g (ρ - ρ )
0
ρ
[1 -
(
流体流动知识点总结归纳

流体流动知识点总结归纳流体力学是研究流体流动规律的一门学科,其研究对象涉及液体和气体的流动,包括流体的性质、流体流动的运动规律、流体的控制以及流体力学在工程和科学领域的应用等方面。
在这篇文章中,我们将对流体流动的一些基本知识点进行总结归纳,以便读者对这一领域有一个清晰的了解。
一、流体的性质1. 流体的定义流体是指那些易于变形,并且没有固定形状的物质。
流体包括液体和气体两种状态,其共同特点是具有流动性。
2. 流体的密度和压力流体的密度是指流体单位体积的质量,常用符号ρ表示。
流体的压力是指单位面积上受到的力的大小,它与流体的密度和流体所在深度有关。
3. 流体的黏性流体的黏性是指流体内部分子之间的相互作用力,黏性越大,流体的内部抵抗力越大,流动越不容易。
黏性会对流体的流动性能产生影响,需要在实际工程中进行考虑。
二、流体流动的基本原理1. 流体的叠加原理流体的叠加原理是指当多个流体同时流动时,它们的速度矢量叠加,得到合成的速度矢量。
这个原理在实际工程中有很多应用,例如飞机的空气动力学设计和水流的流体力学研究等。
2. 流体的连续性方程流体的连续性方程是描述流体在运动过程中质量守恒的基本方程,它表明流体在流动过程中质量的变化等于流入流出的质量之差。
3. 流体的动量方程流体的动量方程描述了流体在运动过程中动量守恒的基本原理,它表明流体在受到外力作用后所产生的加速度与外力的大小和方向有关。
4. 流体的能量方程流体的能量方程描述了流体在运动过程中能量守恒的基本原理,它表明流体在流动过程中所受到的压力和速度的变化与能量的转化和损失相关。
三、流体的流动类型1. 定常流动和非定常流动定常流动是指流体在任意一点上的流速和流量随时间不变的流动状态,而非定常流动则是指流体在不同时间点上的流速和流量随时间有变化的流动状态。
2. 层流流动和湍流流动层流流动是指流体在管道内流动时,各层流体之间的相互滑动,流态变化连续,流线互不交叉。
流体流动的基本规律

2、没有累积或泄漏
截面1
截面2
qm1=qm2 (连续性方程)
10
导出:
q m=q v • =S • u • S1 • u1 • 1 =S2 •u2 • 2
对不可压缩性流体: 1 = 2
u1
S2
d
2 2
(圆管)
u2
S1
d12
总管
分支管路:总管中的 质量流量为各支管质 量流量之和。
CD
p0 pA gh pB gh
pA pB
? pC pD
A
B
h
0 3
A1 水
B1 C1 D1
A2 水 B2 C2 D2
练习
A3 水 B3 C3
D3
Q1:A1、A2、A3的压力是否相同? 他们的大小顺序如何?
A: A3<A2<A1 Q2:B1、B2、B3的压力是否相同?
离H0为0.5m,油的密度0为800 kg•m-3 , 水的密度为1000 kg•m-3。如果要求油
溢流 混合物
H0 H
水分界面位于观察孔中心,则倒U型管 顶部至观察孔中心的垂直距离H应为多 少?设液体在器内的流动缓慢,可按静
力学处理。而且油水易于分层,没有乳
化界面。
水
H 0 0 g Hg
13
静压能(static energy):
质量为m、体积为V1的流体,通过1 截面所需的作用力F1=P1A1,流体推
1
入管内所走的距离V1/A1,故与此功
相当的静压能
静压能 =
p1 A1
V1 A1
p1V1
流体力学基础流体的性质与流体力学原理

流体力学基础流体的性质与流体力学原理流体力学基础——流体的性质与流体力学原理流体力学是研究流体运动和流体力学基本原理的学科,广泛应用于航空、航海、能源、化工等领域。
本文将介绍流体的性质以及流体力学的基本原理。
一、流体的性质流体指的是气体和液体,在力学中被视为连续介质。
流体具有以下几个主要的性质:1. 可流动性:与固体不同,流体具有较低的粘性和内聚力,因此可以流动。
流体的流动性使其在工程领域中应用广泛,并且流体力学正是研究流体流动的力学学科。
2. 不可压性:对于液体来说,密度变化相对较小,一般可视为不可压缩的。
而对于气体来说,变化较大的压力会引起密度变化,所以流体力学中对气体流动的研究需要考虑密度的变化。
3. 流体静力学压力:流体静力学压力是由于流体自身重力或外力作用下的压力差异引起的。
流体中的每一点都承受来自其周围流体的压力。
4. 流体动力学压力:流体动力学压力是由于流体的动力作用引起的压力差异。
当流体以较高速度通过管道或物体时,流体动力学压力扮演着重要的角色。
二、流体力学原理流体力学原理是研究流体运动的基本规律,它由庞加莱提出的运动方程、贝努利定律、连续方程等组成。
以下将分别介绍这几个基本原理:1. 流体运动方程:流体运动方程描述了流体在空间中运动的规律。
流体运动方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程指出质量在流体中不会凭空消失或产生;动量守恒方程描述了流体运动中受到的作用力和压力的关系;能量守恒方程则研究了流体在流动过程中的能量转化。
2. 贝努利定律:贝努利定律是流体力学中最为著名的定律之一。
它说明了在无粘度和定常状态下,流体在不同位置的速度、压力和高度之间存在着一种平衡关系。
贝努利定律在飞行器设计和管道流动等领域中有广泛的应用。
3. 材料导数:材料导数是流体力学中用来描述物质随时间变化的速率的重要概念。
对于流体来说,由于其非刚性的特性,物质随时间的变化需要通过材料导数来描述,它包括时间导数和空间导数。
流体流动规律

流体流动规律
流体流动规律是研究流体运动规律的科学领域。
根据流体力学原理,流体在流动过程中遵循一些基本的规律,这些规律可以总结为以下几个方面:
1. 质量守恒定律:在流体流动过程中,流体的质量保持不变。
即流入单位时间内的质量等于流出单位时间内的质量。
2. 动量守恒定律:在没有外力作用的情况下,流体的动量保持不变。
动量是质量与速度的乘积,根据质量守恒定律和动量守恒定律可以推导出流体中哥万定理和伯努利定理等重要定律。
3. 能量守恒定律:在没有外界能量输入或输出的情况下,流体的总能量保持不变。
能量守恒定律可以用来解释流体流动的能量转化和能量损失等现象。
4. 流体的连续性方程:对一个不可压缩流体来说,流经管道中的流量保持不变,即进口流量等于出口流量。
对于可压缩流体来说,流量的连续性方程可以通过质量守恒定律和流体的状态方程推导得到。
5. 流体的雷诺数:流体的流动性质和流动状态可以通过雷诺数来描述。
雷诺数是流体的惯性力和粘性力的比值,可以用来判断流体的流动状态是层流还是湍流。
这些流体流动规律在工程领域、地球科学、大气科学和生物医学等各个领域中都有广泛的应用。
通过研究和理解这些规律,我们可以更好地预测和控制流体流动行为,从而为科学研究和工程实践提供重要的指导。
流体运动的动力学定律

流体运动的动力学定律流体运动是自然界中一种常见的现象,它涉及到许多物理定律和原理。
在流体力学领域,有一些基本的动力学定律可以帮助我们理解和描述流体运动的规律。
本文将介绍一些重要的流体力学定律,并探讨其应用。
1. 质量守恒定律质量守恒定律是流体力学中最基本的定律之一。
它表明在任何封闭系统中,质量是不会被创造或者消失的,只会发生转移或者转化。
在流体运动中,质量守恒定律可以用以下公式表示:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是单位体积内的质量,v是流体的速度矢量,∂/∂t表示对时间的偏导数,∇·表示散度运算符。
这个方程表明质量的变化率等于流入和流出的质量之差。
2. 动量守恒定律动量守恒定律是描述流体运动中动量守恒的重要定律。
它可以用以下公式表示:ρ(∂v/∂t + v·∇v) = -∇P + ∇·τ + ρg其中,P是压力,τ是应力张量,g是重力加速度。
这个方程表明流体的动量变化率等于压力梯度、应力梯度和重力之和。
3. 能量守恒定律能量守恒定律是描述流体运动中能量守恒的基本定律。
它可以用以下公式表示:ρC(∂T/∂t + v·∇T) = ∇·(k∇T) + Q其中,C是比热容,T是温度,k是热导率,Q是单位体积内的热源。
这个方程表明流体的能量变化率等于热传导、热源产生和流体运动对温度的影响之和。
4. 流体静力学定律流体静力学定律描述了静止流体中的压力分布和压力的传递规律。
根据这个定律,静止流体中的压力在任何方向上都是相等的,并且压力沿着流体中的任意路径传递。
这个定律可以用来解释液体中的浮力现象和液体的压强。
5. 流体动力学定律流体动力学定律描述了流体运动中的压力分布和流速的关系。
根据这个定律,流体中的压力随着流速的增加而减小,在流速较大的地方压力较低,在流速较小的地方压力较高。
这个定律可以用来解释流体在管道中的流动、喷泉的原理等。
综上所述,流体运动的动力学定律是研究流体力学的基础。
化工原理流体流动总结

化工原理流体流动总结1. 引言流体流动是化工过程中一个非常重要的基本行为,对于化工工程师来说,了解流体的流动规律和特性是非常关键的。
本文将对化工原理中流体流动的一些基本原理进行总结和概述。
2. 流体的基本性质在研究流体流动之前,我们首先需要了解流体的基本性质。
流体是一种物质状态,具有两个基本特征:能够流动和没有固定形状。
流体可以分为液体和气体两种,液体的分子之间存在着较强的分子间吸引力,而气体的分子间距离较大,分子间作用力相对较弱。
3. 流动的基本原理流动涉及到流体的质量守恒、动量守恒和能量守恒等基本原理。
3.1 流量和流速流量是指单位时间内流体通过某一横截面的体积或质量的多少,通常用符号Q表示。
流速是指单位时间内流体通过一个给定横截面的速度,通常用符号v表示。
流量和流速之间的关系可以用以下公式表示:Q = Av其中,A表示横截面积。
3.2 流体的连续性方程流体的连续性方程是质量守恒的基本原理,它表明流体在任意给定的流管截面上,流入该截面的质量等于流出该截面的质量。
连续性方程可以用以下公式表示:ρ1A1v1 = ρ2A2v2其中,ρ是流体的密度,A是截面积,v是流速。
3.3 流体的动量方程流体的动量方程描述了流体内部压力、速度和力的关系。
动量方程可以用以下公式表示:Δp + ρgΔh + 1/2ρv1^2 - 1/2ρv2^2 = ∑F其中,Δp是压力变化,ρ是流体的密度,g是重力加速度,Δh是高度变化,v1和v2是流体在不同位置的速度,∑F表示所有外力的合力。
3.4 流体的能量方程流体的能量方程描述了流体内部压力、速度和能量的关系。
能量方程可以用以下公式表示:Δp + ρgΔh + 1/2ρv1^2 + P1 - 1/2ρv2^2 - P2 = ∑H其中,P是流体单位体积的压力,Δp是压力变化,ρ是流体的密度,g是重力加速度,Δh是高度变化,v1和v2是流体在不同位置的速度,∑H表示所有外力对流体做的工作。
工程流体力学理想流体流动的基本规律

述流体质点运动随时间的变化规律。
描
述
流
位置: x = x(x,y,z,t)
速度: u=u(x,y,z,t)=dx/dt
体
y = y(x,y,z,t)
v=v(x,y,z,t) =dy/dt
流 动
z = z(x,y,z,t)
w=w(x,y,z,t)=dz/dt
的
方
同理: p=p(x,y,z,t) ,ρ=ρ(x,y,z,t)
法
到整个流场的运动规律。
a,b,c,t, 拉格朗日变数 a,b,c,t=to 时质点的坐标 ,质点标号
rr rr(a,b,c,t)
xx(a,b,c,t)
y
y(a,b,c,t)
zz(a,b,c,t)
(a,b,c,t) T T(a,b,c,t)
理想流体流动的基本规律
欧拉法
着眼于空间点,在空间的每一点上描
理想流体流动的基本规律
迹线:流体质点在一段时间内的运动轨迹
t5
迹
t1
t2
t3
t4
线
与
流线:在某一时刻, 流场中的一系列线,其上每一点的切
流
线方向就是该点流动速度方向
线
V
V
V
理想流体流动的基本规律
流线方程的微分形式:
dx dy dz dL 常数 u v wU
迹 线
udy vdx 0
hw
能 量
说明
守
1. 为动能修正系数,表示速度分布的不均匀性,恒大于1
恒 定
2. 粘性流体在圆管中作层流流动时,=2
律
3. 流动的紊流程度越大,越接近于1
4. 在工业管道中 =1.01~1.1,通常不加特别说明,均取 =1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 流动流体的基本规律2.2.1 流动的基本概念流体和连续性假设流体是气体和液体的统称。
气体和液体的共同点是不能保持一定形状,具有流动性;而其不同点表现在液体具有一定的体积,几乎不可压缩;而气体可以压缩。
当所研究的问题并不涉及到压缩性时,所建立的流动规律,既适合于液体也适合于气体,通常称为流体力学规律;此时通常不明确区分气体和液体而泛称为流体。
当计及压缩性时,气体和液体就必须分别处理。
空气是由分子构成,在标准状态下(即在气体温度15℃、一个大气压的海平面上),每一立方毫米的空间里含有2.7×1016个分子。
空气分子的自由行程很小,大约为6×10-6cm。
当飞行器在这种空气介质中运动时,由于飞行器的外形尺寸远远大于空气分子的自由行程,故在研究飞行器和大气之间的相对运动时,空气分子之间的距离完全可以忽略不计,即把空气看成是连续的介质。
这就是空气动力学研究中常说的连续性假设。
随着海拔高度的增加,空气的密度越来越小,空气分子的自由行程越来越大。
当飞行器在40km以下高度飞行时,可以认为是在稠密大气层内飞行,这时空气可看成连续的。
在120~150km高度上,空气分子的自由行程大约与飞行器的外形尺寸在同一个量级范围之内;在200km高度以上,气体分子的自由行程有好几千米。
在这种情况下,大气就不能看成是连续介质了。
运动的转换在空气动力学中,为了简化理论和试验研究,广泛采用运动的转换原理运动的转换原理,是根据加利略所确定的运动的相对原理而建立的。
相对原理,即如果在一个运动的物体系上附加上一个任意的等速直线运动,则此附加的等速直线运动并不破坏原来运动的物体系中各物体之间的相对运动,也不改变各物体所受的力。
利用运动的转换原理,使问题的研究大为简化。
设飞机以速度v∞在静止空气中运动(图2.2.1),根据相对原理,可以给该物体系(飞机与周围空气)加上一个与速度v∞大小相等方向相反的速度。
这样得到的运动是,飞机静止不动,无穷远处气流以速度v∞流向飞机。
这两种情况下,空气作用在飞机上的力是完全相同的,这就是运动的转换原理。
也就是说,空气作用在飞机上的力,并不决定于空气或物体的绝对速度,而决定于二者之间的相对运动。
在风洞试验时,为了模拟飞行器在天空中的飞行情况,可以让模型固定不动,让气流吹过,这样就大大简化了试验技术。
图2.2.1 运动的转换(a) 空气静止,飞机运动(b) 空气运动,飞机静止大气的物理参数和物理性质大气的状态参数和状态方程大气的状态参数是指大气的密度ρ、温度T和压强p等三个参数。
大气的密度ρ是指大气所占据的空间内,单位体积中的质量,单位是kg/m3。
大气的温度T是指大气的受热程度,热力学单位是K,1K=1℃。
以K为单位的绝对温度T和以℃为单位的摄氏温度t之间的关系为T = t + 273.15。
大气的压强p是指作用在单位面积上且方向垂直于此面积(沿内法线方向)的力,空气动力学中俗称为压力。
其单位为N/m2或Pa。
对于一定量的气体,它的压强p、密度ρ和温度T等三个参数就可以决定它的状态。
它们之间的关系,可以用气体的状态方程表示,即=(2.2.1)pρRT式中:p ——压强,Pa;ρ——密度,kg/m3;R ——气体常数,空气为287.05287 J/(kg·K);T ——温度,K。
空气的物理性质空气的物理性质包括粘性和压缩性。
空气的粘性,是空气自身相互粘滞或牵扯的特性。
从本质上讲,粘性是流体内相邻两层间的内摩擦。
空气的粘性很小,不易觉察。
把手浸入水中,抽出时就会有水珠粘附在手上,这表明水有粘性;把手浸入甘油或蜂蜜中间,附着的就更多,这表明它们的粘性比水大得多。
表征空气粘性的物理量是空气的动力粘度,也称为粘性系数,用μ表示(表2.1.1)。
流体力学计算时,常用运动粘度ν(ν=μ/ρ)。
空气的粘性,主要是由于气体分子作不规则运动的结果。
因而,空气的粘性和温度有关,温度高,空气分子的不规则运动加剧,空气的粘性大,动力粘度μ或运动粘度ν的数值大,反之就小。
空气的粘性对飞机飞行的影响主要表现在摩擦阻力上。
空气的压缩性,是指在压力(压强)的作用下或温度改变的情况下,空气改变自己的密度和体积的一种特性。
不同状态的物质,其压缩性不同。
液体物质几乎可以看成是不可压缩的,而气体则不然,当压强发生变化时,其体积或密度很容易发生变化,故空气应看作可压缩的介质。
当空气流过飞行器表面时,压强会发生变化,密度也会随之改变。
但是,当气流的速度低时(即低速,一般指气流速度小于0.3倍音速),空气压强的变化一般不大,空气密度的变化很小,空气的压缩性对于飞行器的飞行影响很小。
所以在低速时,可以认为空气是不可压缩的,即可以认为密度是一个不变的数值,这样就使问题简单多了。
但在高速时,就必须考虑空气的压缩性。
由于压缩性的影响,使得空气以低速和高速流过飞行器表面时,其运动参数会有很大的差别,甚至还会发生质的变化。
音波与音速振动的声源(如铃铛)在介质中产生的扰动波称为音波(或声波)。
音波在的传播传播速度,称为音速(或声速)。
对流体来说,音波是一种扰动,因为这种振动引起流体压强变化很微弱,所以是一种弱扰动。
实验表明,水中的音速大致为1440 m/s,海平面标准大气状态下空气中的音速约为340 m/s,12km高空标准大气状态下空气中的音速约为295 m/s。
由于水的可压缩性很小,大气的可压缩性随高度的增加而增加,所以可以推知,流体的可压缩性越大,音速越小,而流体的可压缩性越小,音速越大。
即音速a可以作为压缩性的指标。
理论上可以推知,在绝热过程中,大气中的音速为(2.2.2)a20T式中T是空气的热力学温度。
随着飞行高度的增加,空气的温度是变化的,音速a也将随之变化,空气的压缩性也是变化的。
在空气动力学中,音速是一个十分重要的物理量。
气体的流动规律和飞机的空气动力特性在流速(或飞行速度)低于音速和高于音速时是大不相同的。
马赫数Ma流场中某点的速度和该点的当地音速之比,称为马赫数,用符号Ma表示。
即Ma = v/a(2.2.3) 其中v是飞行速度(或相对气流速度),a是飞行高度上的当地音速。
如前所述,从空气本身的特性可知,音速越大,空气的压缩性越小,即空气越难于压缩;从另一方面来看,速度越大,飞行器与空气分子之间的碰撞越剧烈,飞行器加给空气的压力就越大,空气的压缩程度越大。
因此可以认为,空气的压缩性,与飞行速度成正比,与音速成反比。
所以,Ma数是空气密度变化程度或者压缩性大小的衡量标志。
Ma数越大,则表示空气密度的变化以及压缩性的影响也越大;反之,Ma数小,则密度变化和压缩性的影响也小。
通过马赫数可以将流动分为5种:马赫数Ma≤0.3的流动为低速流动,0.3<Ma≤0.85的流动称为亚音速流动,0.85<Ma≤1.3的流动称为跨音速流动,1.3<Ma≤5的流动称为超音速流动;Ma>5的流动称为高超音速流动。
低速流动时,空气受压缩的程度很小,常常可以忽略,即把空气看成是不可压缩的介质,其密度不变,这样可以使问题变得非常简单。
除了低速流动外,研究其它流动时都需要考虑空气的压缩性。
高速时考虑空气的压缩性后,会出现一系列与低速飞行时截然不同甚至相反的现象。
流场的概念流场流体所占据的空间称为流场。
大气层就是一个很大的流场用以表征流体特性的物理量如速度、温度、压强、密度等,称为流体的流动参数(或运动参数)。
所以流场又是分布流体流动参数的空间区域。
根据运动参数随时间的变化,我们可以将流动分为定常流动与非定常流动。
流场中任一固定点的任一个流动参数(如速度、压强、密度等)随时间而变化的流动称为非定常流动。
流场中任一固定点的所有流动参数都不随时间而变化的流动称为定常流动。
有些非定常流动可以通过适当选择参考坐标系而变为定常流动,因而不能看成是真正的非定常流动。
以飞机在静止空气中等速平飞的情况为例,在固连于地面的参考坐标系中,空气的流动是非定常流动;在固连于飞机的参考坐标系中,空气的流动是定常的。
只有在飞机速度虽时间而变化的情况下,对飞机的饶流才是真正的非定常流动。
严格来讲,定常运动是不存在的。
例如对于飞机而言,即使飞行速度和高度保持不变,但随着燃油的消耗,飞机重量在不断减小,因而迎角(飞机的姿态参数之一)也要变化。
但是,如果飞机运动参数随时间变化十分缓慢,则至少在一段时间内可近似认为运动参数不变,这就是通常所说的“准定常运动”。
流线和流谱流线是流场中某一瞬时的一族假想曲线,他在任何一点的切线方向就是同一瞬时当地速度矢量的方向(图2.2.2a)。
流线具有以下特征:(1) 非定常流动时,由于流场中速度随时都在变,经过同一点的流线的空间方位和形状是随时间改变的。
(2) 定常流动时,由于流场中各点流速不随时间改变,所以同一点的流线始终保持不变,且流线与迹线(流场中流体质点在—段时间内运动的轨迹线)重合。
(3) 流线不能相交,也不能折转。
因为空间每一点只能有—个速度方向,所以不能有两条流线同时通过同一点。
但有3种情况例外:在速度为零的点上,如图2.2.2b中的A点,通常称为驻点;在速度为无限大的点上,如图2.2.2c中的O点,通常称它为奇点;流线相切,如图2.2.2b中B 点,上下两股速度不等的流体在B点相切。
图2.2.2流线和流线谱(a) 流线1—流速2—流线3—翼剖面(b) 流线谱流场中的每一点都有流线通过。
某一瞬时流场中许多流线的集合构成的流动图像称为流线谱,简称流谱(图2.2.2b)。
通过流谱可以看出该给定的瞬间流体流动的全貌。
在定常流动时,流谱不随时间而变。
流管和流束在流场中画一封闭曲线,过该曲线上每一点做流线,由这许多流线所围成的管状曲面称为流管,如图2.2.3所示。
图2.2.3 流管 图2.2.4 连续性原理在给定的某一瞬时,流管中的流体就好像在一个固体管中流动一样,因为流线上的流体质点总是沿着流线的方向流动,它是不会穿过由流线形成的管壁的。
在定常流动时,流管不随时间而变,在非定常流动的情况下,流管随时间而变。
充满在流管内的流体,称为流束。
2.2.2 低速流动的基本规律低速流动时,可以近似认为空气是不可压缩的,即密度保持不变。
下面来研究低速流动时,流体的压强、密度、速度以及流管面积之间相互变化的关系。
连续性定理为了说明该原理,可以先从一些生活经验谈起。
我们知道,在河道宽而深的地方,河水流得比较慢;而在河道窄而浅的地方,却流得比较快。
夏天乘凉时,我们总喜欢坐在两座房屋之间的过道中,因为那里常有“穿堂风”。
在山区你可以感到山谷中的风经常比平原开阔的地方来得大。
这些现象都是流体“连续性定理”在自然界中的表现。
质量守恒定律是自然界基本的定律之一,它说明物质既不会消失,也不会凭空增加。
如果把这个定律应用在流体的流动上,就可以得出这样的结论:当流体稳定、连续不断地流动时,流管里的任一部分,流体都不能中断或积聚,在同一时间内,流进任何一个截面的流体质量和从另一个截面流出的流体质量应当相等。