【2018】平面向量套题1-5 难题新题原创
高考专题---平面向量-2018年高考数学(理)---精校解析 Word版

母题五 平面向量【母题原题1】【2018上海卷,8】在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且||=2,则⋅的最小值为______.【答案】3-【解析】依题意设(0,),(0,)E a F b 不妨设a b >,则||2,(1,),(2,),2a b AE a BF b a b -===-=+所以22(1,)(2,)22(2)22(1)3AE BF a b ab b b b b b ⋅=⋅-=-+=-++=+-=+-,故所求最小值为3-.【母题原题2】【2017上海卷,7】如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为________【答案】【母题原题3】【2016上海卷,14】如图,在平面直角坐标系中,O 为正八边形的中心,.任取不同的两点,点P 满足0i j OP OA OA ++=,则点P 落在第一象限的概率是_____________.【答案】528【名师点睛】本题主要考查古典概型概率的计算.解答本题时,关键在于能够准确地确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好地考查考生的数学应用意识、基本运算求解能力、数形结合思想等.【命题意图】考查平面向量的基础知识、基本运算、基本应用;考查运算求解能力以及运用数形结合思想分析与解决问题的能力;考查转化与化归思想的应用.【命题规律】平面向量的数量积、模、夹角是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何、不等式等知识相结合,以工具的形式出现.浙江卷涉及模的最值问题考查最多.【答题模板】基于平面向量的双重性,解答平面向量最值问题:一般可以从两个角度进行思考:一是利用其“形”的特征,将其转化为平面几何的有关知识进行解决;二是利用其“数”的特征,通过坐标转化为代数中的有关问题进行解决.【方法总结】1.平面向量数量积的计算方法①已知向量a ,b 的模及夹角θ,利用公式a·b =|a ||b|cos θ求解; ②已知向量a ,b 的坐标,利用数量积的坐标形式求解.(2)对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算. 2.向量数量积的性质(1)如果e 是单位向量,则a ·e =e ·a . (2)a ⊥b ⇔a ·b =0.(3)a ·a =|a |2,|a (4)cos θ=||||⋅a ba b .(θ为a 与b 的夹角)(5)|a ·b |≤|a ||b |.3.利用向量夹角公式、模公式,可将有关角度问题、线段长问题转化为向量的数量积来解决.同时应注意: (1)两向量的夹角是指当两向量的起点相同时,表示两向量的有向线段所形成的角,若起点不同,应通过移动,使其起点相同,再观察夹角.(2)两向量夹角的范围为[0,π],特别当两向量共线且同向时,其夹角为0,共线且反向时,其夹角为π. (3)在利用向量的数量积求两向量的夹角时,一定要注意两向量夹角的范围.1.【上海市虹口区2018届高三下学期教学质量监控(二模)】在中,,点、是线段的三等分点,点在线段上运动且满足k ⋅=,当⋅取得最小值时,实数的值为( )A. B. C. D. 【答案】C【解析】2.【上海市黄浦区2018届高三4月模拟(二模)】在给出的下列命题中,是假命题的是( ) A. 设是同一平面上的四个不同的点,若,则点必共线 B. 若向量是平面上的两个不平行的向量,则平面上的任一向量都可以表示为,且表示方法是唯一的 C. 已知平面向量满足,且,则是等边三角形D. 在平面上的所有向量中,不存在这样的四个互不相等的非零向量,使得其中任意两个向量的和向量与余下两个向量的和向量相互垂直 【答案】D【解析】由 则点必共线,故A正确;由平面向量基本定理可知B 正确;由可知为的外心,由可知为的重心,故为的中心,即是等边三角形,故C 正确;故选D.3.【2017-2018上海市杨浦区高三数学一模】设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足0AB AC ⋅= , 0AC AD ⋅= , 0AD AB ⋅=,用1S 、2S 、3S 分别表示ABC ∆、ACD ∆、ABD ∆的面积,则123S S S ++的最大值是( ) A.12B. 2C. 4D. 8 【答案】B点睛:本题考查球的内接多面体及基本不等式求最值问题,能够把几何体扩展为长方体,推知多面体的外接球是同一个球,是解答本题的关键.4.【上海市松江、闵行区2018届高三下学期质量监控(二模)】已知向量、的夹角为,,,若,则实数的值为___________.【答案】【解析】由题意可得:,且,则:,据此有:,解得:.5.【上海市普陀区2018届高三下学期质量调研(二模)】点1F , 2F 分别是椭圆22:12x C y +=的左、右两焦点,点N 为椭圆C 的上顶点,若动点M 满足: 2122MN MF MF =⋅ ,则122MF MF +的最大值为__________.【答案】6【解析】设()00,m x y ,由2212x y +=,得()()()120,1,1,0,1,0N F F -,则由2122MN MF MF =⋅ ,可得()222200001222x y x y +-=-+,化为()2214x y ++=,可设002{ 21x sin y sin αα==-,()()12=2cos 1,21,24cos 2,42MF sin MF sin αααα--=+- , ()1226cos 1,63MF MF sin αα+=+-,122MF MF +==== 6122MF MF +的最大值为66.【方法点睛】本题主要考查椭圆的简单性质,平面向量的数量积公式,以及三角函数求最值问题,属于难题. 求最值问题常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求最值;②图象法;③不等式法;④单调性法;⑤换元法:常用代数或三角代换法,用换元法求值域时需认真分析换元参数的范围变化,利用三角换元后往往利用辅助角公式结合三角函数的单调性求解.6.【上海市黄浦区2018届高三4月模拟(二模)】已知向量在向量方向上的投影为,且,则=_______.(结果用数值表示) 【答案】【解析】由题向量在向量方向上的投影为,即即答案为-6.7.【上海市十二校2018届高三联考】在ABC ∆中, 120BAC ︒∠=, 2AB =, 1AC =,D 为线段BC上任一点(包含端点),则AD BC ⋅ 的最大值为________【答案】2∴cos 75AD BC AD BC ADB k ⋅=⨯⨯∠=-,分类讨论:①k =0时,D 与B 重合,由余弦定理得cosABC ∠==, 5AD BC ⋅=- ; ②01k < 时, 5752k -<- ;∴52AD BC -⋅; 则AD BC ⋅的取值范围为[−5,2].其最大值为2.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用. 8.【上海市崇明区2018届高三第一次高考模拟考试】在ABC 中,边上的中垂线分别交于点若,则_______【答案】4【解析】设,则,,又,即,故答案为.9.【上海市浦东新区2018届高三数学一模】已知向量()1,2a =-, ()3,4b =,则向量a在向量b的方向上的投影为________ 【答案】-110.【上海市交通大学附属中学2018届高三上学期开学摸底考试】如图,四个棱长为1的正方体排成一个正四棱柱, AB 是一条侧棱, ()1,2,,16i P i =⋯是上、下底面上其余十六个点,则()1,2,,16i AB AP i ⋅=⋯ 的不同值的个数为__________.【答案】2【解析】 由题意得, i i AP AB BP =+,则()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅ ,因为i AB BP ⊥ ,所以21i AB APAB ⋅== , 所以()1,2,,8i AB AP i ⋅=的不同的值的个数为1.11.【2016-2017年上海市闵行区高三4月质量调研考试(二模)】已知定点()1,1A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP O '=,是坐标原点,则PQ 的取值范围是 .【答案】12.【2016-2017年上海市普陀区高三下学期质量调研(二模)】在△ABC 中, D 、E 分别是AB 、AC 的中点, M 是直线DE 上的动点.若△ABC 的面积为1,则2M B M C B C⋅+ 的最小值为 .【解析】因为D、E分别是AB、AC的中点,且M是直线DE上的动点,所以M到直线BC的距离等于A到直线BC的距离的一半,所以1122MBC ABCS S==,则11sin22MBCS MB MC BMC=∠=,所以1sinMB MCBMC=∠,则c o sc o ss i nB M CM B M C M B M C B M CB M C∠⋅=∠=∠,由余弦定理,得当1cos2BMC∠>时,0y'<,当1cos2BMC∠<时,0y'>,即当1cos2BMC∠=时,2cossinBMCyBMC-∠=∠。
平面向量-2018年高考数学(文)--精校解析Word版

【母题原题1】【2018新课标1,文7】在△中,为边上的中线,为的中点,则A.B.C.D.【答案】A,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.【母题原题2】【2017新课标1,文13】已知向量a=(﹣1,2),b =(m,1),若向量a+ b与a 垂直,则m=_________.【答案】7【解析】由题得()1,3a b m +=-,因为()0a b a +⋅=,所以()1230m --+⨯=,解得7m =. 点睛:如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0. 【母题原题3】【2016新课标1,文13】设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x =______________. 【答案】-23【解析】试题分析:根据两向量垂直,可得,解得,故填:.考点:向量数量积【考点一:平面向量基本定理】1.平面向量基本定理中的基底必须是两个不共线的向量.2.选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底 表示出来.3.强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、 相似等.提醒:在基底未给出的情况下,合理地选取基底会给解题带来方便. 【考点二:平面向量的坐标运算】1.向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.2.解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 3.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;(2)若a ∥b (a ≠0),则b =λa ,应视题目条件灵活选择.1.【重庆市第八中学2018届高考适应性月考(六)】若在中,,其外接圆圆心满足,则( )A. B. C.D.【答案】A点晴:注意区分向量三角形法则和平行四边形法则之间的关系,注意区分向量积运算俩公式的区别。
2018年高考数学(文)二轮复习:1.4-平面向量题专项练ppt课件(含答案)

-6一、选择题 二、填空题
3.(2017 北京海淀一模,文 6)在△ABC 上,点 D 满足������������ =2������������ − ������������ ,则
B. ������������
解析:因为D,E,F分别是BC,CA,AB的中点,
所以������������ + ������������=- (������������ + ������������)- (������������ + ������������ )=- (������������ + ������������)= (������������ + ������������ )= ×2������������ = ������������ ,故选 A.
1.4 平面向量题专项练
-2-
1.平面向量的两个定理及一个结论 (1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实 数λ,使b=λa. (2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量, 那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使 a=λ1e1+λ2e2,其中e1,e2是一组基底. (3)三点共线的充要条件:A,B,C三点共线⇔存在实数λ,使
( D ) A.点D不在直线BC上 B.点D在BC的延长线上 C.点D在线段BC上 D.点D在CB的延长线上
解析:������������ =2������������ − ������������ = ������������ + ������������ − ������������ = ������������ + ������������,如图, 作������������' = ������������,连接 AD',则������������ + ������������ = ������������ + ������������' = ������������' = ������������ ,
2018年高考文科数学分类汇编专题五平面向量

《2018年高考文科数学分类汇编》、选择题1.【2018全国一卷7】在厶ABC 中,AD 为BC 边上的中线,D .押 4A C2 .【2018全国二卷4】已知向量a , b 满足|a | =1 , a b = -1,则a (2a-b )二n4.【2018浙江卷9】已知a, b, e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为-, 3 向量b 满足b 2- 4e - b +3=0,则|a - b |的最小值是、填空题 1.【2018全国三卷13】已知向量a = 1,2 , b = 2, -2 , c = 1,入.若c // 2a+b ,则■二2. ___________________________________________________________________________ 【2018 北京卷 9】设向量 a = (1,0) , b = (- 1,m )若 a - (m a -b ),贝V m= __________________3. 【2018江苏卷12】在平面直角坐标系 xOy 中,A 为直线I : y = 2x 上在第一象限内的点,T TB(5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB CD = 0,则点A 的横坐标为 _______ .第五篇:平面向量A . 3AB 一1 AC 4 4 E 为AD 的中点,则B . 3C . 2D . 03.【2018天津卷8】在如图的平面图形中,已知 OM =1 , ON =2 , MON=120 , BM = 2MA,CN =2NA,则的值为A. -15B.-9C.-6D.0B . 3+1C . 24. 【2018上海卷8】在平面直角坐标系中,已知点 A (-1 , 0), B (2, 0), E, F是y轴上的两个动点,且I存i=2,贝y AE• BF的最小值为 ______ [参考答案一、选择题1.A2.B二、填空题11.2 3.C 4.A2. -13.34.一3。
2018全国卷高考复习平面向量(知识总结+题型)

第一部分平面向量的概念及线性运算向量a( a z 0)与b共线的充要条件是存在唯一一个实数入,使得bi a.【基础练习】1. 判断正误(在括号内打或“X”)⑴零向量与任意向量平行.()(2)若a// b, b// c,贝U a// c.()⑶向量云B与向量6D是共线向量,贝y A B, C, D四点在一条直线上.()(4)当两个非零向量a, b共线时,一定有b=入a,反之成立.()⑸在厶ABC中, D是BC中点,则A D= 2(心A B.()2. 给出下列命题:①零向量的长度为零,方向是任意的;②若③向量ABW BA相等.则所有正确命题的序号是()A.①B.③C.①③D.①②3.(2017•枣庄模拟)设D ABC所在平面内一点,K D= —4A C若目C= X D C X€ R), 则X =()A.2B.3C. —2D. —34.(2015 •全国n卷)设向量a, b不平行,向量入a+ b与a+ 2b平行,则实数X =5.(必修4P92A12改编)已知?ABCD勺对角线AC和BD相交于Q且OA= a,O B= b,则张 _____ BC= ______ (用a, b 表示).1 26.(2017 •嘉兴七校联考)设D, E分别是△ ABC的边AB BC上的点,AD= -AB BE=§BC若DE= 入l AB+ 入2AC 入 1 , 入2为实数),贝V 入 1 = _____________ , 入2= _______________ .考点一平面向量的概念【例1】下列命题中,不正确的是 _________ (填序号).①若I a| = |b| ,则a= b;②若A, B, C, D是不共线的四点,贝厂’AB=承”是“四边形ABCD为平行四边形”的充要条件;③若a= b, b= c,贝V a= c.【训练1】下列命题中,正确的是 _________ (填序号).①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③两个向量不能比较大小,但它们的模能比较大小解析①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a与b中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;a, b都是单位向量,则a= b;考点三共线向量定理及其应用【例3】 设两个非零向量a 与b 不共线.(1)若 AB= a + b , BC= 2a + 8b , CD= 3( a — b ).求证:A, B , ⑵ 试确定实数k ,使ka + b 和a + kb 共线.【训练 3】已知向量 AB= a + 3b , BC= 5a + 3b , CD=- 3a + 3b ,则( )A.AB, C 三点共线 B.A, B, D 三点共线 C.A, C D 三点共线D.B, C, D 三点共线第二部分平面向量基本定理与坐标表示1. 平面向量的基本定理如果e 1, e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 对实数入1,入2,使a =入e+入2e 2.其中,不共线的向量 e 1, e 2叫做表示这一平面内所有向量的一组基底.2. 平面向量的正交分解 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解3. 平面向量的坐标运算(1) 向量加法、减法、数乘向量及向量的模 设 a =(X 1, y” , b = (X 2, y 2),贝U③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小 答案③考点二平面向量的线性运算1【例2】(2017 •潍坊模拟)在厶ABC 中, P , Q 分别是AB BC 的三等分点,且 AP= 3AB BQ= 13BC 若AB= a , AC= b ,则 PQ=( )311 A ・3a +3b 1 1B. — 3a +3b 1 1 C.J a -3b1 1 D. - 3a — 3b【训练2】(1)如图,正方形 ABCDK 点 E 是DC 的中点, 靠近B 点的三等分点,那么 EF 等于(A .^AB ^2D 三点共线;a ,有且只有-点F 是BC 的一个A BC.a+ b= (x i + X2, y土y) , a—b= (x i—X2, y i—y2), X a=(入x i, hy , | a| = :x1+y?.(2) 向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标②设A(x i,y i),B(x?,y?),则AB= (x? —X i,y?—y i),| AB = : (x?—X i)?+( y? —y i) 24. 平面向量共线的坐标表示设a= (x i, y i) , b= (x?, y?),贝y a// b? x i y? —x?y i = o.【基础练习】i.(?0i7 •东阳月考)已知向量a= (2 , 4) , b= ( —1 , 1),则2a+ b 等于()A.(5 , 7)B.(5 , 9)C.(3 ,7)D.(3 , 9)2.(20i5 -全国I卷)已知点A(0 , i), B(3 , 2),向量AC= ( —4, —3),则向量BC=( )A.( —7,—4)B.(7 ,4)C.( —1,4)D.(i ,4)3.(20i6 -全国n卷)已知向量a= (m4) , b= (3 , —2),且a / b,则m=4.(必修4Pi0iA3改编)已知?ABCD勺顶点A—i, —2),耳3 , —i) , C(5 , 6),则顶点D的坐标为考点一平面向量基本定理及其应用【例1】(2014 •全国I卷)设D, E, F分别为△ ABC的三边BC CA AB的中点,贝U EB+ F C= ( )A.ADB.[A DC.1B CD. BC >4【训练1】如图,已知AB= a , AC= b , BD= 3DC用a , b表示AD则AD= __ .a DC"考点二平面向量的坐标运算【例2】(1)已知向量a = (5 , 2) , b= ( —4, —3) , c= (x , y),若3a—2b+ c = 0,则c =( ) A.( —23 , —12) B.(23 , 12)C.(7 , 0)D.( —7 , 0)【训练2】(1)已知点A— 1 , 5)和向量a= (2, 3),若AB= 3a ,则点B的坐标为()A.(7 , 4)B.(7 , 14)C.(5 , 4)D.(5 , 14)⑵(2015 •江苏卷)已知向量a= (2 , 1), b= (1 , —2).若na+ nb= (9 , —8)( m n € R),则m—n的值为_________ .考点三平面向量共线的坐标表示【例3】(1)已知平面向量a= (1 , 2), b= ( — 2 , m,且a / b,贝U 2a+ 3b= ___________(2)(必修4P101练习7改编)已知A (2 , 3) , B (4 , — 3),点P 在线段AB 的延长线上,且| AFf =|| Bp ,则点P 的坐标为 ____________单位向量是()⑵若三点A (1 , - 5),政a , — 2) , q — 2, - 1)共线,则实数a 的值为 _____________ .第三部分 平面向量的数量积及其应用1. 平面向量数量积的有关概念⑴ 向量的夹角:已知两个非零向量a 和b ,记O A a , O B- b ,则/ AOB- 0 (0 ° < 0 < 180°)叫做向量a 与b 的夹角.⑵ 数量积的定义:已知两个非零向量a 与b ,它们的夹角为 0,则数量| a || b |cos 0叫做a 与b 的数量积(或内积),记作a • b ,即a • b = | a || b |cos ___ 0,规定零向量与任一向量的数量积为0,即0 • a = 0.⑶数量积几何意义:数量积a • b 等于a 的长度| a |与b 在a 的方向上的投影| b |cos 0的乘积. 2. 平面向量数量积的性质及其坐标表示设向量a = (x i , y i ), b = (X 2, y 2), 0为向量a , b 的夹角.⑴ 数量积:a • b = | a || b |cos 0 = X 1X 2+ y i y 2.(2) 模:| a | = , a • a = , x i + y i . 亠宀 a • bX 1X 2+ y i y 2(3) 夹角:C0S 0= 1 冲=——2222.丨 a ll b | 寸x i + y i •寸X 2 + y 2⑷ 两非零向量 a 丄b 的充要条件:a • b = 0? X 1X 2+ y i y 2= 0.(5)| a • b | <| a || b |(当且仅当 a // b 时等号成立)? | X 1X 2+ yyl w 寸x ;+ y : • p x 2+ y 2. 3. 平面向量数量积的运算律:(1) a - b = b • a (交换律).(2)入a • b = X (a • b ) = a •(入b )(结合律).(3)( a + b ) - c = a - c + b - c (分配律). 【基础练习】1. (2015 •全国 n 卷)向量 a = (1 , — 1), b = ( — 1, 2),则(2a + b ) - a 等于( )A. — 1B.0C.1D.22. (2017 •湖州模拟)已知向量a , b ,其中|a | = 3, | b | = 2,且(a — b )丄a ,则向量a 和b 的 夹角是 ________ .2 n3. (2016 •石家庄模拟)已知平面向量a , b 的夹角为, |a | = 2,|b | = 1,则| a + b | = ________ .【训练3】 (1)(2017 •浙江三市十二校联考)已知点A (1 , 3) , B (4 , — 1),则与AB 同方向的3-4-- D4 - 53 - 5-3 - 5 -4 -4 - 5-3 - 5A35. (必修4P104例1改编)已知I a| = 5, | b| = 4, a与b的夹角0 = 120°,则向量b在向量a方向上的投影为 _________ .6. _______________________________________ (2017 •瑞安一中检测)已知a , b , c 是同一平面内的三个向量,其中 a = (1 , 2) , |b | = 1, 且a + b 与a — 2b 垂直,则向量 a • b =; a 与b 的夹角0的余弦值为 ________________________________ .【考点突破】考点一平面向量的数量积及在平面几何中的应用(用已知表示未知) 【例1】(1)(2015 •四川卷)设四边形ABCD 为平行四边形, 足B M= 3^C 6N = 2hf c 则 AM ・ NM 等于( ) A.20B. 15C.9D.6⑵(2016 •天津卷)已知△ ABC 是边长为1的等边三角形,点连接DE 并延长到点F ,使得DE= 2EF,则AF • BC 的值为(【训练1】(1)(2017 •义乌市调研)在Rt △ ABC 中 , / A = 90° , AB= AC= 2,点D 为AC 的中 点,点E 满足1BE= 3B C 则尺E ・E3D= _____⑵(2017 •宁波质检)已有正方形 ABC 啲边长为1,点E 是AB 边上的动点,贝U 0E- CB 勺值为 ________ ; 6E - [5C 的最大值为 ______ . 考点二平面向量的夹角与垂直【例2】(1)(2016 •全国n 卷)已知向量a = (1 , m ) , b = (3 , — 2),且(a + b )丄b ,则 作( )A. — 8B. — 6C.6D.8⑵ 若向量a = (k , 3), b = (1 , 4), c = (2, 1),已知2a — 3b 与c 的夹角为钝角,贝U k 的取值 范围是_______________ .【训练2】(1)(2016 •全国川卷)已知向量BA= 1 ,右3 , BC= , 2 ,则/ ABC=()A.30 °B.45 °C.60°D.120°2 2 2(2)(2016 •全国I 卷)设向量 a = (m 1) , b = (1 , 2),且 |a + b | = | a | + | b | ,贝 Um ^ .考点三平面向量的模及其应用n【例3】(2017 •云南统一检测)已知平面向量a 与b 的夹角等于—,若|a | = 2 , | b | = 3,则 |2a — 3b | =()| AB = 6, |AD | = 4,若点 M N 满D, E 分别是边AB BC 的中点,11A . —8B.81。
高考数学压轴专题新备战高考《平面向量》难题汇编附答案

新数学《平面向量》试卷含答案一、选择题1.在ABC V 中,4AC AD =u u u r u u u r,P 为BD 上一点,若14AP AB AC λ=+u u u r u u u r u u u r ,则实数λ的值( )A .34B .320C .316D .38【答案】C 【解析】 【分析】根据题意,可得出144λ=+u u u r u u u r u u u rAP AB AD ,由于B ,P ,D 三点共线,根据向量共线定理,即可求出λ. 【详解】解:由题知:4AC AD =u u u r u u u r ,14AP AB AC λ=+u u ur u u u r u u u r ,所以144λ=+u u u r u u u r u u u r AP AB AD ,由于B ,P ,D 三点共线,所以1414λ+=, ∴316λ=. 故选:C.【点睛】本题考查平面向量的共线定理以及平面向量基本定理的应用.2.如图,在ABC ∆中,12AN NC =u u u r u u u r,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B 【解析】 【分析】根据题意,以AB u u u r ,AC u u ur 为基底表示出AP u u u r 即可得到结论. 【详解】由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r,所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r, 又15AP mAB AC =+u u u r u u u r u u u r ,所以,1135λ-=,且m λ=,解得25m λ==. 故选:B. 【点睛】本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.3.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r不共线,故③错误;对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.4.在平行四边形OABC 中,2OA =,OC =6AOC π∠=,动点P 在以点B 为圆心且与AC 相切的圆上,若OP OA OC λμ=+u u u r u u u r u u u r,则43λμ+的最大值为( )A .2+B .3+C .5+D .7+【答案】D 【解析】 【分析】先通过计算证明圆B 与AC 相切于点A ,再求出43OB OA BP OA λμ+=⋅+⋅u u u r u u u r u u u r u u u r,再求出7OB OA ⋅=u u u r u u u r ,BP OA ⋅u u u r u u u r的最大值为.【详解】如图所示,由2OA =,6AOC π∠=,由余弦定理得24+3221,12AC AC =-⨯=∴=, ∴90OCA BAC ∠=∠=o , ∴圆B 与AC 相切于点A , 又OP OA OC λμ=+u u u r u u u r u u u r,∴243OP OA OA OC OA λμλμ⋅=+⋅=+u u u r u u u r u u u r u u u r u u u r;∴()43OP OA OB BP OA OB OA BP OA λμ+=⋅=+⋅=⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ;如图,过点B 作,BD OA ⊥连接,OB 由题得6BAD π∠=,所以3,2AD DB OB ===∴==,所以772cos 13213BOA ∠==, 所以71327213OB OA ⋅=⨯⨯=u u u r u u u r , 因为BP OA ⋅u u u r u u u r的最大值为32cos023⨯⨯=o ,∴43λμ+的最大值是723+. 故选:D.【点睛】本题主要考查三角函数和余弦定理解三角形,考查平面向量的数量积运算和范围的求解,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.已知菱形ABCD 的边长为2,60ABC ∠=︒,则BD CD ⋅=u u u v u u u v()A .4B .6C .23D .43【答案】B 【解析】 【分析】根据菱形中的边角关系,利用余弦定理和数量积公式,即可求出结果. 【详解】 如图所示,菱形形ABCD 的边长为2,60ABC ∠=︒,∴120C ∠=︒,∴22222222cos12012BD =+-⨯⨯⨯︒=, ∴23BD =30BDC ∠=︒,∴|||3302|3262BD CD BD CD cos =⨯⨯︒=⨯=⋅u u u r u u u r u u u r u u u r ,【点睛】本题主要考查了平面向量的数量积和余弦定理的应用问题,属于基础题..6.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.7.在ABC ∆中,若点D 满足3CD DB =u u u r u u u r ,点M 为线段AC 中点,则MD =u u u u r( )A .3144AB AC -u u ur u u u r B .1136AB AC -u u u r u u u rC .2133AB AC -u u u r u u u rD .3144AB AC +u u ur u u u r【答案】A 【解析】 【分析】根据MD MA AB BD =++u u u r u u u u u u r u r u u u r,化简得到答案.()11312444MD MA AB BD AC AB AC AB AB AC =++=-++-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u uu u u u r r u u u r .故选:A . 【点睛】本题考查了向量的运算,意在考查学生的计算能力.8.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r( )A .2136a b -r rB .1133a b +r rC .1124a b +r rD .1133a b -r r【答案】A 【解析】 【分析】根据向量的运算法则计算得到答案.【详解】1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u ur u u u r 2136a b =-r r .故选:A . 【点睛】本题考查了向量的基本定理,意在考查学生的计算能力和转化能力.9.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( ) A .4 B .2C .2D 2【答案】A 【解析】 【分析】画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求221216y y -=,结合221244y y CD =-即可求解 【详解】如图:设222112112 ,,,,,444y y yA yB yC y⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y>,由90ACB∠=︒可得0CA CB⋅=u u u r u u u r,222212121212,,,44y y y yCA y y CB y y⎛⎫⎛⎫--=-=--⎪ ⎪⎝⎭⎝⎭u u u r u u u r,()222221212004y yCA CB y y⎛⎫-⋅=⇔--=⎪⎝⎭u u u r u u u r,即()()22212221216y yy y---=解得221216y y-=(0舍去),所以222212124444y y y yCD-=-==故选:A【点睛】本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题10.在菱形ABCD中,4AC=,2BD=,E,F分别为AB,BC的中点,则DE DF⋅=u u u r u u u r()A.134-B.54C.5 D.154【答案】B【解析】【分析】据题意以菱形对角线交点O为坐标原点建立平面直角坐标系,用坐标表示出,DE DFu u u r u u u r,再根据坐标形式下向量的数量积运算计算出结果.【详解】设AC与BD交于点O,以O为原点,BDu u u r的方向为x轴,CAu u u r的方向为y轴,建立直角坐标系,则1,12E ⎛⎫- ⎪⎝⎭,1,12F ⎛⎫-- ⎪⎝⎭,(1,0)D ,3,12DE ⎛⎫=- ⎪⎝⎭u u u r ,3,12DF ⎛⎫=-- ⎪⎝⎭u u u r ,所以95144DE DF ⋅=-=u u u r u u u r .故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.11.在平行四边形ABCD 中,4AB =,2AD =,3BAD π∠=,M 为DC 的中点,N为平面ABCD 内一点,若AB NB AM AN -=-u u u v u u u v u u u u v u u u v ,则AM AN ⋅=u u u u v u u u v ( )A .16B .12C .8D .6【答案】D 【解析】 【分析】根据条件及向量加减法的几何意义即可得出|AN u u u r |=|MN u u u u r|,再根据向量的数量积公式计算即可 【详解】由|AB NB -u u u r u u u r |=|AM AN -u u u u r u u u r |,可得|AN u u u r|=|NM u u u u r |,取AM 的中点为O ,连接ON ,则ON ⊥AM ,又12AM AD AB =+u u u u r u u u r u u u r ,所以AM u u u u r •21122AN AM ==u u u r u u u u r (12AD AB +u u u r u u u r )212=(2214AD AB AD ++u u u r u u u r u u u r •AB u u u r )12=(414+⨯16+2×412⨯)=6,故选:D .【点睛】本题主要考查了平面向量的几何表示,数量积的几何意义,运算求解能力,属于中档题12.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且.2BP PA =,则CP CB ⋅=u u u v u u u v( ) A .13B .12C .23D .1【答案】C 【解析】 【分析】利用向量的加减法及数乘运算用,CA CB u u u r u u u r 表示CP u u u v,再利用数量积的定义得解.【详解】依据已知作出图形如下:()11213333CP CA AP CA AB CA CB CA CA CB =+=+=+-=+u u u v u u v u u u v u u v u u u v u u v u u u v u u v u u v u u u v .所以221213333CP CB CA CB CB CA CB CB ⎛⎫+=+ ⎪⎝⎭⋅=⋅⋅u u u v u u u v u u v u u u v u u u v u u v u u u v u u u v221211cos 13333π=⨯⨯⨯+⨯= 故选C 【点睛】 本题主要考查了向量的加减法及数乘运算,还考查了数量积的定义,考查转化能力,属于中档题.13.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A .2B .2C .3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.14.如图,两个全等的直角边长分别为1,3的直角三角形拼在一起,若AD AB AC λμ=+u u u r u u u r u u u r ,则λμ+等于( )A 323-+B 323+C 31D 31+【答案】B【解析】【分析】 建立坐标系,求出D 点坐标,从而得出λ,μ的值.【详解】解:1AC =Q ,3AB =30ABC ∴∠=︒,60ACB ∠=︒,以AB ,AC 为坐标轴建立坐标系,则13,12D ⎛+ ⎝⎭. )3,0AB =u u u r ,()0,1AC =uu u r , ∴13,12AD ⎛=+ ⎝⎭u u u r . Q AD AB AC λμ=+u u u r u u u r u u u r , ∴13231λμ⎧=⎪⎪⎨⎪=+⎪⎩,∴36312λμ⎧=⎪⎪⎨⎪=+⎪⎩,231λμ∴+=+.【点睛】本题考查了平面向量的基本定理,属于中档题.15.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v 的最小值是( )A .21-B .2C .0D .1【答案】D【解析】 试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D. 考点:1.圆的性质;2.平面向量的数量积的运算.16.延长线段AB 到点C ,使得2AB BC =u u u r u u u r ,O AB ∉,2OD OA =u u u v u u u v ,则( ) A .1263BD OA OC =-u u u v u u u v u u u v B .5263BD OA OC =-u u u v u u u v u u u v C .5163BD OA OC =-u u u v u u u v u u u v D .1163BD OA OC =+u u u v u u u v u u u v 【答案】A【解析】【分析】 利用向量的加法、减法的几何意义,即可得答案;【详解】 Q BD OD OB =-u u u v u u u v u u u v ,()22123333OB OA AC OA OC OA OA OC =+=+-=+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,12OD OA =u u u v u u u v , ∴1263BD OA OC =-u u u v u u u v u u u v , 故选:A.本题考查向量的线性运算,考查函数与方程思想、转化与化归思想,考查运算求解能力. 17.已知平面向量,,a b c r r r 满足||||2a b ==r r ,a b ⊥r r ,()()a c b c -⊥-r r r r ,则(a b c ⋅r r r +)的取值范围是( )A .[0,2]B.[0, C .[0,4] D .[0,8] 【答案】D【解析】【分析】以点O 为原点,OA u u u r ,OB uuu r分别为x 轴,y 轴的正方向建立直角坐标系,根据AC BC ⊥,得到点C 在圆22(1)(1)2x y -+-=,再结合直线与圆的位置关系,即可求解.【详解】 设,,OA a OB b OC c ===u u u r r u u u r r u u u r r, 以点O 为原点,OA u u u r ,OB uuu r 分别为x 轴,y 轴的正方向建立直角坐标系,则(2,0),(0,2)A B ,依题意,得AC BC ⊥,所以点C 在以AB 为直径的圆上运动, 设点(,)C x y ,则22(1)(1)2x y -+-=,()22a b c x y +⋅=+r r r ,由圆心到直线22x y t +=的距离d =≤,可得[0,8]t ∈.故选:D .【点睛】本题主要考查了向量的数量积的坐标运算,以及直线与圆的位置关系的综合应用,着重考查了转化思想,以及推理与运算能力.18.已知A ,B 是圆224+=O: x y 上的两个动点,||2AB =u u u r ,1233OC OA OB =+u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM ⋅u u u r u u u u r 的值为( ). AB.C .2 D .3 【答案】D【解析】【分析】 判断出OAB ∆是等边三角形,以,OA OB u u u r u u u r 为基底表示出OM u u u u r ,由此求得OC OM ⋅u u u r u u u u r 的值.【详解】 圆O 圆心为()0,0,半径为2,而||2AB =u u u r ,所以OAB ∆是等边三角形.由于M 是线段AB 的中点,所以1122OM OA OB =+u u u u r u u u r u u u r .所以OC OM ⋅u u u r u u u u r 12331122OA OO O B A B ⎛⎫=+⋅⎛⎫+ ⎪⎝ ⎪⎭⎝⎭u u uu u u r u u u r r u u u r 22111623OA OA OB OB =+⋅⋅+u u u r u u u r u u u r u u u r 21422cos603323=+⨯⨯⨯+=o . 故选:D【点睛】本小题主要考查用基底表示向量,考查向量的数量积运算,考查数形结合的数学思想方法,属于中档题.19.已知向量(sin ,cos )a αα=r ,(1,2)b =r ,则以下说法不正确的是( )A .若//a b r r ,则1tan 2α=B .若a b ⊥r r ,则1tan 2α= C .若()f a b α=⋅r r 取得最大值,则1tan 2α= D .||a b -r r 51 【答案】B【解析】【分析】A 选项利用向量平行的坐标表示来判断正确性.B 选项利用向量垂直的坐标表示来判断正确性.C 选项求得()f α的表达式,结合三角函数最值的求法,判断C 选项的正确性.D 选项利用向量模的运算来判断正确性.【详解】A 选项,若//a b r r ,则2sin cos αα=,即1tan 2α=,A 正确.B 选项,若a b ⊥r r ,则sin 2cos 0αα+=,则tan 2α=-,B 不正确.C 选项,si (n )52cos in()f a b ααααϕ+==⋅=+r r ,其中tan 2ϕ=.取得最大值时,22k παϕπ+=+,22k πϕπα=+-,tan 2tan 2k πϕπα=+-⎛⎫ ⎪⎝⎭1tan 22tan παα⎛⎫=== ⎪⎝⎭-,则1tan 2α=,则C 正确. D 选项,由向量减法、模的几何意义可知||a b -r r1,此时5a =-rr ,,a b r r 反向.故选项D 正确.故选:B【点睛】 本小题主要考查向量平行、垂直的坐标表示,考查向量数量积的运算,考查向量减法的模的几何意义,属于中档题.20.已知,A B 是圆22:16O x y +=的两个动点,524,33AB OC OA OB ==-u u u v u u u v u u u v ,若M 分别是线段AB 的中点,则·OC OM =u u u v u u u u v ( ) A.8+B.8-C .12 D .4【答案】C【解析】【分析】【详解】 由题意1122OM OA OB =+u u u u r u u u r u u u r ,则2252115113322632OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,又圆的半径为4,4AB =uu u r ,则,OA OB u u u r u u u r 两向量的夹角为π3.则8OA OB ⋅=u u u v u u u v ,2216OA OB ==u u u v u u u v ,所以12OC OM ⋅=u u u r u u u u r .故本题答案选C .点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.。
2018年高考数学分类汇编:专题五平面向量

《2018年高考数学分类汇编》第五篇:平面向量一、选择题1.【2018全国一卷6】在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uu u r uuu r C .3144AB AC +uu u r uuu r D .1344AB AC +uu u r uuu r 2.【2018全国二卷4】已知向量,满足,,则 A .4 B .3 C .2 D .03.【2018北京卷6】设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 既不充分也不必要条件4.【2018天津卷8】如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅的最小值为 A. 2116 B. 32 C. 2516D. 3 5.【2018浙江卷9】已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A1BC .2D .2二、填空题 1.【2018全国三卷13】已知向量,,.若,则________.2.【2018江苏卷12】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=uu u r uu u r ,则点A 的横坐标为 .3.【2018上海卷8】在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上a b ||1=a 1⋅=-a b (2)⋅-=a a b ()=1,2a ()=2,2-b ()=1,λc ()2∥c a +b λ=的两个动点,且|EF uu v |=2,则AE uu u v ·BF uu v 的最小值为______[参考答案一、选择题1.A2.B3.C4.A5.A二、填空题 1.212.33.3。
2018年全国各地高考数学试题及解答分类大全(平面向量)

二、填空
1.(2018 北京文)设向量 a 1,0 , b 1, m ,若 a ma b ,则 m _________.
1.【答案】 1
【解析】 Q a 1,0 , b 1,m ,ma b m,0 1,m m 1, m , 由 a ma b 得, a ma b 0 ,a ma b m 1 0 ,即 m 1.
21
(A)
16
3
25
(B)
(C)
2
16
(D) 3
3.【答案】A
【解析】建立如图所示的平面直角坐标系,
则
A
0,
1 2
,
B
3 2
,
0
,
C
0,
3 2
,
D
3 2
,
0
,
点
E
在
CD
上,则
DE
DC
0
1
,设
E
x,
y
,则:
x
3 2
,
y
3 2
,
3 2
,即
x
3 2
y
3 2
3 2
,
据此可得 E
解则答b 2:设4ee
(1, b3
0)
,b 0
x
(
2
x,
y) y2
,
4x
3
0
(x 2)2
y2
1
如图所示, a
OA, b
OB ,(其中
A 为射线 OA 上动点, B 为圆 C 上动点, AOx
.)
3
∴ a b CD 1 3 1.(其中 CD OA .)
min
2.(2018 天津文)在如图的平面图形中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.P 为△ABC 内心,角 A,B,C 所对边长分别为 a, b, c. O 为平面内任意一点,|OA|=x, |OB|=y,|OC|=z. 则|OP|=___________(用 a, b, c, x, y, z 表示).
3. 已知平面上三个向量 a, b, c 均为单位向量,且两两夹角均为 120°,若|ka+b+c|>1(k∈R), 则 k 的取值范围是___________.
7.设 e1, e2 是单位向量,非零向量 b=xe1+ye2(x, y∈R)若 e1, e2 的夹角为 ,则 的最大值
等于
.
8. 已知点 G 是△ABC 的重心,点 P 是△GBC 内一点,若 AP=λAB+μAC,则 λ+μ 的取值范 围是_____________.
11.设坐标平面上全部向量的集合为 V,a=(a1, a2)为 V 中的一个单位向x x·a a(x∈V)确定, (1)对于 V 的任意两个向量 x, y, 求证: (x)· (y)=x·y; (2)对于 V 的任意向量 x,计算 x x; (3)设 u=(1, 0);V=(0,1),若 (u)=V,求 a.
平面向量 套题 1
1.如图,已知圆 M:(x−3)2+(y−3)2=4,四边形 ABCD 为圆 M 的内接正
方形,E 为边 AB 的中点,当正方形 ABCD 绕圆心 M 转动,同时点 F
在边 AD 上运动时,ME·OF 的最大值是
.
2.已知 O 为△ABC 内一点,若对任意 k∈R 有
,则
△ABC 一定是( (A)直角三角形
1 ① 若△ABC 的最小内角为 α,则 cos α≥2.
② 若 Asin B>Bsin A,则 B>A. ③ 存在某钝角△ABC,有 tan A+tan B+tan C > 0. ④ 若 2aBC+bCA+cAB=0,则△ABC 的最小角小于 30°. ⑤ 若 a<tb(t∈(0,1]),则 A<tB.
中点,过点 D 的直线分别交 AB,AC 于点 M,N,若
AM=xAB,AN=yAC,其中 x>0,y>0,则 2x+4y 的最
小值是
。
第 8 题图 9.已知向量 a,b,c 满足| a |=| b |=a·b=2,(a−c)·(b−2c)=0,则| b−c |的最小值为( )
A. 7 3 2
B. 3 1 2
上述命题中的向量 b,c 和 a 在同一平面内且两两不共线,则真命题的个数是( ).
A.1
B.2
C.3
D.4
3. 设△ABC,P0 是边 AB 上一定点,满足 4P0B=AB,且对于边 AB 上任一点 P,恒有 PB·PC
≥P0B·P0C。则(
)
A. ABC 900
B. BAC 900
C. AB AC
7. 如图,在等腰三角形 ABC 中,已知 AB=AC=1,A=120°,E,F 分别是边 AB,AC 上的
点,且 AE=mAB,AF=nAC,其中 m,n∈(0,1),若 EF,
BC 的中点分别为 M,N,且 m+4n=1,则|MN|的最小值
是
.
第 7 题图
8. 如图,在等腰直角△ABC 中,点 D 是斜边 BC 的
A. 1 2
B. 1 4
C. 3 4
D.1
6. 如图,四边形 ABCD 是正方形,延长 CD 至 E,使得 DE=CD. 若动点 P 从点 A 出发,沿正方形的边按逆时针方向运动一周回到 A 点,其中 AP=λAB+μAE,下列判断正.确.的是( ) A.满足 λ+μ=2 的点 P 必为 BC 的中点 B.满足 λ+μ=1 的点 P 有且只有一个 C. λ+μ 的最大值为 3 D. λ+μ 的最小值不存在
2. 在平面直角坐标系 xOy 中,已知向量 a,b,| a |=| b |=1,a·b=0,点 Q 满足 OQ= √ (a+b).
曲线 C={P|OP=acos t+bsin t,
},区域 Ω=
. 若 C∩Ω
为两段分离的曲线,则( )
A.
B.
≤
C. ≤
D.
3. 对于向量 a,b,定义 a×b 为向量 a,b 的叉积,其运算结果为一个向 量,且规定 a×b 的模| a×b |=| a || b |sin〈a,b〉,a×b 的方向与向量 a,b 的方向都垂直,且使得 a,b,a×b 依次构成右手系. 如图所示, 在平行六面体 ABCD-EFGH 中,∠EAB=∠EAD=∠BAD=60°, AB=AD=AE=2,则(AB×AD)·AE=_______.
6.O 为△ABC 所在平面内一点,若 sinA·OA+sinB·OB+sinC·OC=0,则点 O 为△ABC 的 _________心.
7.对于非零向量 a, b, “|a|=|b|”是“(a+b) (a−b)”的___________条件.
8.在△ABC 中,AB=a,BC=c,CA=b,又(c·b):(b·a):(a·c)=1:2:3,则△ABC 三边长之比 |a|:|b|:|c|=____________.
) (B) 钝角三角形
(C) 锐角三角形
(D) 以上均有可能
3. 如图,直角梯形 ABCD 中,AD⊥AB,AB//DC,AB=4,AD=DC=2,设点 D N 是 DC 边的中点,点 M 是梯形 ABCD 内或边界上的一个动点,则 AM·AN 的最大值是( )
(A)4
(B) 6 (C) 8 (D)10
12.已知点 O 在凸多边形 A1A2…An 内,考虑所有的 AiOAj,这里的 i, j 为 1 至 n 中不同的
自然数,求证:其中至少有 个不是锐角。
13.在平面上给出和为 O 的向量 a, b, c, d,任何两个不共线,求证: | a |+| b |+| c |+| d |≥| a+d |+| b+d |+| c+d |.
14.定义在 R 上的函数 f (x)存在性质:对于任意的 ,
,
,f (0)=0,设 an= ( )
,数列{an}的级数为 Sn,数列{2Sn+1}的级数为 Tn,若方
程 Tn=Sn+1(cn+d)−1(c,d∈R)在 n≥10 时存在至少三个正整数解 p,q,r,则 c+d∈_______.
平面向量 套题 3
相切的圆上运动,设AP=mAD+nAB(m,n∈R),则m+n的取值范围是
。
14.在△ABC 中,过中线 AD 中点 E 任作一直线分别交 AB,AC 于 M,N 两点,设 AM=xAB, AN=yAC(xy≠0),则 4x+y 的最小值是 .
15.AB 为单位圆上的弦,P 为单位圆上的动点,设 f (λ)=|BP−λBA|的最小值为 M,若 M 的
D. AC BC
4. 设 a, b 为非零向量,| b |=2| a |,两组向量 x1, x2, x3, x4 和 y1, y2, y3, y4 均由 2 个 a 和 2 个 b 排列而成,若 x1·y1+ x2·y2+ x3·y3+ x4·y4 所有可能取值中的最小值为 4| a |2,则 a 与 b 的 夹角为( )
1. 设 A1,A2,A3,A4 是平面直角坐标系中两两不同的四点,若 A1A3=λA1A(2 λ∈R),A1A4=μA1A2 (μ∈R),且 λ-1+μ-1=2,则称 A3,A4 调和分割 A1,A2. 已知平面上的点 C,D 调和分割点 A,B,则下列说法正确的是( ) A.C 可能是线段 AB 的中点 B.D 可能是线段 AB 的中点 C.C,D 可能同时在线段 AB 上 D.C,D 不可能同时在线段 AB 的延长线上
4. 定义两个平面向量的一种运算 a×b =| a || b |sin〈a,b〉,则下列结论中,恒成立的有______.
① a×b=b×a
② λ(a×b)=(λa)×b
③ 若 a=λb,则 a×b=0
④ 若 a=λb,且 λ>0,则(a+b)×c=(a×c)+(b×c)
5. 在△ABC 中,下列命题正确的是_______(写出所有正确命题的编号).
C. 3 2
D. 7 2
10.已知圆 x2+y2=1 与 x 轴的两个交点为 A,B,若圆内的动点 P 使 PA2,PO2,PB2 成等比数
列(O 为坐标原点),则 PA·PB 的取值范围为( )
A. (0, 1] 2
B.[ 1 , 0) 2
C. ( 1 , 0) 2
D.[1, 0)
11.在△ABC中,AC=6,BC=7,cos A 1 ,O是△ABC的内心,若OP=xOA+yOB,其中x, 5
A
N C
M B
4.已知向量 a,b,c 满足 a+b+c=0,| c |=2 ,c 与 |ta+(1−t)b|的取值范围是_________.
所成的角为120 ,则当 t∈R 时,
5. 已知向量 α,β,γ 满足| α |=1,| α−β |=| β |,(α−γ)·(β−γ)=0.若对每一确定的 β,| γ |的 最大值和最小值分别为 m, n ,则对任意 β, m n 的最小值是( )
9.已知 P 为△ABC 内一点,且 PA+2PB+3PC=0,CP 交 AB 于 D,求证:DP=PC.
10.已知△ABC 的垂心为 H,△HBC,△HCA,△HAB 的外心分别为 O1,O2,O3,令 HA=a, HB=b, HC=c, HO1=p,求证: (1)2p=b+c−a; (2)H 为△O1O2O3 的外心。