一、振动参数及结构特性参数测量..

合集下载

振动的测量

振动的测量

8.1 振动的基础知识与信号的分类类似,机械振动根据振动规律可以分成两大类:稳态振动和随机振动,如图8.1所示。

振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。

只要测定这三个要素,也就决定了整个振动运动。

图8.1 振动的种类和特征简谐振动是最基本的周期运动,各种不同的周期运动都可以用无穷个不同频率的简谐运动的组合来表示。

本节讨论最为简单的单自由度系统在两种不同激励下的响应(即单自由度系统的受迫振动):质量块受力产生的受迫振动基础运动产生的受迫振动以利于正确理解和掌握机械振动测试及分析技术的有关概念。

在振动测量时,应合理选择测量参数。

如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由振动速度决定的,振动速度又与能量和功率有关,并决定了力的动量。

简谐振动简谐振动的运动规律可用简谐函数表示,即振动的运动规律为:(8.2)(8.3)比较式(8.1)至(8.3)可见,速度的最大值比位移的最大值导前900 ,加速度的最大值要比位移最大值导前1800 。

质量块受力产生的受迫振动如图8.2所示为单自由度系统在质量块受力所产生的受迫振动示意图。

在外力f(t)的作用下,质量块m的运动方程为:(8.4)式中c为粘性阻尼系数,k为弹簧刚度,位移y(t)为振动系统的输出。

这是一个典型的二阶系统,其系统频率响应函数H(ω)和幅频特性函数、相频特性函数ϕ(ω)分别为:(8.5a)图8.2 质量块受力所产生的受迫振动(8.5b)(8.5c)式中:ω基础运动的圆频率;ζ振动系统的阻尼比, ;。

(8.6) 由上式可见,在幅频特性图上,质量块受力产生的受迫振动其共振频率ωr总是小于系统的固有频率ωn,阻尼越小两者越靠近,因此,在小阻尼情况下可以采用ωr作为的ωn估计值;而在相频特性图上,不管系统的阻尼比为多少,在ωr/ωn=1时位移始终落后于激振力90°。

机械振动测量

机械振动测量
v dy Acos( t )
dt
a dv 2 A sin(t )
dt
➢ 简谐振动的位移、速度、加速度的振动形式和振动频率 都是一样的,只是三者的相位和幅值不同。
➢ 由此可得,任何一个简谐振动都可以三者中的任意一个 量与时间关系来表征。
10
二、振动的测试内容及测量方法
测试的内容包括两方面:
[1 ( / n )2 ]2 (2 / n )2
zm
( / n )2 xm [1 ( / n )2 ]2 (2 / n )2
传感器输出的辐值和相 位角均与ω/ωn和ζ有
关。
tan 1
2 ( / n ) 1 ( / n )2
惯性系统阻尼比; 惯性系统的固有角频率。 17
一、绝对式测振传感器原理
11
三、振动测试系统的构成
➢ 被测对象在激振力的作用下产生受迫振动,测振传感器测出振动力学参量, 通过振动分析(时域中的相关技术,频域中的功率谱分析)以及计算机数 字处理技术,检测出有用的信息。
➢ 工程上,振动的测试主要讨论的是系统的传输特性,尤其是频率响应特性。 通过测试的数据,推估出系统的动态特性参数。
则顶杆不能满足跟随条件,与被测物体之间发生撞击。
因此,传感器使用范围与被测最大位移和频率有关。 28
三、测振传感器的选择
主要涉及:频率特性、量程范围和灵敏度。 (1) 不同类型的传感器测量范围不同,只有在恰当的频率测
量范围内.传感器才能正确反映被测物休的振动规律。
据前分析: ➢ 低频振动场合,加速度幅值不大,通常选择振动位移的
21
一、绝对式测振传感器原理
3、测振动加速度
测振传感器的振动参数是加速度时,有:
A( )a

振动参数测量偏大问题分析

振动参数测量偏大问题分析

振动参数测量偏大问题分析振动参数测量在工程领域中被广泛应用,它可以帮助工程师了解机械或结构的振动行为,从而进行合理的设计和维护。

在实际应用中,有时会出现振动参数测量偏大的问题,导致对振动行为的误解和不必要的担忧。

本文将对振动参数测量偏大问题进行分析,并提出相应的解决方案。

一、问题现象振动参数测量偏大的问题通常表现为以下几个方面:1. 振动幅值异常高:在进行振动参数测量时,得到的振动幅值远远超出预期范围,甚至超出了设备的额定振动限制。

2. 频率异常偏移:测得的振动频率与实际振动频率相比存在较大的偏移,导致振动特性分析的结果出现误差。

3. 系统异常报警:振动监测系统或设备自身的振动传感器会因为测量偏大而触发异常报警,导致误判和错误处理。

二、问题分析振动参数测量偏大的问题可能由多种原因引起,主要包括以下几点:1. 传感器故障:振动参数测量所使用的传感器可能存在故障,例如偏置电压异常、灵敏度损失或频率响应不稳定,导致测量结果偏大。

2. 环境干扰:振动参数测量场景中存在较强的环境干扰,如电磁场干扰、温度变化等,会对传感器的工作产生影响,从而导致数据异常。

3. 数据处理错误:在振动参数测量的数据采集和处理过程中,可能存在算法错误或参数设置不当,导致测量结果偏大。

4. 振动源变化:被测对象的振动源发生了变化,例如受到外部冲击或在运行过程中发生了故障,导致振动参数发生偏离。

5. 设备老化:振动传感器或被测对象本身的老化和损坏也可能导致振动参数测量偏大的问题。

三、解决方案针对振动参数测量偏大的问题,可以采取以下措施来解决:1. 传感器检测与校准:定期对振动参数测量所使用的传感器进行检测与校准,确保其正常工作且灵敏度、频率响应等性能符合要求。

2. 环境干扰控制:在进行振动参数测量时,应尽量减少环境干扰的影响,例如通过屏蔽措施、保持稳定的温度等方式来控制干扰因素。

3. 数据处理优化:对振动参数测量的数据处理算法和参数设置进行优化,确保数据采集和处理过程的准确性和稳定性。

《振动测试》课件

《振动测试》课件

振动测试的技术路线
振动测试前的准备
振动测试的常用方法
振动测试的数据分析
测试前需要确保测试设备正常、 测试环境合适、测试物体无损伤。
常用的振动测试方法包括冲击法、 振动法、响应谱法等。
通过测量数据进行分析,了解物 体的振动特性、模态分析、频率 响应等。
实验操作步骤
1 实验前的准备工作
了解实验目的,准备必要的测试设备和试验台。
振动测试的原理
1
振动的概念
振动是指物体在某个参考点或在某个参考系中偏离静止位置并产生周期性的运动。
2
振动测试的定义
振动测试是通过测量和分析物体在振动状态下的各项参数,评估物体振动特性的 一种测试方法。
3
振动测试的原理介绍
ቤተ መጻሕፍቲ ባይዱ
物体在振动过程中会产生加速度,可以通过测量加速度和频率来描述物体的振动 特性。
2 实验所需设备及材料
常见的实验设备包括加速度传感器、振动台、信号分析仪等。
3 操作步骤的详细说明
实验操作包括控制测试环境、对测试物体施加振动、测量振动参数并进行数据分析等。
振动测试案例分析
1
振动测试案例介绍
对汽车引擎进行振动测试,分析其自然频率和振动响应。
2
案例分析过程
使用加速度传感器和信号分析仪对引擎进行振动测试,并采集振动频谱图。
3
分析结果与结论
分析结果显示引擎存在不均衡问题,需要调整曲轴平衡度以降低振动水平。
结论与展望
分析出的结论
振动测试是揭示物体振动特性、解决振动问题的有效手段。
未来的研究及展望
振动测试技术将在空间、医疗、安全等领域得到广泛应用。
本次课程学习心得
本课程详细介绍了振动测试的基础知识和关键技术,对于我的研究工作有很大帮助。

机械实验之振动参数的测定

机械实验之振动参数的测定

式中:A ------ 振动振幅
x•0yy静动-----------
初相位 有阻尼衰减振动圆频率
设初始条件:t=0时,初始位移Td2/02n22/012T0,/12 初始速度 d 02n2
1/ (1 2 )2 (2)2

A x02 [(x0 nx0 ) / d ]2
此波形有如下特点:
0
带宽法使用于小阻尼情况,既可用于高阶,也可用于低阶,但两个 半功率点的频率必须相差较大,否则误差很大。
本实验由于两个点的半功率点相隔较近,所以误差也比较大
2.3 实验的操作步骤
1)用自由振动法测量tg
x0d

/(x0
nx0)

n/0
A)用榔头敲击简支梁使其产生自由衰减振动。
B)记录单自由度自由衰减振动波形,将加速度传感器所测振动经测振仪转 换为位移信号后(标准电信号),送入信号采集分析仪(A/D),让计算机虚拟 示波器以便显示。
B)振幅按几何级数衰减
减幅系数: x B sin( t )
对数减幅 :
''
'
m x kx c x F0 sin t
2 迫振动法(共振法) 利用激振器对被测系统施以简谐激励力,使系统产生强迫振
动,改变激振频率,进行频率扫描,当激振频率与系统的固有频 率接近时,系统产生共振。因此,只要逐渐调节激振频率,同时 测定系统的响应幅值,绘出幅值和频率的关系曲线(即幅频特性 曲线),曲线上各峰值点所对应的频率,就是系统的各阶固有频 率。
单自由度系统,在简谐激励力的作用下,系统作简谐强 迫振动,系统的微分方程为
''
x
2 0
x
2nx
F0

工程振动测试技术09第9章基本振动参数常用的测量方法课件

工程振动测试技术09第9章基本振动参数常用的测量方法课件

由(a)、(b)两式解得:
n 2
(
f
2 v
f
2 x
)
由(b)、(c)两式解得:
应注意的问题
n 2fv
fa
(
f
2 a
f
2 v
)
当衰减系数n比较小时,fx、fv、fa 各值相差很
小,测量结果误差较大。
应用精确的频率测量仪器,使测量共振频率的
有效数字尽可能精确。
9.5.3 半功率点法 振动理论曾导出强迫振动的振幅表达式:
由于
fd
f
2 n
(

n 2
)2
是自由衰减振动法得到
的系统振动频率,略小于实际的固有频率。
优点:方法比较简便;
缺点:振动波形衰减太快。
9.2.2 强迫振动法 利用共振的特点来测量机械系统的固有频
率的方法称为强迫振动法,也叫共振法。 1. 调节转速法
速械发和系生固统共有的振频固时率有的频的转率关速系。ncf叫n 做6n临0c 界转,速就,可根以据计临算界出转机
c、计算与显示系统 主要功能:由平均值检波器和直流放大器输出脉冲 的平均值,使输出的直流电压与输入信号间的相位 差成正比关系,然后通过表头显示出来。
2、数字式相位计 数字式相位计的整形电路、相位差检测器的工作
原理同模拟式相位计测量系统的工作原理相同。
数字式相位计的工作原理框图
由于整形电路、相位差检测器 输出的信号如图(c)所示,
sin x
pnt
F0 x m
sin sin
pnt pnt
F0 x m
因此,只要测量发生速度共振时的速度幅值和激
振力幅值,即可通过此式计算出阻尼。
9.6 振型曲线的测量

机械故障诊断技术2_机械振动及信号

机械故障诊断技术2_机械振动及信号

按振动规律分类
这种分类,主要 是根据振动在时间 按振动的动力学特征分类
(1)自由振动与固有频率
这种振动靠初始激励一次性获得振动能量,历程有限,一般不会 对设备造成破坏,不是现场设备诊断所需考虑的目标。描写单自由度 线性系统的运动方程式为: d 2 x(t ) m kx(t ) 0 dt 2 通过对自由振动方程的求解,我们导出了一个很有用的关系式: 无阻尼自由振动的振动频率为:
物体在持续的周期变化的外力作用下产生的振动叫强迫振动,如 不平衡、不对中所引起的振动。
由图2—3所见,衰减自由振动随时间 推移迅速消失,而强迫振动则不受阻 尼影响,是一种振动频率和激振力同 频的振动。从而可见,强迫振动过程 不仅与激振力的性质(激励频率和幅 值)有关,而且,与物体自身固有的 特性(质量、弹性刚度、阻尼)有关, 这就是强迫振动的特点。
m
d x dx c kx Fo sin t dt dt 2
( 惯 性 力 ) ( 阻 尼 力 ) ( 弹 性 力 ) ( 激 振 力 )
2
图2-2强迫振动力学模型
图2-3 强迫振动响应过程 a)强迫振动 b)衰减振动 c)合成振动
(3) 自激振动
自激振动是在没有外力作用下,只是由于系统自身的原因所产生的 激励而引起的振动,如油膜振荡、喘振等。自激振动是一种比较危险的 振动。设备一旦发生自激振动,常常使设备运行失去稳定性。 比较规范的定义是:在非线性机械系统内,由非振荡能量转变为振 荡激励所产生的振动称为自激振动。
第二章 机械振动及信号
在冶金、化工、机械等企业中旋转机械设备 约占80%,这些旋转设备主要包括发电机、电动 机、透平制氧机、鼓风机、大型轧钢机等,在众 多的诊断技术中,没有任何技术能比振动信号分 析对机器设备状况提供更深刻的了解。另外,由 于旋转机械设备在运行中易出现不对中或受外力 作用而产生振动的现象,其大小与安装质量和使 用中的故障有直接关系。由此可见,振动分析及 测量在诊断旋转机械中有着重要的地位。

振动测试相关标准

振动测试相关标准

振动测试相关标准一、引言振动测试是评估产品或结构的动态特性和性能的重要手段。

在许多工程领域,如航空航天、机械、土木工程和汽车等,需要进行振动测试以确保产品的可靠性和安全性。

为了统一测试方法和规范,制定了一系列振动测试相关标准。

本文将重点介绍振动测试的频率范围、加速度和位移参数,以及加权处理等方面的标准。

二、振动测试的频率范围频率范围是振动测试的一个重要参数,它决定了测试所涵盖的振动频率范围。

不同的测试标准可能会规定不同的频率范围,以适应不同产品或结构的测试需求。

例如,一些标准可能规定低频范围为1~1000Hz,而另一些标准则可能规定高频范围为1000~5000Hz。

在实际测试中,应根据具体的标准和要求来确定适当的频率范围。

三、振动测试的加速度和位移参数加速度和位移是振动测试中的两个重要参数,它们反映了物体振动的剧烈程度和运动情况。

在制定振动测试相关标准时,通常会规定加速度和位移的测量范围和精度要求。

例如,一些标准可能要求加速度测量范围为0.1~10g(g为重力加速度),位移测量范围为0.01~1mm。

在实际测试中,应根据具体的标准和要求来确定适当的加速度和位移参数。

四、振动测试的加权处理加权处理是振动测试数据处理的一种方法,用于消除不同频率成分对测试结果的影响。

在制定振动测试相关标准时,通常会规定加权处理的方法和参数。

例如,一些标准可能要求采用“滤波器法”进行加权处理,而另一些标准则可能要求采用“谱分析法”。

在实际测试中,应根据具体的标准和要求来确定适当的加权处理方法。

五、结论本文介绍了振动测试相关标准的主要内容,包括振动测试的频率范围、加速度和位移参数以及加权处理等方面。

这些标准是指导实际振动测试的重要依据,有助于确保测试结果的准确性和可靠性。

在实际应用中,应遵循相关标准的要求,选择适当的测试方法和参数,以确保获得可靠的结果。

同时,随着技术的不断发展和新标准的制定,应关注并更新相关标准,以适应新的测试需求和挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



dx0 dx dx 0, 0 0, 0 0 d d d
x 0 1 2 x 0
0 0
2
x 0 1 2
0
2
结构固有特性参数测量-共振法
☆ 固有频率的测量
共振的判别
(1)幅值判别法 在激振功率输出不变的情况下,由低到 高调节激振器的激振频率,通过振动曲 线,可以观察到在某一频率下,任一振 动量(位移、速度、加速度)幅值迅速 增加,而最大幅值所对应的频率就是结 构的某阶共振频率,在小阻尼情况下, 该频率近似等于固有频率,但在阻尼较 大的情况下,不同的测量方法测量出的 共振频率稍有差别,不同类型的振动量 对振幅变化敏感程度不一样。
1)初位移法:加一力或一力偶,使系统产生初位移或初始转角
后,突然卸力(一阶固有频率测量)
2)敲击法:用力锤或其它施力工具(注意频率范围、敲击点)
4、响应
以单自由度系统为例
x(t ) x0e0t sin(d t )
结构固有特性参数测量-自由衰减法
5、时间历程
Ai
Ai m
Td
结构固有特性参数测量-自由衰减法
2、测量仪器
激励系统:正弦信号发生器、功率放大器、激振器 测量系统:传感器、放大器、示波器、频率计、测振仪
结构固有特性参数测量-共振法
3、固有频率的测量
☆ 固有频率与共振频率的区别 1)固有频率是由结构固有参数和边界条件决定的,与激励方式无关。 2)共振频率指结构共振时的强迫振动频率。 3)系统的每阶固有频率分别对应多个共振频率 位移共振频率 速度共振频率 加速度共振频率
6、固有频率和阻尼比测量
阻尼比:测出图中 Ai 和 Ai+m 幅值,求减幅系数 由于
ti时刻,Ai xo e0tn ti m时刻,Ai m x0e0 (t mTd )
2 m 1 2
m T i 则 A e im
A
0 d
对数减幅
ln m0Td
当 1时,有
A 1 ln i 2 m Ai m
固有频率
f0
0 d 1 2 2 1 2 Td 1 2
结构固有特性参数测量-共振法
1、原理与方法
通过激振器给结构施加一简谐激振力,使其产生强迫振动,然后 连续改变激振力的频率,当激励频率与结构固有频率相近时,结构 即产生共振(幅值出现极值),逐步调节激励频率,同时测量各频 率点的振动幅值,绘出幅频特性曲线,曲线上各峰值点所对应的频 率就是各阶固有频率。此法适用与各阶固有频率相隔较远的轻阻尼 结构。
振动物体
2、李莎育图形法
传 感 器
放大器
X
y
信号发生器
1800
振动物体
fx f y
00 90 0
简谐振动频率测量
3、图形法
传 感 器
放大器
示波器
记忆示波器
振动物体
传 感 器
放大器
记录仪
记录仪
振动物体
信号发生器
复杂振动频率测量

频谱分析法
传 感 器
分析仪的设置
频率范围
输入量程与输入耦合方式 窗函数
简谐振动位移幅值的测量
4、电涡流位移传感器
已知灵敏度 如 S 5000mv / mm 则振动位移为 d u S
积分或微分
传 感 器
前置放大器
u
测振仪
振动物体
5、速度传感器 6、加速度传感器
传 感 器
放大器
u
频率计
振动物体
测量放大器
简谐振动频率测量
1、频率计(直读法)
传 感 器
放大器
频率计
X( f )
放大器
分析仪
振动物体
测量内容及坐标
f1
f 2 f3
f4
f
结构固有特性参数测量-自由衰减法
1、测量过程
激励
系统
x(t ), x(t ), x(t )
, 0
2、测量仪器与测量系统
传 感 器
放大器
记录仪
振动物体
信号发生器
此法的核心:记录时间历程曲线
结构固有特性参数测量-自由衰减法
3、激励
振动理论
第一部分
振动参数及结构特性参数测量
振动幅值的测量

位移幅值
速度幅值 加速度幅值 力的幅值
机械法
光测法
电测法
简谐振动位移幅值的测量
1、测幅尺
C
是在一小块白色金属片上,画上带 有刻度的三角形制成。使用时,将 o 三角形按直角短边平行于振动方向 粘帖在振动物体上,当振动频率较 快时,标尺上的三角形因视觉暂留 2A 效果看起来形成上下两个灰色三角 形,其重叠部分是一个白色三角形。
简谐振动位移幅值的测量
3、 激光位移传感器
一般激光位移计包含一发光组件及一位置传感器(PSD),利用入射及 反射光间三角函数的关系来得到待测位移的。半导体激光的光源经过 透镜将光束聚焦在待测物体上,待测物反射光经接收透镜聚焦于位置 传感器上形成一光点,此光点位置随待测物位置改变而改变。 感测头有两种,镜面反射式与散光式。一般镜面反射式用于反光良 好或量测距离较近的待测物上,因为这种情况下入射角与反射角相 等。散射式则用于距离较远或较粗燥的量测面上。 传统的PSD是测量投射到光点的位置,取其中心点为测量点,但由于 光点的亮度分布并不是均匀的,取中心点的演算结果与实际位移误 差较大,因此,现在新型的CCD传感器采用光点中最亮的点为测量点, 其测量精度较传统的PSD要高。
2、读数显微镜
内读数 类型 外读数 0.05mm(min) 0.01mm(min)
静止时 振动时
d
x
当读数显微镜的放大倍数为k时,振动幅值为
A
x 2k
测量过程:
在振动物体上贴一反光线或细砂纸,并用灯照亮,当结构静 止时,调整显微镜位置,以清晰的看到许多亮点,当结构振 动时,由于视觉的暂留效果,这些亮点就成为许多直线。 特点: 测量的是绝对位移
b
l
o
B
x
简谐振动位移幅值的测量
1、测幅尺
振动幅值与测幅尺 尺寸之间的关系
x A b 2l
2A
o
x
使用限制
1、频率不能太低 f>10Hz 2、振幅不能太小,A >0.1mm 3、上限受测幅尺尺寸限制 4、单一方向
应用:机械式和电动式振动台,振动筛等。 特点:方便、简单、精度较差。
简谐振动位移幅值的测量
各阶固有频率
结构固有特性参数测量-共振法
☆ 固有频率与共振频率的关系 以单自由度系统为例,当系统受到作用力
0 1 2 2

F F0e jt令0x x0 sin(t )
x0 m 2 (0 2 ) 2 (20 ) 2 F0
0 1 2 2

相关文档
最新文档